Skip to main content
Top
Published in: Inflammation 5/2021

01-10-2021 | Fluorescence in Situ Hybridization | Original Article

Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier

Authors: Yuhua Gao, Tao Han, Cailing Han, Hua Sun, Xiaoxia Yang, Dongmei Zhang, Xinli Ni

Published in: Inflammation | Issue 5/2021

Login to get access

Abstract

Surgery for colorectal cancer (CRC) can cause damage to the intestinal mucosal barrier and lead to bacterial invasion. This study mainly analyzed whether propofol (PPF) could protect the intestinal mucosal barrier damage caused by CRC surgery, and explored its molecular mechanism. A mouse CRC model was constructed using azomethane and dextran sulfate sodium. During anesthesia, continuous intravenous injection of PPF was used for intervention. The influences of PPF on intestinal mucosal permeability and bacterial invasion were detected. The levels of microRNA (miR)-155, Toll-like receptor 4 (TLR4)/NF-κB in the intestinal mucosa, and the location of miR-155 were detected by fluorescence in situ hybridization (FISH). Mouse macrophages were used to analyze the regulation of miR-155 on the secretion of inflammatory cytokines through the TLR4/NF-κB pathway. PPF treatment promoted the expression of tight junction protein in the intestinal mucosa, protected the intestinal barrier, inhibited the translocation of intestinal bacteria, and increased the level of the beneficial bacterium Lactobacillus on the mucosal surface. In addition, PPF treatment could inhibit the expression of miR-155, TLR4/NF-KB, and reverse inflammatory response. miR-155 was expressed in macrophages of intestinal mucosa tissue. Overexpression of miR-155 promoted the nuclear translocation of NF-κB and the expression of inflammatory cytokines in macrophages. The use of VIPER to inhibit TLR4 reversed the pro-inflammatory effects of miR-155. PPF might inhibit the activation of the NF-κB pathway by downregulating miR-155 expression, thereby reducing the secretion of inflammatory cytokines. This might be the mechanism by which PPF protected the intestinal barrier of CRC surgical model mice.
Literature
1.
go back to reference Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68 (6): 394–424.PubMedCrossRef Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68 (6): 394–424.PubMedCrossRef
2.
go back to reference Taniguchi, T., K. Yamamoto, N. Ohmoto, K. Ohta, and T. Kobayashi. 2000. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Crit Care Med 28 (4): 1101–1106.PubMedCrossRef Taniguchi, T., K. Yamamoto, N. Ohmoto, K. Ohta, and T. Kobayashi. 2000. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Crit Care Med 28 (4): 1101–1106.PubMedCrossRef
3.
go back to reference Yu, H., X. Wang, F. Kang, Z. Chen, Y. Meng, and M. Dai. 2019. Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia. Int J Mol Med 43 (1): 452–460.PubMed Yu, H., X. Wang, F. Kang, Z. Chen, Y. Meng, and M. Dai. 2019. Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia. Int J Mol Med 43 (1): 452–460.PubMed
4.
go back to reference Kochiyama, T., X. Li, H. Nakayama, M. Kage, Y. Yamane, K. Takamori, K. Iwabuchi, and E. Inada. 2019. Effect of propofol on the production of inflammatory cytokines by human polarized macrophages. Mediat Inflamm 2019: 1919538.CrossRef Kochiyama, T., X. Li, H. Nakayama, M. Kage, Y. Yamane, K. Takamori, K. Iwabuchi, and E. Inada. 2019. Effect of propofol on the production of inflammatory cytokines by human polarized macrophages. Mediat Inflamm 2019: 1919538.CrossRef
5.
go back to reference Sun, L., W. Ma, W. Gao, Y. Xing, L. Chen, Z. Xia, Z. Zhang, and Z. Dai. 2019. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis 10 (8): 542.PubMedPubMedCentralCrossRef Sun, L., W. Ma, W. Gao, Y. Xing, L. Chen, Z. Xia, Z. Zhang, and Z. Dai. 2019. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis 10 (8): 542.PubMedPubMedCentralCrossRef
6.
go back to reference Tian, H.T., X.H. Duan, Y.F. Yang, Y. Wang, Q.L. Bai, and X. Zhang. 2017. Effects of propofol or sevoflurane anesthesia on the perioperative inflammatory response, pulmonary function and cognitive function in patients receiving lung cancer resection. Eur Rev Med Pharmacol Sci 21 (23): 5515–5522.PubMed Tian, H.T., X.H. Duan, Y.F. Yang, Y. Wang, Q.L. Bai, and X. Zhang. 2017. Effects of propofol or sevoflurane anesthesia on the perioperative inflammatory response, pulmonary function and cognitive function in patients receiving lung cancer resection. Eur Rev Med Pharmacol Sci 21 (23): 5515–5522.PubMed
7.
