Skip to main content
Top
Published in: Inflammation 3/2019

01-06-2019 | REVIEW

Immunometabolism: Another Road to Sepsis and Its Therapeutic Targeting

Author: Vijay Kumar

Published in: Inflammation | Issue 3/2019

Login to get access

Abstract

Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Literature
1.
go back to reference Singer, M., C.S. Deutschman, C. Seymour, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315: 801–810.PubMedPubMedCentralCrossRef Singer, M., C.S. Deutschman, C. Seymour, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315: 801–810.PubMedPubMedCentralCrossRef
2.
go back to reference Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. New England Journal of Medicine 369: 840–851.CrossRef Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. New England Journal of Medicine 369: 840–851.CrossRef
3.
go back to reference Shankar-Hari, M., G.S. Phillips, M.L. Levy, et al. 2016. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315: 775–787.PubMedPubMedCentralCrossRef Shankar-Hari, M., G.S. Phillips, M.L. Levy, et al. 2016. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315: 775–787.PubMedPubMedCentralCrossRef
4.
go back to reference Marik, P.E., W.T. Linde-Zwirble, E.A. Bittner, J. Sahatjian, and D. Hansell. 2017. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Medicine 43: 625–632.PubMedCrossRef Marik, P.E., W.T. Linde-Zwirble, E.A. Bittner, J. Sahatjian, and D. Hansell. 2017. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Medicine 43: 625–632.PubMedCrossRef
5.
go back to reference Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. De Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. Van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.PubMedCrossRef Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. De Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. Van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.PubMedCrossRef
6.
go back to reference Taeb, A.M., M.H. Hooper, and P.E. Marik. 2017. Sepsis: current definition, pathophysiology, diagnosis, and management. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition 32: 296–308.CrossRef Taeb, A.M., M.H. Hooper, and P.E. Marik. 2017. Sepsis: current definition, pathophysiology, diagnosis, and management. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition 32: 296–308.CrossRef
7.
go back to reference Vincent, J.L., Y. Sakr, C.L. Sprung, V.M. Ranieri, K. Reinhart, H. Gerlach, R. Moreno, J. Carlet, J.R. Le Gall, and D. Payen. 2006. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine 34: 344–353.PubMedCrossRef Vincent, J.L., Y. Sakr, C.L. Sprung, V.M. Ranieri, K. Reinhart, H. Gerlach, R. Moreno, J. Carlet, J.R. Le Gall, and D. Payen. 2006. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine 34: 344–353.PubMedCrossRef
8.
go back to reference Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016a. Assessment of global incidence and mortality of hospital-treated sepsis. Current Estimates and Limitations. American journal of respiratory and critical care medicine 193: 259–272.PubMedCrossRef Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016a. Assessment of global incidence and mortality of hospital-treated sepsis. Current Estimates and Limitations. American journal of respiratory and critical care medicine 193: 259–272.PubMedCrossRef
9.
go back to reference Fleischmann, C., D.O. Thomas-Rueddel, M. Hartmann, C.S. Hartog, T. Welte, S. Heublein, U. Dennler, and K. Reinhart. 2016b. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt international 113: 159–166.PubMedPubMedCentral Fleischmann, C., D.O. Thomas-Rueddel, M. Hartmann, C.S. Hartog, T. Welte, S. Heublein, U. Dennler, and K. Reinhart. 2016b. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt international 113: 159–166.PubMedPubMedCentral
10.
go back to reference Cantey, J.B., Milstone, A.M., 2015. Bloodstream infections: epidemiology and resistance. Clinics in Perinatology 42, 1–16, vii.PubMedCrossRef Cantey, J.B., Milstone, A.M., 2015. Bloodstream infections: epidemiology and resistance. Clinics in Perinatology 42, 1–16, vii.PubMedCrossRef
11.
go back to reference Mohsen, L., N. Ramy, D. Saied, D. Akmal, N. Salama, M.M. Abdel Haleim, and H. Aly. 2017. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrobial Resistance and Infection Control 6: 63.PubMedPubMedCentralCrossRef Mohsen, L., N. Ramy, D. Saied, D. Akmal, N. Salama, M.M. Abdel Haleim, and H. Aly. 2017. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrobial Resistance and Infection Control 6: 63.PubMedPubMedCentralCrossRef
12.
go back to reference Pradipta, I.S., D.C. Sodik, K. Lestari, I. Parwati, E. Halimah, A. Diantini, and R. Abdulah. 2013. Antibiotic resistance in sepsis patients: evaluation and recommendation of antibiotic use. North American Journal of Medical Sciences 5: 344–352.PubMedPubMedCentralCrossRef Pradipta, I.S., D.C. Sodik, K. Lestari, I. Parwati, E. Halimah, A. Diantini, and R. Abdulah. 2013. Antibiotic resistance in sepsis patients: evaluation and recommendation of antibiotic use. North American Journal of Medical Sciences 5: 344–352.PubMedPubMedCentralCrossRef
13.
go back to reference Esposito, S., G. De Simone, G. Boccia, F. De Caro, and P. Pagliano. 2017. Sepsis and septic shock: new definitions, new diagnostic and therapeutic approaches. Journal of Global Antimicrobial Resistance 10: 204–212.PubMedCrossRef Esposito, S., G. De Simone, G. Boccia, F. De Caro, and P. Pagliano. 2017. Sepsis and septic shock: new definitions, new diagnostic and therapeutic approaches. Journal of Global Antimicrobial Resistance 10: 204–212.PubMedCrossRef
14.
15.
go back to reference Al-Khami, A.A., P.C. Rodriguez, and A.C. Ochoa. 2016. Metabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancer. Oncoimmunology 5: e1200771.PubMedPubMedCentralCrossRef Al-Khami, A.A., P.C. Rodriguez, and A.C. Ochoa. 2016. Metabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancer. Oncoimmunology 5: e1200771.PubMedPubMedCentralCrossRef
16.
go back to reference Beezhold, K., and C.A. Byersdorfer. 2018. Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Letters 414: 127–135.PubMedCrossRef Beezhold, K., and C.A. Byersdorfer. 2018. Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Letters 414: 127–135.PubMedCrossRef
17.
go back to reference Bettencourt, I.A., and J.D. Powell. 2017. Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. Journal of immunology (Baltimore, Md. : 1950) 198: 999–1005.CrossRef Bettencourt, I.A., and J.D. Powell. 2017. Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. Journal of immunology (Baltimore, Md. : 1950) 198: 999–1005.CrossRef
18.
go back to reference McKinney, E.F., and K.G.C. Smith. 2018. Metabolic exhaustion in infection, cancer and autoimmunity. Nature Immunology 19: 213–221.PubMedCrossRef McKinney, E.F., and K.G.C. Smith. 2018. Metabolic exhaustion in infection, cancer and autoimmunity. Nature Immunology 19: 213–221.PubMedCrossRef
19.
go back to reference Al-Khami, A.A., P.C. Rodriguez, and A.C. Ochoa. 2017. Energy metabolic pathways control the fate and function of myeloid immune cells. Journal of Leukocyte Biology 102: 369–380.PubMedPubMedCentralCrossRef Al-Khami, A.A., P.C. Rodriguez, and A.C. Ochoa. 2017. Energy metabolic pathways control the fate and function of myeloid immune cells. Journal of Leukocyte Biology 102: 369–380.PubMedPubMedCentralCrossRef
20.
go back to reference Dühring, S., S. Germerodt, C. Skerka, P. Zipfel, T. Dandekar, and S. Schuster. 2015. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies. Frontiers in Microbiology 6. Dühring, S., S. Germerodt, C. Skerka, P. Zipfel, T. Dandekar, and S. Schuster. 2015. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies. Frontiers in Microbiology 6.
21.
go back to reference Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30: 16–34.PubMedCrossRef Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30: 16–34.PubMedCrossRef
22.
go back to reference van der Poll, T., and S.M. Opal. 2008b. Host–pathogen interactions in sepsis. The Lancet Infectious Diseases 8: 32–43.PubMedCrossRef van der Poll, T., and S.M. Opal. 2008b. Host–pathogen interactions in sepsis. The Lancet Infectious Diseases 8: 32–43.PubMedCrossRef
23.
24.
go back to reference Kollmann, T.R., O. Levy, R.R. Montgomery, and S. Goriely. 2012. Innate immune function by toll-like receptors: distinct responses in newborns and the elderly. Immunity 37: 771–783.PubMedPubMedCentralCrossRef Kollmann, T.R., O. Levy, R.R. Montgomery, and S. Goriely. 2012. Innate immune function by toll-like receptors: distinct responses in newborns and the elderly. Immunity 37: 771–783.PubMedPubMedCentralCrossRef
25.
go back to reference Yost, C.C., M.J. Cody, E.S. Harris, N.L. Thornton, A.M. McInturff, M.L. Martinez, N.B. Chandler, C.K. Rodesch, K.H. Albertine, C.A. Petti, A.S. Weyrich, and G.A. Zimmerman. 2009. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113: 6419–6427.PubMedPubMedCentralCrossRef Yost, C.C., M.J. Cody, E.S. Harris, N.L. Thornton, A.M. McInturff, M.L. Martinez, N.B. Chandler, C.K. Rodesch, K.H. Albertine, C.A. Petti, A.S. Weyrich, and G.A. Zimmerman. 2009. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113: 6419–6427.PubMedPubMedCentralCrossRef
26.
go back to reference Gomez, C.R., E.D. Boehmer, and E.J. Kovacs. 2005. The aging innate immune system. Current Opinion in Immunology 17: 457–462.PubMedCrossRef Gomez, C.R., E.D. Boehmer, and E.J. Kovacs. 2005. The aging innate immune system. Current Opinion in Immunology 17: 457–462.PubMedCrossRef
27.
go back to reference Montecino-Rodriguez, E., B. Berent-Maoz, and K. Dorshkind. 2013. Causes, consequences, and reversal of immune system aging. The Journal of Clinical Investigation 123: 958–965.PubMedPubMedCentralCrossRef Montecino-Rodriguez, E., B. Berent-Maoz, and K. Dorshkind. 2013. Causes, consequences, and reversal of immune system aging. The Journal of Clinical Investigation 123: 958–965.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Solana, R., R. Tarazona, I. Gayoso, O. Lesur, G. Dupuis, and T. Fulop. 2012. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Seminars in Immunology 24: 331–341.PubMedCrossRef Solana, R., R. Tarazona, I. Gayoso, O. Lesur, G. Dupuis, and T. Fulop. 2012. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Seminars in Immunology 24: 331–341.PubMedCrossRef
30.
go back to reference Kumar, V., and A. Sharma. 2008. Innate immunity in sepsis pathogenesis and its modulation: new immunomodulatory targets revealed. Journal of chemotherapy (Florence, Italy) 20: 672–683.CrossRef Kumar, V., and A. Sharma. 2008. Innate immunity in sepsis pathogenesis and its modulation: new immunomodulatory targets revealed. Journal of chemotherapy (Florence, Italy) 20: 672–683.CrossRef
31.
go back to reference van der Poll, T., and S.M. Opal. 2008a. Host-pathogen interactions in sepsis. The Lancet. Infectious diseases 8: 32–43.PubMedCrossRef van der Poll, T., and S.M. Opal. 2008a. Host-pathogen interactions in sepsis. The Lancet. Infectious diseases 8: 32–43.PubMedCrossRef
32.
go back to reference van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMedCrossRef van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMedCrossRef
33.
go back to reference Weber, G.F., and F.K. Swirski. 2014. Immunopathogenesis of abdominal sepsis. Langenbeck's Archives of Surgery 399: 1–9.PubMedCrossRef Weber, G.F., and F.K. Swirski. 2014. Immunopathogenesis of abdominal sepsis. Langenbeck's Archives of Surgery 399: 1–9.PubMedCrossRef
34.
go back to reference Wiersinga, W.J., S.J. Leopold, D.R. Cranendonk, and T. van der Poll. 2014. Host innate immune responses to sepsis. Virulence 5: 36–44.PubMedCrossRef Wiersinga, W.J., S.J. Leopold, D.R. Cranendonk, and T. van der Poll. 2014. Host innate immune responses to sepsis. Virulence 5: 36–44.PubMedCrossRef
35.
go back to reference Censoplano, N., C.L. Epting, and B.M. Coates. 2014. The role of the innate immune system in sepsis. Clinical Pediatric Emergency Medicine 15: 169–176.CrossRef Censoplano, N., C.L. Epting, and B.M. Coates. 2014. The role of the innate immune system in sepsis. Clinical Pediatric Emergency Medicine 15: 169–176.CrossRef
36.
go back to reference Charchaflieh, J., J. Wei, G. Labaze, Y.J. Hou, B. Babarsh, H. Stutz, H. Lee, S. Worah, and M. Zhang. 2012. The role of complement system in septic shock. Clinical and Developmental Immunology 2012: 8.CrossRef Charchaflieh, J., J. Wei, G. Labaze, Y.J. Hou, B. Babarsh, H. Stutz, H. Lee, S. Worah, and M. Zhang. 2012. The role of complement system in septic shock. Clinical and Developmental Immunology 2012: 8.CrossRef
37.
go back to reference Markiewski, M.M., R.A. DeAngelis, and J.D. Lambris. 2008. Complexity of complement activation in sepsis. Journal of Cellular and Molecular Medicine 12: 2245–2254.PubMedPubMedCentralCrossRef Markiewski, M.M., R.A. DeAngelis, and J.D. Lambris. 2008. Complexity of complement activation in sepsis. Journal of Cellular and Molecular Medicine 12: 2245–2254.PubMedPubMedCentralCrossRef
38.
go back to reference Al-Soudi, A., M.H. Kaaij, and S.W. Tas. 2017. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmunity Reviews 16: 951–962.PubMedCrossRef Al-Soudi, A., M.H. Kaaij, and S.W. Tas. 2017. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmunity Reviews 16: 951–962.PubMedCrossRef
39.
go back to reference Bell, E. 2009. Endothelial cells as sentinels. Nature Reviews Immunology 9: 532.CrossRef Bell, E. 2009. Endothelial cells as sentinels. Nature Reviews Immunology 9: 532.CrossRef
40.
go back to reference Mai, J., A. Virtue, J. Shen, H. Wang, and X.-F. Yang. 2013. An evolving new paradigm: endothelial cells—conditional innate immune cells. Journal of Hematology & Oncology 6: 61–61.CrossRef Mai, J., A. Virtue, J. Shen, H. Wang, and X.-F. Yang. 2013. An evolving new paradigm: endothelial cells—conditional innate immune cells. Journal of Hematology & Oncology 6: 61–61.CrossRef
41.
go back to reference Andonegui, G., H. Zhou, D. Bullard, M.M. Kelly, S.C. Mullaly, B. McDonald, E.M. Long, S.M. Robbins, and P. Kubes. 2009. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. The Journal of Clinical Investigation 119: 1921–1930.PubMedPubMedCentral Andonegui, G., H. Zhou, D. Bullard, M.M. Kelly, S.C. Mullaly, B. McDonald, E.M. Long, S.M. Robbins, and P. Kubes. 2009. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. The Journal of Clinical Investigation 119: 1921–1930.PubMedPubMedCentral
42.
go back to reference Aird, W.C. 2003. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101: 3765–3777.PubMedCrossRef Aird, W.C. 2003. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101: 3765–3777.PubMedCrossRef
43.
go back to reference Boisrame-Helms, J., H. Kremer, V. Schini-Kerth, and F. Meziani. 2013. Endothelial dysfunction in sepsis. Current Vascular Pharmacology 11: 150–160.PubMed Boisrame-Helms, J., H. Kremer, V. Schini-Kerth, and F. Meziani. 2013. Endothelial dysfunction in sepsis. Current Vascular Pharmacology 11: 150–160.PubMed
44.
go back to reference Ince, C., P.R. Mayeux, T. Nguyen, H. Gomez, J.A. Kellum, G.A. Ospina-Tascón, G. Hernandez, P. Murray, and D. De Backer. 2016. THE ENDOTHELIUM IN SEPSIS, Shock (Augusta, Ga.). 45: 259–270. Ince, C., P.R. Mayeux, T. Nguyen, H. Gomez, J.A. Kellum, G.A. Ospina-Tascón, G. Hernandez, P. Murray, and D. De Backer. 2016. THE ENDOTHELIUM IN SEPSIS, Shock (Augusta, Ga.). 45: 259–270.
45.
go back to reference Opal, S.M., and T. van der Poll. 2015. Endothelial barrier dysfunction in septic shock. Journal of Internal Medicine 277: 277–293.PubMedCrossRef Opal, S.M., and T. van der Poll. 2015. Endothelial barrier dysfunction in septic shock. Journal of Internal Medicine 277: 277–293.PubMedCrossRef
46.
go back to reference Peters, K., R.E. Unger, J. Brunner, and C.J. Kirkpatrick. 2003. Molecular basis of endothelial dysfunction in sepsis. Cardiovascular Research 60: 49–57.PubMedCrossRef Peters, K., R.E. Unger, J. Brunner, and C.J. Kirkpatrick. 2003. Molecular basis of endothelial dysfunction in sepsis. Cardiovascular Research 60: 49–57.PubMedCrossRef
47.
48.
go back to reference Chaudhry, H., Zhou, J., Zhong, Y.I.N., Ali, M.M., McGuire, F., Nagarkatti, P.S., Nagarkatti, M., 2013. Role of cytokines as a double-edged sword in sepsis. In vivo (Athens, Greece) 27, 669-684. Chaudhry, H., Zhou, J., Zhong, Y.I.N., Ali, M.M., McGuire, F., Nagarkatti, P.S., Nagarkatti, M., 2013. Role of cytokines as a double-edged sword in sepsis. In vivo (Athens, Greece) 27, 669-684.
49.
go back to reference Chousterman, B.G., F.K. Swirski, and G.F. Weber. 2017. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology 39: 517–528.PubMedCrossRef Chousterman, B.G., F.K. Swirski, and G.F. Weber. 2017. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology 39: 517–528.PubMedCrossRef
50.
go back to reference Tisoncik, J.R., M.J. Korth, C.P. Simmons, J. Farrar, T.R. Martin, and M.G. Katze. 2012. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews 76: 16–32.PubMedCrossRefPubMedCentral Tisoncik, J.R., M.J. Korth, C.P. Simmons, J. Farrar, T.R. Martin, and M.G. Katze. 2012. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews 76: 16–32.PubMedCrossRefPubMedCentral
51.
go back to reference Gogos, C.A., E. Drosou, H.P. Bassaris, and A. Skoutelis. 2000. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. The Journal of Infectious Diseases 181: 176–180.PubMedCrossRef Gogos, C.A., E. Drosou, H.P. Bassaris, and A. Skoutelis. 2000. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. The Journal of Infectious Diseases 181: 176–180.PubMedCrossRef
52.
go back to reference Schulte, W., J. Bernhagen, and R. Bucala. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediators of Inflammation 2013: 16.CrossRef Schulte, W., J. Bernhagen, and R. Bucala. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediators of Inflammation 2013: 16.CrossRef
53.
go back to reference Wang, D.-W., N. Dong, Y. Wu, X.-M. Zhu, C.-T. Wang, and Y.-M. Yao. 2016b. Interleukin-37 enhances the suppressive activity of naturally occurring CD4+CD25+ regulatory T cells. Scientific Reports 6: 38955.PubMedPubMedCentralCrossRef Wang, D.-W., N. Dong, Y. Wu, X.-M. Zhu, C.-T. Wang, and Y.-M. Yao. 2016b. Interleukin-37 enhances the suppressive activity of naturally occurring CD4+CD25+ regulatory T cells. Scientific Reports 6: 38955.PubMedPubMedCentralCrossRef
54.
go back to reference Yan, J., A. Mitra, J. Hu, J.J. Cutrera, X. Xia, T. Doetschman, M. Gagea, L. Mishra, and S. Li. 2016. IL-30 (IL27p28) alleviates sepsis via modulation of cytokine profiles produced by NKT cells. Journal of Hepatology 64: 1128–1136.PubMedPubMedCentralCrossRef Yan, J., A. Mitra, J. Hu, J.J. Cutrera, X. Xia, T. Doetschman, M. Gagea, L. Mishra, and S. Li. 2016. IL-30 (IL27p28) alleviates sepsis via modulation of cytokine profiles produced by NKT cells. Journal of Hepatology 64: 1128–1136.PubMedPubMedCentralCrossRef
56.
go back to reference Darenberg, J., N. Ihendyane, J. Sjolin, E. Aufwerber, S. Haidl, P. Follin, J. Andersson, and A. Norrby-Teglund. 2003. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 37: 333–340.CrossRef Darenberg, J., N. Ihendyane, J. Sjolin, E. Aufwerber, S. Haidl, P. Follin, J. Andersson, and A. Norrby-Teglund. 2003. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 37: 333–340.CrossRef
57.
go back to reference Shah, S.S., M. Hall, R. Srivastava, A. Subramony, and J.E. Levin. 2009. Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 49: 1369–1376.CrossRef Shah, S.S., M. Hall, R. Srivastava, A. Subramony, and J.E. Levin. 2009. Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 49: 1369–1376.CrossRef
58.
go back to reference Valiquette, L., D.E. Low, and A.J. McGeer. 2009. Assessing the impact of intravenous immunoglobulin in the management of streptococcal toxic shock syndrome: a noble but difficult quest. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 49: 1377–1379.CrossRef Valiquette, L., D.E. Low, and A.J. McGeer. 2009. Assessing the impact of intravenous immunoglobulin in the management of streptococcal toxic shock syndrome: a noble but difficult quest. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 49: 1377–1379.CrossRef
59.
go back to reference Marshall, J.C. 2014. Why have clinical trials in sepsis failed? Trends in Molecular Medicine 20: 195–203.PubMedCrossRef Marshall, J.C. 2014. Why have clinical trials in sepsis failed? Trends in Molecular Medicine 20: 195–203.PubMedCrossRef
60.
go back to reference Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, L. Jauregui, K. Krell, J. Pachl, T. Takahashi, C. Peckelsen, E. Cordasco, C.S. Chang, S. Oeyen, N. Aikawa, T. Maruyama, R. Schein, A.C. Kalil, M. Van Nuffelen, M. Lynn, D.P. Rossignol, J. Gogate, M.B. Roberts, J.L. Wheeler, and J.L. Vincent. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. Jama 309: 1154–1162.PubMedCrossRef Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, L. Jauregui, K. Krell, J. Pachl, T. Takahashi, C. Peckelsen, E. Cordasco, C.S. Chang, S. Oeyen, N. Aikawa, T. Maruyama, R. Schein, A.C. Kalil, M. Van Nuffelen, M. Lynn, D.P. Rossignol, J. Gogate, M.B. Roberts, J.L. Wheeler, and J.L. Vincent. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. Jama 309: 1154–1162.PubMedCrossRef
61.
go back to reference Hosac, A.M., 2002. Drotrecogin alfa (activated): the first FDA-approved treatment for severe sepsis. Proceedings (Baylor University. Medical center) 15, 224-227. Hosac, A.M., 2002. Drotrecogin alfa (activated): the first FDA-approved treatment for severe sepsis. Proceedings (Baylor University. Medical center) 15, 224-227.