go back to reference Liu, J., and L. Yang. 2020. Effects of propofol and sevoflurane on blood glucose, hemodynamics, and inflammatory factors of patients with type 2 diabetes mellitus and gastric cancer. Oncol Lett 19 (2): 1187–1194.PubMed Liu, J., and L. Yang. 2020. Effects of propofol and sevoflurane on blood glucose, hemodynamics, and inflammatory factors of patients with type 2 diabetes mellitus and gastric cancer. Oncol Lett 19 (2): 1187–1194.PubMed
8.
go back to reference Freeman, J., P.D. Crowley, A.G. Foley, H.C. Gallagher, M. Iwasaki, D. Ma, and D.J. Buggy. 2019. Effect of perioperative lidocaine, propofol and steroids on pulmonary metastasis in a murine model of breast cancer surgery. Cancers 11 (5). Freeman, J., P.D. Crowley, A.G. Foley, H.C. Gallagher, M. Iwasaki, D. Ma, and D.J. Buggy. 2019. Effect of perioperative lidocaine, propofol and steroids on pulmonary metastasis in a murine model of breast cancer surgery. Cancers 11 (5).
9.
go back to reference Wu, Z.F., M.S. Lee, C.S. Wong, C.H. Lu, Y.S. Huang, K.T. Lin, Y.S. Lou, C. Lin, Y.C. Chang, and H.C. Lai. 2018. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology 129 (5): 932–941.PubMedCrossRef Wu, Z.F., M.S. Lee, C.S. Wong, C.H. Lu, Y.S. Huang, K.T. Lin, Y.S. Lou, C. Lin, Y.C. Chang, and H.C. Lai. 2018. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology 129 (5): 932–941.PubMedCrossRef
10.
go back to reference Diss, L.B., S. Villeneuve, K.R. Pearce, M.S. Yeoman, and B.A. Patel. 2019. Region specific differences in the effect of propofol on the murine colon result in dysmotility. Auton Heurosci: Basic Clin 219: 19–24.CrossRef Diss, L.B., S. Villeneuve, K.R. Pearce, M.S. Yeoman, and B.A. Patel. 2019. Region specific differences in the effect of propofol on the murine colon result in dysmotility. Auton Heurosci: Basic Clin 219: 19–24.CrossRef
11.
go back to reference Wang, P., J. Hou, L. Lin, C. Wang, X. Liu, D. Li, F. Ma, Z. Wang, and X. Cao. 2010. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol (Baltim, Md: 1950) 185 (10): 6226–6233. Wang, P., J. Hou, L. Lin, C. Wang, X. Liu, D. Li, F. Ma, Z. Wang, and X. Cao. 2010. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol (Baltim, Md: 1950) 185 (10): 6226–6233.
12.
go back to reference Kim, J.K., S.W. Jang, K. Suk, and W.H. Lee. 2015. Fascin regulates TLR4/PKC-mediated translational activation through miR-155 and miR-125b, which targets the 3′ untranslated region of TNF-α mRNA. Immunol Investig 44 (3): 309–320.CrossRef Kim, J.K., S.W. Jang, K. Suk, and W.H. Lee. 2015. Fascin regulates TLR4/PKC-mediated translational activation through miR-155 and miR-125b, which targets the 3′ untranslated region of TNF-α mRNA. Immunol Investig 44 (3): 309–320.CrossRef
13.
go back to reference Huang, J., Q. Yang, L. He, and J. Huang. 2018. Role of TLR4 and miR-155 in peripheral blood mononuclear cell-mediated inflammatory reaction in coronary slow flow and coronary arteriosclerosis patients. J Clin Lab Anal 32 (2). Huang, J., Q. Yang, L. He, and J. Huang. 2018. Role of TLR4 and miR-155 in peripheral blood mononuclear cell-mediated inflammatory reaction in coronary slow flow and coronary arteriosclerosis patients. J Clin Lab Anal 32 (2).
14.
go back to reference Zhang, Z., L. Tian, and K. Jiang. 2019. Propofol attenuates inflammatory response and apoptosis to protect d-galactosamine/lipopolysaccharide induced acute liver injury via regulating TLR4/NF-κB/NLRP3 pathway. Int Immunopharmacol 77: 105974.PubMedCrossRef Zhang, Z., L. Tian, and K. Jiang. 2019. Propofol attenuates inflammatory response and apoptosis to protect d-galactosamine/lipopolysaccharide induced acute liver injury via regulating TLR4/NF-κB/NLRP3 pathway. Int Immunopharmacol 77: 105974.PubMedCrossRef
15.
go back to reference Zheng, X., H. Huang, J. Liu, M. Li, M. Liu, and T. Luo. 2018. Propofol attenuates inflammatory response in LPS-activated microglia by regulating the miR-155/SOCS1 pathway. Inflammation 41 (1): 11–19.PubMedCrossRef Zheng, X., H. Huang, J. Liu, M. Li, M. Liu, and T. Luo. 2018. Propofol attenuates inflammatory response in LPS-activated microglia by regulating the miR-155/SOCS1 pathway. Inflammation 41 (1): 11–19.PubMedCrossRef
16.
go back to reference Neurath, M.F., I. Fuss, B.L. Kelsall, E. Stüber, and W. Strober. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182 (5): 1281–1290.PubMedCrossRef Neurath, M.F., I. Fuss, B.L. Kelsall, E. Stüber, and W. Strober. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182 (5): 1281–1290.PubMedCrossRef
17.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25 (4): 402–408.CrossRef Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25 (4): 402–408.CrossRef
18.
go back to reference Zhang, Y., G.J. Shan, Y.X. Zhang, S.J. Cao, S.N. Zhu, H.J. Li, D. Ma, and D.X. Wang. 2018. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br J Anaesth 121 (3): 595–604.PubMedCrossRef Zhang, Y., G.J. Shan, Y.X. Zhang, S.J. Cao, S.N. Zhu, H.J. Li, D. Ma, and D.X. Wang. 2018. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br J Anaesth 121 (3): 595–604.PubMedCrossRef
19.
go back to reference Mathur, S., P. Farhangkhgoee, and M. Karmazyn. 1999. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts: role of K(ATP) channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Anesthesiology 91 (5): 1349–1360.PubMedCrossRef Mathur, S., P. Farhangkhgoee, and M. Karmazyn. 1999. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts: role of K(ATP) channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Anesthesiology 91 (5): 1349–1360.PubMedCrossRef
20.
go back to reference Shi, S.S., H.B. Zhang, C.H. Wang, W.Z. Yang, R.S. Liang, Y. Chen, and X.K. Tu. 2015. Propofol attenuates early brain injury after subarachnoid hemorrhage in rats. J Mol Neurosci 57 (4): 538–545.PubMedCrossRef Shi, S.S., H.B. Zhang, C.H. Wang, W.Z. Yang, R.S. Liang, Y. Chen, and X.K. Tu. 2015. Propofol attenuates early brain injury after subarachnoid hemorrhage in rats. J Mol Neurosci 57 (4): 538–545.PubMedCrossRef
21.
go back to reference Liu, W., H. Zhu, and H. Fang. 2017. Propofol potentiates sevoflurane-induced inhibition of nuclear factor--κB-mediated inflammatory responses and regulation of mitogen-activated protein kinases pathways via Toll-like receptor 4 signaling in lipopolysaccharide-induced acute lung injury in mice. Am J Med Sci 354 (5): 493–505.PubMedCrossRef Liu, W., H. Zhu, and H. Fang. 2017. Propofol potentiates sevoflurane-induced inhibition of nuclear factor--κB-mediated inflammatory responses and regulation of mitogen-activated protein kinases pathways via Toll-like receptor 4 signaling in lipopolysaccharide-induced acute lung injury in mice. Am J Med Sci 354 (5): 493–505.PubMedCrossRef
22.
go back to reference Yuan, D., G. Su, Y. Liu, X. Chi, J. Feng, Q. Zhu, J. Cai, G. Luo, and Z. Hei. 2016. Propofol attenuated liver transplantation-induced acute lung injury via connexin43 gap junction inhibition. J Transl Med 14 (1): 194.PubMedPubMedCentralCrossRef Yuan, D., G. Su, Y. Liu, X. Chi, J. Feng, Q. Zhu, J. Cai, G. Luo, and Z. Hei. 2016. Propofol attenuated liver transplantation-induced acute lung injury via connexin43 gap junction inhibition. J Transl Med 14 (1): 194.PubMedPubMedCentralCrossRef
23.
go back to reference Xie, J., Y. Liu, B. Chen, G. Zhang, S. Ou, J. Luo, and X. Peng. 2019. Ganoderma lucidum polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells. Food Nutr Res 63. Xie, J., Y. Liu, B. Chen, G. Zhang, S. Ou, J. Luo, and X. Peng. 2019. Ganoderma lucidum polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells. Food Nutr Res 63.