62.
go back to reference Ranieri, V.M., B.T. Thompson, P.S. Barie, J.-F. Dhainaut, I.S. Douglas, S. Finfer, B. Gårdlund, J.C. Marshall, A. Rhodes, A. Artigas, D. Payen, J. Tenhunen, H.R. Al-Khalidi, V. Thompson, J. Janes, W.L. Macias, B. Vangerow, and M.D. Williams. 2012. Drotrecogin alfa (activated) in adults with septic shock. New England Journal of Medicine 366: 2055–2064.CrossRef Ranieri, V.M., B.T. Thompson, P.S. Barie, J.-F. Dhainaut, I.S. Douglas, S. Finfer, B. Gårdlund, J.C. Marshall, A. Rhodes, A. Artigas, D. Payen, J. Tenhunen, H.R. Al-Khalidi, V. Thompson, J. Janes, W.L. Macias, B. Vangerow, and M.D. Williams. 2012. Drotrecogin alfa (activated) in adults with septic shock. New England Journal of Medicine 366: 2055–2064.CrossRef
63.
go back to reference Botero, JSH., Pérez, MCF., 2012. in: Azevedo, L. (Ed.), Sepsis—an ongoing and significant challenge. InTech, Rijeka, p. Ch. 01. Botero, JSH., Pérez, MCF., 2012. in: Azevedo, L. (Ed.), Sepsis—an ongoing and significant challenge. InTech, Rijeka, p. Ch. 01.
64.
go back to reference Geroulanos, S., and E.T. Douka. 2006. Historical perspective of the word “sepsis”. Intensive Care Medicine 32: 2077.PubMedCrossRef Geroulanos, S., and E.T. Douka. 2006. Historical perspective of the word “sepsis”. Intensive Care Medicine 32: 2077.PubMedCrossRef
65.
go back to reference Jamme, M., F. Daviaud, J. Charpentier, N. Marin, M. Thy, Y. Hourmant, J.P. Mira, and F. Pene. 2017. Time course of septic shock in immunocompromised and nonimmunocompromised patients. Critical Care Medicine 45: 2031–2039.PubMedCrossRef Jamme, M., F. Daviaud, J. Charpentier, N. Marin, M. Thy, Y. Hourmant, J.P. Mira, and F. Pene. 2017. Time course of septic shock in immunocompromised and nonimmunocompromised patients. Critical Care Medicine 45: 2031–2039.PubMedCrossRef
66.
go back to reference Tolsma, V., C. Schwebel, E. Azoulay, M. Darmon, B. Souweine, A. Vesin, D. Goldgran-Toledano, M. Lugosi, S. Jamali, C. Cheval, C. Adrie, H. Kallel, A. Descorps-Declere, M. Garrouste-Orgeas, L. Bouadma, and J.F. Timsit. 2014. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile. Chest 146: 1205–1213.PubMedCrossRef Tolsma, V., C. Schwebel, E. Azoulay, M. Darmon, B. Souweine, A. Vesin, D. Goldgran-Toledano, M. Lugosi, S. Jamali, C. Cheval, C. Adrie, H. Kallel, A. Descorps-Declere, M. Garrouste-Orgeas, L. Bouadma, and J.F. Timsit. 2014. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile. Chest 146: 1205–1213.PubMedCrossRef
67.
go back to reference Man, K., V.I. Kutyavin, and A. Chawla. 2017. Tissue immunometabolism: development, physiology, and pathobiology. Cell Metabolism 25: 11–26.PubMedCrossRef Man, K., V.I. Kutyavin, and A. Chawla. 2017. Tissue immunometabolism: development, physiology, and pathobiology. Cell Metabolism 25: 11–26.PubMedCrossRef
68.
go back to reference Gaber, T., C. Strehl, and F. Buttgereit. 2017. Metabolic regulation of inflammation. Nature reviews. Rheumatology 13: 267–279.PubMedCrossRef Gaber, T., C. Strehl, and F. Buttgereit. 2017. Metabolic regulation of inflammation. Nature reviews. Rheumatology 13: 267–279.PubMedCrossRef
69.
go back to reference Hotamisligil, G.S. 2017. Inflammation, metaflammation and immunometabolic disorders. Nature 542: 177–185.PubMedCrossRef Hotamisligil, G.S. 2017. Inflammation, metaflammation and immunometabolic disorders. Nature 542: 177–185.PubMedCrossRef
70.
71.
go back to reference Stienstra, R., R.T. Netea-Maier, N.P. Riksen, L.A.B. Joosten, and M.G. Netea. 2017. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metabolism 26: 142–156.PubMedCrossRef Stienstra, R., R.T. Netea-Maier, N.P. Riksen, L.A.B. Joosten, and M.G. Netea. 2017. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metabolism 26: 142–156.PubMedCrossRef
72.
go back to reference Evangelatos, N., Bauer, P., Reumann, M., Satyamoorthy, K., Lehrach, H., Brand, A., 2018. Metabolomics in sepsis and its impact on public health. Public health genomics. Evangelatos, N., Bauer, P., Reumann, M., Satyamoorthy, K., Lehrach, H., Brand, A., 2018. Metabolomics in sepsis and its impact on public health. Public health genomics.
73.
go back to reference Everts, B. 2018. Metabolomics in immunology research. Methods in molecular biology (Clifton, N.J.) 1730: 29–42.CrossRef Everts, B. 2018. Metabolomics in immunology research. Methods in molecular biology (Clifton, N.J.) 1730: 29–42.CrossRef
74.
go back to reference Nasa, P., D. Juneja, and O. Singh. 2012. Severe sepsis and septic shock in the elderly: an overview. World journal of critical care medicine 1: 23–30.PubMedPubMedCentralCrossRef Nasa, P., D. Juneja, and O. Singh. 2012. Severe sepsis and septic shock in the elderly: an overview. World journal of critical care medicine 1: 23–30.PubMedPubMedCentralCrossRef
75.
go back to reference Bantug, G.R., L. Galluzzi, G. Kroemer, and C. Hess. 2018. The spectrum of T cell metabolism in health and disease. Nature Reviews. Immunology 18: 19–34.PubMedCrossRef Bantug, G.R., L. Galluzzi, G. Kroemer, and C. Hess. 2018. The spectrum of T cell metabolism in health and disease. Nature Reviews. Immunology 18: 19–34.PubMedCrossRef
76.
go back to reference Eelen, G., P. de Zeeuw, M. Simons, and P. Carmeliet. 2015. Endothelial cell metabolism in normal and diseased vasculature. Circulation Research 116: 1231–1244.PubMedPubMedCentralCrossRef Eelen, G., P. de Zeeuw, M. Simons, and P. Carmeliet. 2015. Endothelial cell metabolism in normal and diseased vasculature. Circulation Research 116: 1231–1244.PubMedPubMedCentralCrossRef
77.
go back to reference Gleeson, L.E., and F.J. Sheedy. 2016. Metabolic reprogramming & inflammation: fuelling the host response to pathogens. Seminars in Immunology 28: 450–468.PubMedCrossRef Gleeson, L.E., and F.J. Sheedy. 2016. Metabolic reprogramming & inflammation: fuelling the host response to pathogens. Seminars in Immunology 28: 450–468.PubMedCrossRef
78.
go back to reference Pircher, A., L. Treps, N. Bodrug, and P. Carmeliet. 2016. Endothelial cell metabolism: a novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis 253: 247–257.PubMedCrossRef Pircher, A., L. Treps, N. Bodrug, and P. Carmeliet. 2016. Endothelial cell metabolism: a novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis 253: 247–257.PubMedCrossRef
79.
go back to reference Rohlenova, K., K. Veys, I. Miranda-Santos, K. De Bock, and P. Carmeliet. 2018. Endothelial cell metabolism in health and disease. Trends in Cell Biology 28: 224–236.PubMedCrossRef Rohlenova, K., K. Veys, I. Miranda-Santos, K. De Bock, and P. Carmeliet. 2018. Endothelial cell metabolism in health and disease. Trends in Cell Biology 28: 224–236.PubMedCrossRef
80.
go back to reference O'Neill, L.A., and E.J. Pearce. 2016. Immunometabolism governs dendritic cell and macrophage function. The Journal of Experimental Medicine 213: 15–23.PubMedPubMedCentralCrossRef O'Neill, L.A., and E.J. Pearce. 2016. Immunometabolism governs dendritic cell and macrophage function. The Journal of Experimental Medicine 213: 15–23.PubMedPubMedCentralCrossRef
81.
go back to reference Wang, A., S.C. Huen, H.H. Luan, S. Yu, C. Zhang, J.D. Gallezot, C.J. Booth, and R. Medzhitov. 2016a. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166: 1512–1525.e1512.PubMedPubMedCentralCrossRef Wang, A., S.C. Huen, H.H. Luan, S. Yu, C. Zhang, J.D. Gallezot, C.J. Booth, and R. Medzhitov. 2016a. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166: 1512–1525.e1512.PubMedPubMedCentralCrossRef
83.
go back to reference Mills, E.L., B. Kelly, and L.A.J. O'Neill. 2017. Mitochondria are the powerhouses of immunity. Nature Immunology 18: 488–498.PubMedCrossRef Mills, E.L., B. Kelly, and L.A.J. O'Neill. 2017. Mitochondria are the powerhouses of immunity. Nature Immunology 18: 488–498.PubMedCrossRef
84.
go back to reference Monlun, M., C. Hyernard, P. Blanco, L. Lartigue, and B. Faustin. 2017. Mitochondria as molecular platforms integrating multiple innate immune signalings. Journal of Molecular Biology 429: 1–13.PubMedCrossRef Monlun, M., C. Hyernard, P. Blanco, L. Lartigue, and B. Faustin. 2017. Mitochondria as molecular platforms integrating multiple innate immune signalings. Journal of Molecular Biology 429: 1–13.PubMedCrossRef
85.
go back to reference Dale, D.C., L. Boxer, and W.C. Liles. 2008. The phagocytes: neutrophils and monocytes. Blood 112: 935–945.PubMedCrossRef Dale, D.C., L. Boxer, and W.C. Liles. 2008. The phagocytes: neutrophils and monocytes. Blood 112: 935–945.PubMedCrossRef
86.