24.
go back to reference Güvenç, M., M. Cellat, and H. Özkan. 2019. Tekeli İ O, Uyar A, Gökçek İ, İşler CT, Yakan A: Protective effects of tyrosol against DSS-induced ulcerative colitis in rats. Inflammation 42 (5): 1680–1691.PubMedCrossRef Güvenç, M., M. Cellat, and H. Özkan. 2019. Tekeli İ O, Uyar A, Gökçek İ, İşler CT, Yakan A: Protective effects of tyrosol against DSS-induced ulcerative colitis in rats. Inflammation 42 (5): 1680–1691.PubMedCrossRef
25.
go back to reference Lv, X., X. Zhou, J. Yan, J. Jiang, and H. Jiang. 2017. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B. Biomed Pharmacother = Biomed Pharmacother 87: 180–187.PubMedCrossRef Lv, X., X. Zhou, J. Yan, J. Jiang, and H. Jiang. 2017. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B. Biomed Pharmacother = Biomed Pharmacother 87: 180–187.PubMedCrossRef
26.
go back to reference Luo, J., B. Huang, Z. Zhang, M. Liu, and T. Luo. 2018. Delayed treatment of propofol inhibits lipopolysaccharide-induced inflammation in microglia through the PI3K/PKB pathway. Neuroreport 29 (10): 839–845.PubMedPubMedCentralCrossRef Luo, J., B. Huang, Z. Zhang, M. Liu, and T. Luo. 2018. Delayed treatment of propofol inhibits lipopolysaccharide-induced inflammation in microglia through the PI3K/PKB pathway. Neuroreport 29 (10): 839–845.PubMedPubMedCentralCrossRef
27.
go back to reference Zheng, G., H. Qu, F. Li, W. Ma, and H. Yang. 2018. Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. Braz J Med Biol Res Rev Bras Pesqui Med Biol 51 (11): e7655.CrossRef Zheng, G., H. Qu, F. Li, W. Ma, and H. Yang. 2018. Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. Braz J Med Biol Res Rev Bras Pesqui Med Biol 51 (11): e7655.CrossRef
28.
go back to reference Henriksson, A.E., C. Tagesson, A. Uribe, K. Uvnäs-Moberg, C.E. Nord, R. Gullberg, and C. Johansson. 1988. Effects of prostaglandin E2 on disease activity, gastric secretion and intestinal permeability, and morphology in patients with rheumatoid arthritis. Ann Rheum Dis 47 (8): 620–627.PubMedPubMedCentralCrossRef Henriksson, A.E., C. Tagesson, A. Uribe, K. Uvnäs-Moberg, C.E. Nord, R. Gullberg, and C. Johansson. 1988. Effects of prostaglandin E2 on disease activity, gastric secretion and intestinal permeability, and morphology in patients with rheumatoid arthritis. Ann Rheum Dis 47 (8): 620–627.PubMedPubMedCentralCrossRef
29.
go back to reference Rodríguez-Lagunas, M.J., R. Martín-Venegas, J.J. Moreno, and R. Ferrer. 2010. PGE2 promotes Ca2+-mediated epithelial barrier disruption through EP1 and EP4 receptors in Caco-2 cell monolayers. Am J Physiol Cell Physiol 299 (2): C324–C334.PubMedCrossRef Rodríguez-Lagunas, M.J., R. Martín-Venegas, J.J. Moreno, and R. Ferrer. 2010. PGE2 promotes Ca2+-mediated epithelial barrier disruption through EP1 and EP4 receptors in Caco-2 cell monolayers. Am J Physiol Cell Physiol 299 (2): C324–C334.PubMedCrossRef
30.
go back to reference Castellone, M.D., H. Teramoto, B.O. Williams, K.M. Druey, and J.S. Gutkind. 2005. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science (N Y, NY) 310 (5753): 1504–1510.CrossRef Castellone, M.D., H. Teramoto, B.O. Williams, K.M. Druey, and J.S. Gutkind. 2005. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science (N Y, NY) 310 (5753): 1504–1510.CrossRef
31.