87.
go back to reference Kumar, V., and A. Sharma. 2010. Neutrophils: Cinderella of innate immune system. International Immunopharmacology 10: 1325–1334.PubMedCrossRef Kumar, V., and A. Sharma. 2010. Neutrophils: Cinderella of innate immune system. International Immunopharmacology 10: 1325–1334.PubMedCrossRef
88.
89.
go back to reference Nicolas-Avila, J.A., J.M. Adrover, and A. Hidalgo. 2017. Neutrophils in homeostasis, immunity, and cancer. Immunity 46: 15–28.PubMedCrossRef Nicolas-Avila, J.A., J.M. Adrover, and A. Hidalgo. 2017. Neutrophils in homeostasis, immunity, and cancer. Immunity 46: 15–28.PubMedCrossRef
90.
go back to reference de Kleijn, S., M. Kox, I.E. Sama, J. Pillay, A. van Diepen, M.A. Huijnen, J.G. van der Hoeven, G. Ferwerda, P.W.M. Hermans, and P. Pickkers. 2012. Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia. PLoS One 7: e38255.PubMedPubMedCentralCrossRef de Kleijn, S., M. Kox, I.E. Sama, J. Pillay, A. van Diepen, M.A. Huijnen, J.G. van der Hoeven, G. Ferwerda, P.W.M. Hermans, and P. Pickkers. 2012. Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia. PLoS One 7: e38255.PubMedPubMedCentralCrossRef
91.
go back to reference Moulding, D.A., J.A. Quayle, C.A. Hart, and S.W. Edwards. 1998. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92: 2495–2502.PubMedCrossRef Moulding, D.A., J.A. Quayle, C.A. Hart, and S.W. Edwards. 1998. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92: 2495–2502.PubMedCrossRef
92.
go back to reference Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: an overview and update. Journal of Cellular and Molecular Medicine 21: 1687–1697.PubMedPubMedCentralCrossRef Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: an overview and update. Journal of Cellular and Molecular Medicine 21: 1687–1697.PubMedPubMedCentralCrossRef
93.
go back to reference Sônego, F., F.V.S. Castanheira, R.G. Ferreira, A. Kanashiro, C.A.V.G. Leite, D.C. Nascimento, D.F. Colón, V.F. Borges, J.C. Alves-Filho, and F.Q. Cunha. 2016. Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Frontiers in Immunology 7: 155.PubMedPubMedCentralCrossRef Sônego, F., F.V.S. Castanheira, R.G. Ferreira, A. Kanashiro, C.A.V.G. Leite, D.C. Nascimento, D.F. Colón, V.F. Borges, J.C. Alves-Filho, and F.Q. Cunha. 2016. Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Frontiers in Immunology 7: 155.PubMedPubMedCentralCrossRef
94.
go back to reference Weinmann, P., P. Gaehtgens, and B. Walzog. 1999. Bcl-Xl- and Bax-alpha-mediated regulation of apoptosis of human neutrophils via caspase-3. Blood 93: 3106–3115.PubMedCrossRef Weinmann, P., P. Gaehtgens, and B. Walzog. 1999. Bcl-Xl- and Bax-alpha-mediated regulation of apoptosis of human neutrophils via caspase-3. Blood 93: 3106–3115.PubMedCrossRef
95.
go back to reference Jia, S.H., J. Parodo, E. Charbonney, J.L.Y. Tsang, S.Y. Jia, O.D. Rotstein, A. Kapus, and J.C. Marshall. 2014. Activated neutrophils induce epithelial cell apoptosis through oxidant-dependent tyrosine dephosphorylation of caspase-8. The American Journal of Pathology 184: 1030–1040.PubMedCrossRef Jia, S.H., J. Parodo, E. Charbonney, J.L.Y. Tsang, S.Y. Jia, O.D. Rotstein, A. Kapus, and J.C. Marshall. 2014. Activated neutrophils induce epithelial cell apoptosis through oxidant-dependent tyrosine dephosphorylation of caspase-8. The American Journal of Pathology 184: 1030–1040.PubMedCrossRef
96.
go back to reference Wang, J.F., J.B. Li, Y.J. Zhao, W.J. Yi, J.J. Bian, X.J. Wan, K.M. Zhu, and X.M. Deng. 2015. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology 122: 852–863.PubMedCrossRef Wang, J.F., J.B. Li, Y.J. Zhao, W.J. Yi, J.J. Bian, X.J. Wan, K.M. Zhu, and X.M. Deng. 2015. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology 122: 852–863.PubMedCrossRef
97.
go back to reference Arasanz, H., M. Gato-Cañas, M. Zuazo, M. Ibañez-Vea, K. Breckpot, G. Kochan, and D. Escors. 2017. PD1 signal transduction pathways in T cells. Oncotarget 8: 51936–51945.PubMedPubMedCentralCrossRef Arasanz, H., M. Gato-Cañas, M. Zuazo, M. Ibañez-Vea, K. Breckpot, G. Kochan, and D. Escors. 2017. PD1 signal transduction pathways in T cells. Oncotarget 8: 51936–51945.PubMedPubMedCentralCrossRef
99.
go back to reference Chemnitz, J.M., R.V. Parry, K.E. Nichols, C.H. June, and J.L. Riley. 2004. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. Journal of immunology (Baltimore, Md. : 1950) 173: 945–954.CrossRef Chemnitz, J.M., R.V. Parry, K.E. Nichols, C.H. June, and J.L. Riley. 2004. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. Journal of immunology (Baltimore, Md. : 1950) 173: 945–954.CrossRef
100.
go back to reference Hui, E., J. Cheung, J. Zhu, X. Su, M.J. Taylor, H.A. Wallweber, D.K. Sasmal, J. Huang, J.M. Kim, I. Mellman, and R.D. Vale. 2017. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science (New York, N.Y.) 355: 1428–1433.CrossRef Hui, E., J. Cheung, J. Zhu, X. Su, M.J. Taylor, H.A. Wallweber, D.K. Sasmal, J. Huang, J.M. Kim, I. Mellman, and R.D. Vale. 2017. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science (New York, N.Y.) 355: 1428–1433.CrossRef
102.
go back to reference Sheppard, K.A., L.J. Fitz, J.M. Lee, C. Benander, J.A. George, J. Wooters, Y. Qiu, J.M. Jussif, L.L. Carter, C.R. Wood, and D. Chaudhary. 2004. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Letters 574: 37–41.PubMedCrossRef Sheppard, K.A., L.J. Fitz, J.M. Lee, C. Benander, J.A. George, J. Wooters, Y. Qiu, J.M. Jussif, L.L. Carter, C.R. Wood, and D. Chaudhary. 2004. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Letters 574: 37–41.PubMedCrossRef
103.
go back to reference Patsoukis, N., L. Li, D. Sari, V. Petkova, and V.A. Boussiotis. 2013. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Molecular and Cellular Biology 33: 3091–3098.PubMedPubMedCentralCrossRef Patsoukis, N., L. Li, D. Sari, V. Petkova, and V.A. Boussiotis. 2013. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Molecular and Cellular Biology 33: 3091–3098.PubMedPubMedCentralCrossRef
104.
go back to reference Patsoukis, N., K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L.N. Bell, E.D. Karoly, G.J. Freeman, V. Petkova, P. Seth, L. Li, and V.A. Boussiotis. 2015. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications 6: 6692.PubMedCrossRef Patsoukis, N., K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L.N. Bell, E.D. Karoly, G.J. Freeman, V. Petkova, P. Seth, L. Li, and V.A. Boussiotis. 2015. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications 6: 6692.PubMedCrossRef
105.
go back to reference Wong, H.R., R.J. Freishtat, M. Monaco, K. Odoms, and T.P. Shanley. 2010. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 11: 349–355. Wong, H.R., R.J. Freishtat, M. Monaco, K. Odoms, and T.P. Shanley. 2010. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 11: 349–355.
106.
go back to reference Fox, E.D., D.S. Heffernan, W.G. Cioffi, and J.S. Reichner. 2013. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Critical care (London, England) 17: R226.CrossRef Fox, E.D., D.S. Heffernan, W.G. Cioffi, and J.S. Reichner. 2013. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Critical care (London, England) 17: R226.CrossRef
107.
go back to reference Rimmele, T., Payen, D., Cantaluppi, V., Marshall, J., Gomez, H., Gomez, A., Murray, P., Kellum, J.A., 2016. IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS. Shock (Augusta, Ga.) 45, 282-291. Rimmele, T., Payen, D., Cantaluppi, V., Marshall, J., Gomez, H., Gomez, A., Murray, P., Kellum, J.A., 2016. IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS. Shock (Augusta, Ga.) 45, 282-291.
108.
go back to reference Hoesel, L.M., T.A. Neff, S.B. Neff, J.G. Younger, E.W. Olle, H. Gao, M.J. Pianko, K.D. Bernacki, J.V. Sarma, and P.A. Ward. 2005. Harmful and protective roles of neutrophils in sepsis. Shock (Augusta, Ga.) 24: 40–47.CrossRef Hoesel, L.M., T.A. Neff, S.B. Neff, J.G. Younger, E.W. Olle, H. Gao, M.J. Pianko, K.D. Bernacki, J.V. Sarma, and P.A. Ward. 2005. Harmful and protective roles of neutrophils in sepsis. Shock (Augusta, Ga.) 24: 40–47.CrossRef
109.
go back to reference Alves-Filho, J.C., F. Spiller, and F.Q. Cunha. 2010. Neutrophil paralysis in sepsis. Shock (Augusta, Ga.) 34 (Suppl 1): 15–21.CrossRef Alves-Filho, J.C., F. Spiller, and F.Q. Cunha. 2010. Neutrophil paralysis in sepsis. Shock (Augusta, Ga.) 34 (Suppl 1): 15–21.CrossRef
110.
go back to reference Bermejo-Martín, J.F., E. Tamayo, G. Ruiz, D. Andaluz-Ojeda, R. Herrán-Monge, A. Muriel-Bombín, M. Fe Muñoz, M. Heredia-Rodríguez, R. Citores, J.I. Gómez-Herreras, and J. Blanco. 2014. Circulating neutrophil counts and mortality in septic shock. Critical Care 18: 407–407.PubMedPubMedCentralCrossRef Bermejo-Martín, J.F., E. Tamayo, G. Ruiz, D. Andaluz-Ojeda, R. Herrán-Monge, A. Muriel-Bombín, M. Fe Muñoz, M. Heredia-Rodríguez, R. Citores, J.I. Gómez-Herreras, and J. Blanco. 2014. Circulating neutrophil counts and mortality in septic shock. Critical Care 18: 407–407.PubMedPubMedCentralCrossRef
111.