go back to reference Karpisheh, V., A. Nikkhoo, M. Hojjat-Farsangi, A. Namdar, G. Azizi, G. Ghalamfarsa, G. Sabz, M. Yousefi, B. Yousefi, and F. Jadidi-Niaragh. 2019. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Lipid Mediat 144: 106338.CrossRef Karpisheh, V., A. Nikkhoo, M. Hojjat-Farsangi, A. Namdar, G. Azizi, G. Ghalamfarsa, G. Sabz, M. Yousefi, B. Yousefi, and F. Jadidi-Niaragh. 2019. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Lipid Mediat 144: 106338.CrossRef
32.
go back to reference Zhang, Y.F., C.S. Li, Y. Zhou, and X.H. Lu. 2020. Effects of propofol on colon cancer metastasis through STAT3/HOTAIR axis by activating WIF-1 and suppressing Wnt pathway. Cancer Med 9 (5): 1842–1854.PubMedPubMedCentralCrossRef Zhang, Y.F., C.S. Li, Y. Zhou, and X.H. Lu. 2020. Effects of propofol on colon cancer metastasis through STAT3/HOTAIR axis by activating WIF-1 and suppressing Wnt pathway. Cancer Med 9 (5): 1842–1854.PubMedPubMedCentralCrossRef
33.
go back to reference Liu, D., X. Sun, Y. Du, and M. Kong. 2018. Propofol promotes activity and tumor-killing ability of natural killer cells in peripheral blood of patients with colon cancer. Med Sci Monit Int Med J Exp Clin Res 24: 6119–6128. Liu, D., X. Sun, Y. Du, and M. Kong. 2018. Propofol promotes activity and tumor-killing ability of natural killer cells in peripheral blood of patients with colon cancer. Med Sci Monit Int Med J Exp Clin Res 24: 6119–6128.
34.
go back to reference Tian, X., H. Zhao, Z. Zhang, Z. Guo, and W. Li. 2019. Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways. PLoS One 14 (10): e0223651.PubMedPubMedCentralCrossRef Tian, X., H. Zhao, Z. Zhang, Z. Guo, and W. Li. 2019. Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways. PLoS One 14 (10): e0223651.PubMedPubMedCentralCrossRef
35.
go back to reference Han, C., L. Guo, Y. Sheng, Y. Yang, J. Wang, Y. Gu, W. Li, X. Zhou, and Q. Jiao. 2020. FoxO1 regulates TLR4/MyD88/MD2-NF-κB inflammatory signalling in mucosal barrier injury of inflammatory bowel disease. J Cell Mol Med 24 (6): 3712–3723.PubMedPubMedCentralCrossRef Han, C., L. Guo, Y. Sheng, Y. Yang, J. Wang, Y. Gu, W. Li, X. Zhou, and Q. Jiao. 2020. FoxO1 regulates TLR4/MyD88/MD2-NF-κB inflammatory signalling in mucosal barrier injury of inflammatory bowel disease. J Cell Mol Med 24 (6): 3712–3723.PubMedPubMedCentralCrossRef
36.
go back to reference Tili, E., J.J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, H. Alder, C.G. Liu, G.A. Calin, et al. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol (Baltim, Md: 1950) 179 (8): 5082–5089. Tili, E., J.J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, H. Alder, C.G. Liu, G.A. Calin, et al. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol (Baltim, Md: 1950) 179 (8): 5082–5089.
37.
go back to reference Yan, Y., Y. Lou, and J. Kong. 2019. MiR-155 expressed in bone marrow-derived lymphocytes promoted lipopolysaccharide-induced acute lung injury through Ang-2-Tie-2 pathway. Biochem Biophys Res Commun 510 (3): 352–357.PubMedCrossRef Yan, Y., Y. Lou, and J. Kong. 2019. MiR-155 expressed in bone marrow-derived lymphocytes promoted lipopolysaccharide-induced acute lung injury through Ang-2-Tie-2 pathway. Biochem Biophys Res Commun 510 (3): 352–357.PubMedCrossRef
38.
go back to reference Liu, Y., F. Zhu, H. Li, H. Fan, H. Wu, Y. Dong, S. Chu, C. Tan, Q. Wang, H. He, et al. 2020. MiR-155 contributes to intestinal barrier dysfunction in DSS-induced mice colitis via targeting HIF-1α/TFF-3 axis. Aging 12 (14): 14966–14977.PubMedPubMedCentralCrossRef Liu, Y., F. Zhu, H. Li, H. Fan, H. Wu, Y. Dong, S. Chu, C. Tan, Q. Wang, H. He, et al. 2020. MiR-155 contributes to intestinal barrier dysfunction in DSS-induced mice colitis via targeting HIF-1α/TFF-3 axis. Aging 12 (14): 14966–14977.PubMedPubMedCentralCrossRef
39.