go back to reference Mare, T.A., D.F. Treacher, M. Shankar-Hari, R. Beale, S.M. Lewis, D.J. Chambers, and K.A. Brown. 2015. The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation. Critical care (London, England) 19: –57.PubMedPubMedCentralCrossRef Mare, T.A., D.F. Treacher, M. Shankar-Hari, R. Beale, S.M. Lewis, D.J. Chambers, and K.A. Brown. 2015. The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation. Critical care (London, England) 19: –57.PubMedPubMedCentralCrossRef
112.
go back to reference Demaret, J., F. Venet, A. Friggeri, M.A. Cazalis, J. Plassais, L. Jallades, C. Malcus, F. Poitevin-Later, J. Textoris, A. Lepape, and G. Monneret. 2015. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology 98: 1081–1090.PubMedCrossRef Demaret, J., F. Venet, A. Friggeri, M.A. Cazalis, J. Plassais, L. Jallades, C. Malcus, F. Poitevin-Later, J. Textoris, A. Lepape, and G. Monneret. 2015. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology 98: 1081–1090.PubMedCrossRef
113.
go back to reference Brown, K.A., S.D. Brain, J.D. Pearson, J.D. Edgeworth, S.M. Lewis, and D.F. Treacher. 2006. Neutrophils in development of multiple organ failure in sepsis. Lancet (London, England) 368: 157–169.CrossRef Brown, K.A., S.D. Brain, J.D. Pearson, J.D. Edgeworth, S.M. Lewis, and D.F. Treacher. 2006. Neutrophils in development of multiple organ failure in sepsis. Lancet (London, England) 368: 157–169.CrossRef
114.
go back to reference Meyer-Hoffert, U., and O. Wiedow. 2011. Neutrophil serine proteases: mediators of innate immune responses. Current Opinion in Hematology 18: 19–24.PubMedCrossRef Meyer-Hoffert, U., and O. Wiedow. 2011. Neutrophil serine proteases: mediators of innate immune responses. Current Opinion in Hematology 18: 19–24.PubMedCrossRef
115.
go back to reference Delabranche, X., L. Stiel, F. Severac, A.C. Galoisy, L. Mauvieux, F. Zobairi, T. Lavigne, F. Toti, E. Angles-Cano, F. Meziani, and J. Boisrame-Helms. 2017. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock (Augusta, Ga.) 47: 313–317.CrossRef Delabranche, X., L. Stiel, F. Severac, A.C. Galoisy, L. Mauvieux, F. Zobairi, T. Lavigne, F. Toti, E. Angles-Cano, F. Meziani, and J. Boisrame-Helms. 2017. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock (Augusta, Ga.) 47: 313–317.CrossRef
116.
go back to reference McDonald, B., R.P. Davis, S.J. Kim, M. Tse, C.T. Esmon, E. Kolaczkowska, and C.N. Jenne. 2017. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129: 1357–1367.PubMedPubMedCentralCrossRef McDonald, B., R.P. Davis, S.J. Kim, M. Tse, C.T. Esmon, E. Kolaczkowska, and C.N. Jenne. 2017. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129: 1357–1367.PubMedPubMedCentralCrossRef
117.
go back to reference Evans, W.H., Karnovsky, M.L., 1962. The biochemical basis of phagocytosis. IV. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry 1, 159–166.PubMedCrossRef Evans, W.H., Karnovsky, M.L., 1962. The biochemical basis of phagocytosis. IV. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry 1, 159–166.PubMedCrossRef
118.
go back to reference Lodhi, I.J., X. Wei, L. Yin, C. Feng, S. Adak, G. Abou-Ezzi, F.F. Hsu, D.C. Link, and C.F. Semenkovich. 2015. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metabolism 21: 51–64.PubMedPubMedCentralCrossRef Lodhi, I.J., X. Wei, L. Yin, C. Feng, S. Adak, G. Abou-Ezzi, F.F. Hsu, D.C. Link, and C.F. Semenkovich. 2015. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metabolism 21: 51–64.PubMedPubMedCentralCrossRef
119.
go back to reference Sbarra, A.J., and M.L. Karnovsky. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. The Journal of biological chemistry 234: 1355–1362.PubMedCrossRef Sbarra, A.J., and M.L. Karnovsky. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. The Journal of biological chemistry 234: 1355–1362.PubMedCrossRef
120.
go back to reference Biswas, S.K. 2015. Metabolic reprogramming of immune cells in cancer progression. Immunity 43: 435–449.PubMedCrossRef Biswas, S.K. 2015. Metabolic reprogramming of immune cells in cancer progression. Immunity 43: 435–449.PubMedCrossRef
121.
122.
go back to reference Jun, H.S., D.A. Weinstein, Y.M. Lee, B.C. Mansfield, and J.Y. Chou. 2014. Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123: 2843–2853.PubMedPubMedCentralCrossRef Jun, H.S., D.A. Weinstein, Y.M. Lee, B.C. Mansfield, and J.Y. Chou. 2014. Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123: 2843–2853.PubMedPubMedCentralCrossRef
123.
go back to reference Guthrie, L.A., L.C. McPhail, P.M. Henson, and R.B. Johnston Jr. 1984. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. The Journal of experimental medicine 160: 1656–1671.PubMedCrossRef Guthrie, L.A., L.C. McPhail, P.M. Henson, and R.B. Johnston Jr. 1984. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. The Journal of experimental medicine 160: 1656–1671.PubMedCrossRef
124.
go back to reference Winterbourn, C.C., A.J. Kettle, and M.B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85: 765–792.PubMedCrossRef Winterbourn, C.C., A.J. Kettle, and M.B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85: 765–792.PubMedCrossRef
125.
go back to reference Azevedo, E.P., N.C. Rochael, A.B. Guimaraes-Costa, T.S. de Souza-Vieira, J. Ganilho, E.M. Saraiva, F.L. Palhano, and D. Foguel. 2015. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. The Journal of Biological Chemistry 290: 22174–22183.PubMedPubMedCentralCrossRef Azevedo, E.P., N.C. Rochael, A.B. Guimaraes-Costa, T.S. de Souza-Vieira, J. Ganilho, E.M. Saraiva, F.L. Palhano, and D. Foguel. 2015. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. The Journal of Biological Chemistry 290: 22174–22183.PubMedPubMedCentralCrossRef
126.
go back to reference Park, D.W., and J.W. Zmijewski. 2017. Mitochondrial dysfunction and immune cell metabolism in sepsis. Infection & chemotherapy 49: 10–21.CrossRef Park, D.W., and J.W. Zmijewski. 2017. Mitochondrial dysfunction and immune cell metabolism in sepsis. Infection & chemotherapy 49: 10–21.CrossRef
127.
go back to reference Rodriguez-Espinosa, O., O. Rojas-Espinosa, M.M. Moreno-Altamirano, E.O. Lopez-Villegas, and F.J. Sanchez-Garcia. 2015. Metabolic requirements for neutrophil extracellular traps formation. Immunology 145: 213–224.PubMedPubMedCentralCrossRef Rodriguez-Espinosa, O., O. Rojas-Espinosa, M.M. Moreno-Altamirano, E.O. Lopez-Villegas, and F.J. Sanchez-Garcia. 2015. Metabolic requirements for neutrophil extracellular traps formation. Immunology 145: 213–224.PubMedPubMedCentralCrossRef
128.
go back to reference Maianski, N.A., J. Geissler, S.M. Srinivasula, E.S. Alnemri, D. Roos, and T.W. Kuijpers. 2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death and Differentiation 11: 143–153.PubMedCrossRef Maianski, N.A., J. Geissler, S.M. Srinivasula, E.S. Alnemri, D. Roos, and T.W. Kuijpers. 2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death and Differentiation 11: 143–153.PubMedCrossRef
130.
go back to reference Fossati, G., D.A. Moulding, D.G. Spiller, R.J. Moots, M.R. White, and S.W. Edwards. 2003. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. Journal of immunology (Baltimore, Md. : 1950) 170: 1964–1972.CrossRef Fossati, G., D.A. Moulding, D.G. Spiller, R.J. Moots, M.R. White, and S.W. Edwards. 2003. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. Journal of immunology (Baltimore, Md. : 1950) 170: 1964–1972.CrossRef
131.
go back to reference van Raam, B.J., W. Sluiter, E. de Wit, D. Roos, A.J. Verhoeven, and T.W. Kuijpers. 2008. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3: e2013.PubMedPubMedCentralCrossRef van Raam, B.J., W. Sluiter, E. de Wit, D. Roos, A.J. Verhoeven, and T.W. Kuijpers. 2008. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3: e2013.PubMedPubMedCentralCrossRef
132.
go back to reference Remijsen, Q., T.W. Kuijpers, E. Wirawan, S. Lippens, P. Vandenabeele, and T. Vanden Berghe. 2011. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation 18: 581.PubMedPubMedCentralCrossRef Remijsen, Q., T.W. Kuijpers, E. Wirawan, S. Lippens, P. Vandenabeele, and T. Vanden Berghe. 2011. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation 18: 581.PubMedPubMedCentralCrossRef
133.
go back to reference Lu, H., R.A. Forbes, and A. Verma. 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry 277: 23111–23115.PubMedCrossRef Lu, H., R.A. Forbes, and A. Verma. 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry 277: 23111–23115.PubMedCrossRef
134.
go back to reference Sun, Q., X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, L. Chang, Y. Zhang, J. Goto, H. Onda, T. Chen, M.R. Wang, Y. Lu, H. You, D. Kwiatkowski, and H. Zhang. 2011. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America 108: 4129–4134.PubMedPubMedCentralCrossRef Sun, Q., X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, L. Chang, Y. Zhang, J. Goto, H. Onda, T. Chen, M.R. Wang, Y. Lu, H. You, D. Kwiatkowski, and H. Zhang. 2011. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America 108: 4129–4134.PubMedPubMedCentralCrossRef
135.
go back to reference Cramer, T., Y. Yamanishi, B.E. Clausen, I. Forster, R. Pawlinski, N. Mackman, V.H. Haase, R. Jaenisch, M. Corr, V. Nizet, G.S. Firestein, H.P. Gerber, N. Ferrara, and R.S. Johnson. 2003. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645–657.PubMedPubMedCentralCrossRef Cramer, T., Y. Yamanishi, B.E. Clausen, I. Forster, R. Pawlinski, N. Mackman, V.H. Haase, R. Jaenisch, M. Corr, V. Nizet, G.S. Firestein, H.P. Gerber, N. Ferrara, and R.S. Johnson. 2003. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645–657.PubMedPubMedCentralCrossRef
136.
go back to reference Halligan, D.N., S.J. Murphy, and C.T. Taylor. 2016. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Seminars in Immunology 28: 469–477.PubMedCrossRef Halligan, D.N., S.J. Murphy, and C.T. Taylor. 2016. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Seminars in Immunology 28: 469–477.PubMedCrossRef
137.
go back to reference Semenza, G.L., P.H. Roth, H.M. Fang, and G.L. Wang. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry 269: 23757–23763.PubMedCrossRef Semenza, G.L., P.H. Roth, H.M. Fang, and G.L. Wang. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry 269: 23757–23763.PubMedCrossRef
138.
go back to reference Peyssonnaux, C., V. Datta, T. Cramer, A. Doedens, E.A. Theodorakis, R.L. Gallo, N. Hurtado-Ziola, V. Nizet, and R.S. Johnson. 2005. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. The Journal of Clinical Investigation 115: 1806–1815.PubMedPubMedCentralCrossRef Peyssonnaux, C., V. Datta, T. Cramer, A. Doedens, E.A. Theodorakis, R.L. Gallo, N. Hurtado-Ziola, V. Nizet, and R.S. Johnson. 2005. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. The Journal of Clinical Investigation 115: 1806–1815.PubMedPubMedCentralCrossRef
139.
go back to reference Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science (New York, N.Y.) 345: 1250684.CrossRef Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science (New York, N.Y.) 345: 1250684.CrossRef
140.
go back to reference Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274: 330–353.PubMedPubMedCentralCrossRef Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274: 330–353.PubMedPubMedCentralCrossRef
141.
go back to reference Howell, J.J., and B.D. Manning. 2011. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends in Endocrinology and Metabolism: TEM 22: 94–102.PubMedCrossRef Howell, J.J., and B.D. Manning. 2011. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends in Endocrinology and Metabolism: TEM 22: 94–102.PubMedCrossRef
142.
go back to reference Krawczyk, C.M., T. Holowka, J. Sun, J. Blagih, E. Amiel, R.J. DeBerardinis, J.R. Cross, E. Jung, C.B. Thompson, R.G. Jones, and E.J. Pearce. 2010. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115: 4742–4749.PubMedPubMedCentralCrossRef Krawczyk, C.M., T. Holowka, J. Sun, J. Blagih, E. Amiel, R.J. DeBerardinis, J.R. Cross, E. Jung, C.B. Thompson, R.G. Jones, and E.J. Pearce. 2010. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115: 4742–4749.PubMedPubMedCentralCrossRef
143.
go back to reference Liu, L., S. Das, W. Losert, and C.A. Parent. 2010. mTORC2 REGULATES NEUTROPHIL CHEMOTAXIS IN A cAMP- AND RhoA-DEPENDENT FASHION. Developmental Cell 19: 845–857.PubMedPubMedCentralCrossRef Liu, L., S. Das, W. Losert, and C.A. Parent. 2010. mTORC2 REGULATES NEUTROPHIL CHEMOTAXIS IN A cAMP- AND RhoA-DEPENDENT FASHION. Developmental Cell 19: 845–857.PubMedPubMedCentralCrossRef
144.
go back to reference Itakura, A., and O.J.T. McCarty. 2013. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. American Journal of Physiology - Cell Physiology 305: C348–C354.PubMedPubMedCentralCrossRef Itakura, A., and O.J.T. McCarty. 2013. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. American Journal of Physiology - Cell Physiology 305: C348–C354.PubMedPubMedCentralCrossRef
145.
go back to reference McInturff, A.M., M.J. Cody, E.A. Elliott, J.W. Glenn, J.W. Rowley, M.T. Rondina, and C.C. Yost. 2012. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 120: 3118–3125.PubMedPubMedCentralCrossRef McInturff, A.M., M.J. Cody, E.A. Elliott, J.W. Glenn, J.W. Rowley, M.T. Rondina, and C.C. Yost. 2012. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 120: 3118–3125.PubMedPubMedCentralCrossRef
146.
go back to reference Chen, F., A. Cao, S. Yao, H.L. Evans-Marin, H. Liu, W. Wu, E.D. Carlsen, S.M. Dann, L. Soong, J. Sun, Q. Zhao, and Y. Cong. 2016. mTOR mediates IL-23 induction of neutrophil IL-17 and IL-22 production. Journal of immunology (Baltimore, Md. : 1950) 196: 4390–4399.CrossRef Chen, F., A. Cao, S. Yao, H.L. Evans-Marin, H. Liu, W. Wu, E.D. Carlsen, S.M. Dann, L. Soong, J. Sun, Q. Zhao, and Y. Cong. 2016. mTOR mediates IL-23 induction of neutrophil IL-17 and IL-22 production. Journal of immunology (Baltimore, Md. : 1950) 196: 4390–4399.CrossRef
147.
go back to reference Kumar, V. 2013. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signalling 9: 145–165.PubMedCrossRef Kumar, V. 2013. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signalling 9: 145–165.PubMedCrossRef
148.
go back to reference Kwak, Y., H.E. Kim, and S.G. Park. 2015. Insights into myeloid-derived suppressor cells in inflammatory diseases. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 63: 269–285.CrossRef Kwak, Y., H.E. Kim, and S.G. Park. 2015. Insights into myeloid-derived suppressor cells in inflammatory diseases. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 63: 269–285.CrossRef
149.
go back to reference Ost, M., Singh, A., Peschel, A., Mehling, R., Rieber, N., Hartl, D., 2016. Myeloid-derived suppressor cells in bacterial infections. Frontiers in Cellular and Infection Microbiology 6. Ost, M., Singh, A., Peschel, A., Mehling, R., Rieber, N., Hartl, D., 2016. Myeloid-derived suppressor cells in bacterial infections. Frontiers in Cellular and Infection Microbiology 6.
150.
go back to reference Ostrand-Rosenberg, S., and P. Sinha. 2009. Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology 182: 4499–4506.PubMedCrossRef Ostrand-Rosenberg, S., and P. Sinha. 2009. Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology 182: 4499–4506.PubMedCrossRef
151.
152.
go back to reference Brudecki, L., D.A. Ferguson, C.E. McCall, and M. El Gazzar. 2012. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infection and Immunity 80: 2026–2034.PubMedPubMedCentralCrossRef Brudecki, L., D.A. Ferguson, C.E. McCall, and M. El Gazzar. 2012. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infection and Immunity 80: 2026–2034.PubMedPubMedCentralCrossRef
153.
go back to reference Delano, M.J., P.O. Scumpia, J.S. Weinstein, D. Coco, S. Nagaraj, K.M. Kelly-Scumpia, K.A. O'Malley, J.L. Wynn, S. Antonenko, S.Z. Al-Quran, R. Swan, C.S. Chung, M.A. Atkinson, R. Ramphal, D.I. Gabrilovich, W.H. Reeves, A. Ayala, J. Phillips, D. Laface, P.G. Heyworth, M. Clare-Salzler, and L.L. Moldawer. 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. The Journal of Experimental Medicine 204: 1463–1474.PubMedPubMedCentralCrossRef Delano, M.J., P.O. Scumpia, J.S. Weinstein, D. Coco, S. Nagaraj, K.M. Kelly-Scumpia, K.A. O'Malley, J.L. Wynn, S. Antonenko, S.Z. Al-Quran, R. Swan, C.S. Chung, M.A. Atkinson, R. Ramphal, D.I. Gabrilovich, W.H. Reeves, A. Ayala, J. Phillips, D. Laface, P.G. Heyworth, M. Clare-Salzler, and L.L. Moldawer. 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. The Journal of Experimental Medicine 204: 1463–1474.PubMedPubMedCentralCrossRef
154.
go back to reference Derive, M., Y. Bouazza, C. Alauzet, and S. Gibot. 2012. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Medicine 38: 1040–1049.PubMedCrossRef Derive, M., Y. Bouazza, C. Alauzet, and S. Gibot. 2012. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Medicine 38: 1040–1049.PubMedCrossRef
155.
156.
go back to reference Lai, D., C. Qin, and Q. Shu. 2014. Myeloid-derived suppressor cells in sepsis. BioMed Research International 2014: 8. Lai, D., C. Qin, and Q. Shu. 2014. Myeloid-derived suppressor cells in sepsis. BioMed Research International 2014: 8.
157.
go back to reference Uhel, F., I. Azzaoui, M. Gregoire, C. Pangault, J. Dulong, J.M. Tadie, A. Gacouin, C. Camus, L. Cynober, T. Fest, Y. Le Tulzo, M. Roussel, and K. Tarte. 2017. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. American Journal of Respiratory and Critical Care Medicine 196: 315–327.PubMedCrossRef Uhel, F., I. Azzaoui, M. Gregoire, C. Pangault, J. Dulong, J.M. Tadie, A. Gacouin, C. Camus, L. Cynober, T. Fest, Y. Le Tulzo, M. Roussel, and K. Tarte. 2017. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. American Journal of Respiratory and Critical Care Medicine 196: 315–327.PubMedCrossRef
158.
go back to reference Goh, C., S. Narayanan, and Y.S. Hahn. 2013. Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunological Reviews 255: 210–221.PubMedPubMedCentralCrossRef Goh, C., S. Narayanan, and Y.S. Hahn. 2013. Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunological Reviews 255: 210–221.PubMedPubMedCentralCrossRef
159.
go back to reference Haile, L.A., R. von Wasielewski, J. Gamrekelashvili, C. Kruger, O. Bachmann, A.M. Westendorf, J. Buer, R. Liblau, M.P. Manns, F. Korangy, and T.F. Greten. 2008. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135: 871–881 881.e871-875.PubMedCrossRef Haile, L.A., R. von Wasielewski, J. Gamrekelashvili, C. Kruger, O. Bachmann, A.M. Westendorf, J. Buer, R. Liblau, M.P. Manns, F. Korangy, and T.F. Greten. 2008. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135: 871–881 881.e871-875.PubMedCrossRef
160.
161.
go back to reference Qin, A., W. Cai, T. Pan, K. Wu, Q. Yang, N. Wang, Y. Liu, D. Yan, F. Hu, P. Guo, X. Chen, L. Chen, H. Zhang, X. Tang, and J. Zhou. 2013. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. Journal of Virology 87: 1477–1490.PubMedPubMedCentralCrossRef Qin, A., W. Cai, T. Pan, K. Wu, Q. Yang, N. Wang, Y. Liu, D. Yan, F. Hu, P. Guo, X. Chen, L. Chen, H. Zhang, X. Tang, and J. Zhou. 2013. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. Journal of Virology 87: 1477–1490.PubMedPubMedCentralCrossRef
162.
go back to reference Tacke, R.S., H.C. Lee, C. Goh, J. Courtney, S.J. Polyak, H.R. Rosen, and Y.S. Hahn. 2012. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology (Baltimore, Md.) 55: 343–353.CrossRef Tacke, R.S., H.C. Lee, C. Goh, J. Courtney, S.J. Polyak, H.R. Rosen, and Y.S. Hahn. 2012. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology (Baltimore, Md.) 55: 343–353.CrossRef
163.
go back to reference Bunt, S.K., P. Sinha, V.K. Clements, J. Leips, and S. Ostrand-Rosenberg. 2006. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of immunology (Baltimore, Md. : 1950) 176: 284–290.CrossRef Bunt, S.K., P. Sinha, V.K. Clements, J. Leips, and S. Ostrand-Rosenberg. 2006. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of immunology (Baltimore, Md. : 1950) 176: 284–290.CrossRef
164.
go back to reference Porta, C., Marino, A., Consonni, F.M., Bleve, A., Mola, S., Storto, M., Riboldi, E., Sica, A., 2018. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis, bgy088-bgy088. Porta, C., Marino, A., Consonni, F.M., Bleve, A., Mola, S., Storto, M., Riboldi, E., Sica, A., 2018. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis, bgy088-bgy088.