go back to reference Xu, M., D. Zuo, X. Liu, H. Fan, Q. Chen, S. Deng, Z. Shou, Q. Tang, J. Yang, Z. Nan, et al. 2017. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochem Biophys Res Commun 488 (1): 6–14.PubMedCrossRef Xu, M., D. Zuo, X. Liu, H. Fan, Q. Chen, S. Deng, Z. Shou, Q. Tang, J. Yang, Z. Nan, et al. 2017. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochem Biophys Res Commun 488 (1): 6–14.PubMedCrossRef
40.
go back to reference Hou, J., X. Hu, B. Chen, X. Chen, L. Zhao, Z. Chen, and F. Liu. 2017. Liu Z: miR-155 targets Est-1 and induces ulcerative colitis via the IL-23/17/6-mediated Th17 pathway. Pathol Res Pract 213 (10): 1289–1295.PubMedCrossRef Hou, J., X. Hu, B. Chen, X. Chen, L. Zhao, Z. Chen, and F. Liu. 2017. Liu Z: miR-155 targets Est-1 and induces ulcerative colitis via the IL-23/17/6-mediated Th17 pathway. Pathol Res Pract 213 (10): 1289–1295.PubMedCrossRef
41.
go back to reference Liu, Y., Y. Dong, X. Zhu, H. Fan, M. Xu, Q. Chen, Z. Nan, H. Wu, S. Deng, X. Liu, et al. 2018. MiR-155 inhibition ameliorates 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Int Immunopharmacol 64: 401–410.PubMedCrossRef Liu, Y., Y. Dong, X. Zhu, H. Fan, M. Xu, Q. Chen, Z. Nan, H. Wu, S. Deng, X. Liu, et al. 2018. MiR-155 inhibition ameliorates 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Int Immunopharmacol 64: 401–410.PubMedCrossRef
42.
go back to reference Wang, C., C. Zhang, L. Liu, A. Xi, Y. Li, and J. Du. 2017. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 25 (1): 192–204.PubMedPubMedCentralCrossRef Wang, C., C. Zhang, L. Liu, A. Xi, Y. Li, and J. Du. 2017. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 25 (1): 192–204.PubMedPubMedCentralCrossRef
43.
go back to reference De Santis, R., A. Liepelt, J.C. Mossanen, A. Dueck, N. Simons, A. Mohs, C. Trautwein, G. Meister, and G. Marx. 2016. Ostareck-Lederer A et al: miR-155 targets Caspase-3 mRNA in activated macrophages. RNA Biol 13 (1): 43–58.PubMedCrossRef De Santis, R., A. Liepelt, J.C. Mossanen, A. Dueck, N. Simons, A. Mohs, C. Trautwein, G. Meister, and G. Marx. 2016. Ostareck-Lederer A et al: miR-155 targets Caspase-3 mRNA in activated macrophages. RNA Biol 13 (1): 43–58.PubMedCrossRef
44.
go back to reference Arboleda, J.F., G.J. Fernandez, and S. Urcuqui-Inchima. 2019. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: implications for the cytokine response. Infect Genet Evol 69: 12–21.PubMedCrossRef Arboleda, J.F., G.J. Fernandez, and S. Urcuqui-Inchima. 2019. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: implications for the cytokine response. Infect Genet Evol 69: 12–21.PubMedCrossRef
45.
go back to reference Wu, Y., J. Ye, R. Guo, X. Liang, and L. Yang. 2018. TRIF regulates BIC/miR-155 via the ERK signaling pathway to control the ox-LDL-induced macrophage inflammatory response. J Immunol Res 2018: 6249085.PubMedPubMedCentral Wu, Y., J. Ye, R. Guo, X. Liang, and L. Yang. 2018. TRIF regulates BIC/miR-155 via the ERK signaling pathway to control the ox-LDL-induced macrophage inflammatory response. J Immunol Res 2018: 6249085.PubMedPubMedCentral
Metadata
Title
Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier
Authors
Yuhua Gao
Tao Han
Cailing Han
Hua Sun
Xiaoxia Yang
Dongmei Zhang
Xinli Ni
Publication date
01-10-2021
Publisher
Springer US
Published in
Inflammation / Issue 5/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01485-0

Other articles of this Issue 5/2021

Inflammation 5/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.