165.
go back to reference Tu, S., G. Bhagat, G. Cui, S. Takaishi, E.A. Kurt-Jones, B. Rickman, K.S. Betz, M. Penz-Oesterreicher, O. Bjorkdahl, J.G. Fox, and T.C. Wang. 2008. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14: 408–419.PubMedPubMedCentralCrossRef Tu, S., G. Bhagat, G. Cui, S. Takaishi, E.A. Kurt-Jones, B. Rickman, K.S. Betz, M. Penz-Oesterreicher, O. Bjorkdahl, J.G. Fox, and T.C. Wang. 2008. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14: 408–419.PubMedPubMedCentralCrossRef
166.
go back to reference Hossain, F., A.A. Al-Khami, D. Wyczechowska, C. Hernandez, L. Zheng, K. Reiss, L.D. Valle, J. Trillo-Tinoco, T. Maj, W. Zou, P.C. Rodriguez, and A.C. Ochoa. 2015. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunology Research 3: 1236–1247.PubMedPubMedCentralCrossRef Hossain, F., A.A. Al-Khami, D. Wyczechowska, C. Hernandez, L. Zheng, K. Reiss, L.D. Valle, J. Trillo-Tinoco, T. Maj, W. Zou, P.C. Rodriguez, and A.C. Ochoa. 2015. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunology Research 3: 1236–1247.PubMedPubMedCentralCrossRef
167.
go back to reference Gabrilovich, D.I., S. Ostrand-Rosenberg, and V. Bronte. 2012. Coordinated regulation of myeloid cells by tumours. Nature Reviews. Immunology 12: 253–268.PubMedPubMedCentralCrossRef Gabrilovich, D.I., S. Ostrand-Rosenberg, and V. Bronte. 2012. Coordinated regulation of myeloid cells by tumours. Nature Reviews. Immunology 12: 253–268.PubMedPubMedCentralCrossRef
168.
go back to reference Cai, T.-T., S.-B. Ye, Y.-N. Liu, J. He, Q.-Y. Chen, H.-Q. Mai, C.-X. Zhang, J. Cui, X.-S. Zhang, P. Busson, Y.-X. Zeng, and J. Li. 2017. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathogens 13: e1006503.PubMedPubMedCentralCrossRef Cai, T.-T., S.-B. Ye, Y.-N. Liu, J. He, Q.-Y. Chen, H.-Q. Mai, C.-X. Zhang, J. Cui, X.-S. Zhang, P. Busson, Y.-X. Zeng, and J. Li. 2017. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathogens 13: e1006503.PubMedPubMedCentralCrossRef
169.
go back to reference Hammami, I., J. Chen, F. Murschel, V. Bronte, G. De Crescenzo, and M. Jolicoeur. 2012. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models. BMC Cell Biology 13: 18.PubMedPubMedCentralCrossRef Hammami, I., J. Chen, F. Murschel, V. Bronte, G. De Crescenzo, and M. Jolicoeur. 2012. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models. BMC Cell Biology 13: 18.PubMedPubMedCentralCrossRef
170.
go back to reference Corzo, C.A., T. Condamine, L. Lu, M.J. Cotter, J.I. Youn, P. Cheng, H.I. Cho, E. Celis, D.G. Quiceno, T. Padhya, T.V. McCaffrey, J.C. McCaffrey, and D.I. Gabrilovich. 2010. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine 207: 2439–2453.PubMedPubMedCentralCrossRef Corzo, C.A., T. Condamine, L. Lu, M.J. Cotter, J.I. Youn, P. Cheng, H.I. Cho, E. Celis, D.G. Quiceno, T. Padhya, T.V. McCaffrey, J.C. McCaffrey, and D.I. Gabrilovich. 2010. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine 207: 2439–2453.PubMedPubMedCentralCrossRef
171.
go back to reference Noman, M.Z., G. Desantis, B. Janji, M. Hasmim, S. Karray, P. Dessen, V. Bronte, and S. Chouaib. 2014. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. The Journal of Experimental Medicine 211: 781–790.PubMedPubMedCentralCrossRef Noman, M.Z., G. Desantis, B. Janji, M. Hasmim, S. Karray, P. Dessen, V. Bronte, and S. Chouaib. 2014. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. The Journal of Experimental Medicine 211: 781–790.PubMedPubMedCentralCrossRef
172.
go back to reference Marcu, R., Y.J. Choi, J. Xue, C.L. Fortin, Y. Wang, R.J. Nagao, J. Xu, J.W. MacDonald, T.K. Bammler, C.E. Murry, K. Muczynski, K.R. Stevens, J. Himmelfarb, S.M. Schwartz, and Y. Zheng. 2018. Human organ-specific endothelial cell heterogeneity. iScience 4: 20–35.PubMedPubMedCentralCrossRef Marcu, R., Y.J. Choi, J. Xue, C.L. Fortin, Y. Wang, R.J. Nagao, J. Xu, J.W. MacDonald, T.K. Bammler, C.E. Murry, K. Muczynski, K.R. Stevens, J. Himmelfarb, S.M. Schwartz, and Y. Zheng. 2018. Human organ-specific endothelial cell heterogeneity. iScience 4: 20–35.PubMedPubMedCentralCrossRef
173.
go back to reference Ivanov, A.N., I.A. Norkin, D.M. Puchin'ian, V. Shirokov, and O. Zhdanova. 2014. Endothelial cell adhesion molecules. Uspekhi Fiziologicheskikh Nauk 45: 34–49.PubMed Ivanov, A.N., I.A. Norkin, D.M. Puchin'ian, V. Shirokov, and O. Zhdanova. 2014. Endothelial cell adhesion molecules. Uspekhi Fiziologicheskikh Nauk 45: 34–49.PubMed
174.
go back to reference Ye, X., J. Ding, X. Zhou, G. Chen, and S.F. Liu. 2008. Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis. The Journal of Experimental Medicine 205: 1303–1315.PubMedPubMedCentralCrossRef Ye, X., J. Ding, X. Zhou, G. Chen, and S.F. Liu. 2008. Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis. The Journal of Experimental Medicine 205: 1303–1315.PubMedPubMedCentralCrossRef
175.
go back to reference Kim, B., C. Jang, H. Dharaneeswaran, J. Li, M. Bhide, S. Yang, K. Li, and Z. Arany. 2018. Endothelial pyruvate kinase M2 maintains vascular integrity. The Journal of Clinical Investigation 128: 4543–4556.PubMedPubMedCentralCrossRef Kim, B., C. Jang, H. Dharaneeswaran, J. Li, M. Bhide, S. Yang, K. Li, and Z. Arany. 2018. Endothelial pyruvate kinase M2 maintains vascular integrity. The Journal of Clinical Investigation 128: 4543–4556.PubMedPubMedCentralCrossRef
177.
178.
go back to reference Scholz, A., K.H. Plate, and Y. Reiss. 2015. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Annals of the New York Academy of Sciences 1347: 45–51.PubMedCrossRef Scholz, A., K.H. Plate, and Y. Reiss. 2015. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Annals of the New York Academy of Sciences 1347: 45–51.PubMedCrossRef
179.
go back to reference De Bock, K., M. Georgiadou, S. Schoors, A. Kuchnio, B.W. Wong, A.R. Cantelmo, A. Quaegebeur, B. Ghesquiere, S. Cauwenberghs, G. Eelen, L.K. Phng, I. Betz, B. Tembuyser, K. Brepoels, J. Welti, I. Geudens, I. Segura, B. Cruys, F. Bifari, I. Decimo, R. Blanco, S. Wyns, J. Vangindertael, S. Rocha, R.T. Collins, S. Munck, D. Daelemans, H. Imamura, R. Devlieger, M. Rider, P.P. Van Veldhoven, F. Schuit, R. Bartrons, J. Hofkens, P. Fraisl, S. Telang, R.J. Deberardinis, L. Schoonjans, S. Vinckier, J. Chesney, H. Gerhardt, M. Dewerchin, and P. Carmeliet. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154: 651–663.PubMedCrossRef De Bock, K., M. Georgiadou, S. Schoors, A. Kuchnio, B.W. Wong, A.R. Cantelmo, A. Quaegebeur, B. Ghesquiere, S. Cauwenberghs, G. Eelen, L.K. Phng, I. Betz, B. Tembuyser, K. Brepoels, J. Welti, I. Geudens, I. Segura, B. Cruys, F. Bifari, I. Decimo, R. Blanco, S. Wyns, J. Vangindertael, S. Rocha, R.T. Collins, S. Munck, D. Daelemans, H. Imamura, R. Devlieger, M. Rider, P.P. Van Veldhoven, F. Schuit, R. Bartrons, J. Hofkens, P. Fraisl, S. Telang, R.J. Deberardinis, L. Schoonjans, S. Vinckier, J. Chesney, H. Gerhardt, M. Dewerchin, and P. Carmeliet. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154: 651–663.PubMedCrossRef
180.
go back to reference DeBerardinis, R.J., J.J. Lum, G. Hatzivassiliou, and C.B. Thompson. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7: 11–20.PubMedCrossRef DeBerardinis, R.J., J.J. Lum, G. Hatzivassiliou, and C.B. Thompson. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7: 11–20.PubMedCrossRef
182.
go back to reference Wu, G., T.E. Haynes, H. Li, and C.J. Meininger. 2000. Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 126: 115–123.CrossRef Wu, G., T.E. Haynes, H. Li, and C.J. Meininger. 2000. Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 126: 115–123.CrossRef
183.
go back to reference Leighton, B., R. Curi, A. Hussein, and E.A. Newsholme. 1987. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Letters 225: 93–96.PubMedCrossRef Leighton, B., R. Curi, A. Hussein, and E.A. Newsholme. 1987. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Letters 225: 93–96.PubMedCrossRef
184.
go back to reference Unterluggauer, H., S. Mazurek, B. Lener, E. Hutter, E. Eigenbrodt, W. Zwerschke, and P. Jansen-Durr. 2008. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9: 247–259.PubMedCrossRef Unterluggauer, H., S. Mazurek, B. Lener, E. Hutter, E. Eigenbrodt, W. Zwerschke, and P. Jansen-Durr. 2008. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9: 247–259.PubMedCrossRef
185.
go back to reference Eelen, G., P.D. Zeeuw, L. Treps, U. Harjes, B.W. Wong, and P. Carmeliet. 2018. Endothelial cell metabolism. Physiological Reviews 98: 3–58.PubMedCrossRef Eelen, G., P.D. Zeeuw, L. Treps, U. Harjes, B.W. Wong, and P. Carmeliet. 2018. Endothelial cell metabolism. Physiological Reviews 98: 3–58.PubMedCrossRef
186.
go back to reference Schoors, S., U. Bruning, R. Missiaen, K.C. Queiroz, G. Borgers, I. Elia, A. Zecchin, A.R. Cantelmo, S. Christen, J. Goveia, W. Heggermont, L. Godde, S. Vinckier, P.P. Van Veldhoven, G. Eelen, L. Schoonjans, H. Gerhardt, M. Dewerchin, M. Baes, K. De Bock, B. Ghesquiere, S.Y. Lunt, S.M. Fendt, and P. Carmeliet. 2015. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520: 192–197.PubMedPubMedCentralCrossRef Schoors, S., U. Bruning, R. Missiaen, K.C. Queiroz, G. Borgers, I. Elia, A. Zecchin, A.R. Cantelmo, S. Christen, J. Goveia, W. Heggermont, L. Godde, S. Vinckier, P.P. Van Veldhoven, G. Eelen, L. Schoonjans, H. Gerhardt, M. Dewerchin, M. Baes, K. De Bock, B. Ghesquiere, S.Y. Lunt, S.M. Fendt, and P. Carmeliet. 2015. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520: 192–197.PubMedPubMedCentralCrossRef
187.
go back to reference Wong, B.W., E. Marsch, L. Treps, M. Baes, and P. Carmeliet. 2017. Endothelial cell metabolism in health and disease: impact of hypoxia. The EMBO Journal. 36(15): 2187–2203.PubMedPubMedCentralCrossRef Wong, B.W., E. Marsch, L. Treps, M. Baes, and P. Carmeliet. 2017. Endothelial cell metabolism in health and disease: impact of hypoxia. The EMBO Journal. 36(15): 2187–2203.PubMedPubMedCentralCrossRef
188.
go back to reference Karlsson, S., V. Pettila, J. Tenhunen, V. Lund, S. Hovilehto, and E. Ruokonen. 2008. Vascular endothelial growth factor in severe sepsis and septic shock. Anesthesia and Analgesia 106: 1820–1826.PubMedCrossRef Karlsson, S., V. Pettila, J. Tenhunen, V. Lund, S. Hovilehto, and E. Ruokonen. 2008. Vascular endothelial growth factor in severe sepsis and septic shock. Anesthesia and Analgesia 106: 1820–1826.PubMedCrossRef
189.
go back to reference Smadja, D.M., D. Borgel, J.L. Diehl, and P. Gaussem. 2012. Vascular endothelial growth factor, as compared with placental growth factor, is increased in severe sepsis but not in organ failure. Journal of Thrombosis and Haemostasis 10: 974–976.PubMedCrossRef Smadja, D.M., D. Borgel, J.L. Diehl, and P. Gaussem. 2012. Vascular endothelial growth factor, as compared with placental growth factor, is increased in severe sepsis but not in organ failure. Journal of Thrombosis and Haemostasis 10: 974–976.PubMedCrossRef
190.
go back to reference van der Flier, M., H.J. van Leeuwen, K.P. van Kessel, J.L. Kimpen, A.I. Hoepelman, and S.P. Geelen. 2005. Plasma vascular endothelial growth factor in severe sepsis. Shock (Augusta, Ga.) 23: 35–38.CrossRef van der Flier, M., H.J. van Leeuwen, K.P. van Kessel, J.L. Kimpen, A.I. Hoepelman, and S.P. Geelen. 2005. Plasma vascular endothelial growth factor in severe sepsis. Shock (Augusta, Ga.) 23: 35–38.CrossRef
191.
go back to reference El-Akabawy, H., M.A. Hamela, A. Gaber, and A. Abozekry. 2016. Prognostic value of vascular endothelial growth factor in sepsis syndrome. The Egyptian Journal of Critical Care Medicine 4: 119–126.CrossRef El-Akabawy, H., M.A. Hamela, A. Gaber, and A. Abozekry. 2016. Prognostic value of vascular endothelial growth factor in sepsis syndrome. The Egyptian Journal of Critical Care Medicine 4: 119–126.CrossRef
193.
go back to reference Koppenol, W.H., P.L. Bounds, and C.V. Dang. 2011. Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews. Cancer 11: 325–337.PubMedCrossRef Koppenol, W.H., P.L. Bounds, and C.V. Dang. 2011. Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews. Cancer 11: 325–337.PubMedCrossRef
194.
go back to reference Fukuzumi, M., H. Shinomiya, Y. Shimizu, K. Ohishi, and S. Utsumi. 1996. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infection and Immunity 64: 108–112.PubMedPubMedCentralCrossRef Fukuzumi, M., H. Shinomiya, Y. Shimizu, K. Ohishi, and S. Utsumi. 1996. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infection and Immunity 64: 108–112.PubMedPubMedCentralCrossRef
195.
go back to reference Tur, J., T. Vico, J. Lloberas, A. Zorzano, and A. Celada. 2017. Macrophages and mitochondria: a critical interplay between metabolism, signaling, and the functional activity. Advances in Immunology 133: 1–36.PubMedCrossRef Tur, J., T. Vico, J. Lloberas, A. Zorzano, and A. Celada. 2017. Macrophages and mitochondria: a critical interplay between metabolism, signaling, and the functional activity. Advances in Immunology 133: 1–36.PubMedCrossRef
196.
go back to reference Rodríguez-Prados, J.-C., P.G. Través, J. Cuenca, D. Rico, J. Aragonés, P. Martín-Sanz, M. Cascante, and L. Boscá. 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. The Journal of Immunology 185: 605–614.PubMedCrossRef Rodríguez-Prados, J.-C., P.G. Través, J. Cuenca, D. Rico, J. Aragonés, P. Martín-Sanz, M. Cascante, and L. Boscá. 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. The Journal of Immunology 185: 605–614.PubMedCrossRef
197.
go back to reference Theodorakis, E., Diamantaki, E., Tsatsanis, C., Georgopoulos, D., Vaporidi, K., 2015. Macrophage phenotype in sepsis immunosuppression. Critical Care 19, P44-P44.PubMedCentralCrossRef Theodorakis, E., Diamantaki, E., Tsatsanis, C., Georgopoulos, D., Vaporidi, K., 2015. Macrophage phenotype in sepsis immunosuppression. Critical Care 19, P44-P44.PubMedCentralCrossRef
198.
go back to reference Watanabe, N., Y. Suzuki, S. Inokuchi, and S. Inoue. 2016. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. Journal of Intensive Care 4: 6.PubMedPubMedCentralCrossRef Watanabe, N., Y. Suzuki, S. Inokuchi, and S. Inoue. 2016. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. Journal of Intensive Care 4: 6.PubMedPubMedCentralCrossRef
199.
go back to reference Kumar, V. 2018b. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.PubMedCrossRef Kumar, V. 2018b. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.PubMedCrossRef
200.
go back to reference Hotchkiss, R.S., P.E. Swanson, B.D. Freeman, K.W. Tinsley, J.P. Cobb, G.M. Matuschak, T.G. Buchman, and I.E. Karl. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27: 1230–1251.PubMedCrossRef Hotchkiss, R.S., P.E. Swanson, B.D. Freeman, K.W. Tinsley, J.P. Cobb, G.M. Matuschak, T.G. Buchman, and I.E. Karl. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27: 1230–1251.PubMedCrossRef
201.
go back to reference Hotchkiss, R.S., K.W. Tinsley, P.E. Swanson, R.E. Schmieg Jr., J.J. Hui, K.C. Chang, D.F. Osborne, B.D. Freeman, J.P. Cobb, T.G. Buchman, and I.E. Karl. 2001. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. Journal of immunology (Baltimore, Md. : 1950) 166: 6952–6963.CrossRef Hotchkiss, R.S., K.W. Tinsley, P.E. Swanson, R.E. Schmieg Jr., J.J. Hui, K.C. Chang, D.F. Osborne, B.D. Freeman, J.P. Cobb, T.G. Buchman, and I.E. Karl. 2001. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. Journal of immunology (Baltimore, Md. : 1950) 166: 6952–6963.CrossRef
202.
go back to reference Inoue, S., K. Suzuki-Utsunomiya, Y. Okada, T. Taira, Y. Iida, N. Miura, T. Tsuji, T. Yamagiwa, S. Morita, T. Chiba, T. Sato, and S. Inokuchi. 2013. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Critical Care Medicine 41: 810–819.PubMedCrossRef Inoue, S., K. Suzuki-Utsunomiya, Y. Okada, T. Taira, Y. Iida, N. Miura, T. Tsuji, T. Yamagiwa, S. Morita, T. Chiba, T. Sato, and S. Inokuchi. 2013. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Critical Care Medicine 41: 810–819.PubMedCrossRef
203.
go back to reference Wang, S.D., K.J. Huang, Y.S. Lin, and H.Y. Lei. 1994. Sepsis-induced apoptosis of the thymocytes in mice. Journal of immunology (Baltimore, Md. : 1950) 152: 5014–5021. Wang, S.D., K.J. Huang, Y.S. Lin, and H.Y. Lei. 1994. Sepsis-induced apoptosis of the thymocytes in mice. Journal of immunology (Baltimore, Md. : 1950) 152: 5014–5021.
204.
go back to reference Chapman, N.M., S. Shrestha, and H. Chi. 2017. Metabolism in immune cell differentiation and function. Advances in Experimental Medicine and Biology 1011: 1–85.PubMedCrossRef Chapman, N.M., S. Shrestha, and H. Chi. 2017. Metabolism in immune cell differentiation and function. Advances in Experimental Medicine and Biology 1011: 1–85.PubMedCrossRef
205.
206.
go back to reference Venet, F., and G. Monneret. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology 14: 121–137.PubMedCrossRef Venet, F., and G. Monneret. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology 14: 121–137.PubMedCrossRef
207.
go back to reference Andreu-Ballester, J.C., C. Cuellar, C. Garcia-Ballesteros, J. Perez-Griera, V. Amigo, A. Peiro-Gomez, C. Penarroja-Otero, F. Ballester, J. Mayans, and C. Tormo-Calandin. 2014. Deficit of interleukin 7 in septic patients. International Immunopharmacology 23: 73–76.PubMedCrossRef Andreu-Ballester, J.C., C. Cuellar, C. Garcia-Ballesteros, J. Perez-Griera, V. Amigo, A. Peiro-Gomez, C. Penarroja-Otero, F. Ballester, J. Mayans, and C. Tormo-Calandin. 2014. Deficit of interleukin 7 in septic patients. International Immunopharmacology 23: 73–76.PubMedCrossRef
208.
go back to reference Bauer, M., E.J. Giamarellos-Bourboulis, A. Kortgen, E. Moller, K. Felsmann, J.M. Cavaillon, O. Guntinas-Lichius, O. Rutschmann, A. Ruryk, M. Kohl, B. Wlotzka, S. Russwurm, J.C. Marshall, and K. Reinhart. 2016. A transcriptomic biomarker to quantify systemic inflammation in sepsis—a prospective multicenter phase II diagnostic study. EBioMedicine 6: 114–125.PubMedPubMedCentralCrossRef Bauer, M., E.J. Giamarellos-Bourboulis, A. Kortgen, E. Moller, K. Felsmann, J.M. Cavaillon, O. Guntinas-Lichius, O. Rutschmann, A. Ruryk, M. Kohl, B. Wlotzka, S. Russwurm, J.C. Marshall, and K. Reinhart. 2016. A transcriptomic biomarker to quantify systemic inflammation in sepsis—a prospective multicenter phase II diagnostic study. EBioMedicine 6: 114–125.PubMedPubMedCentralCrossRef
209.
go back to reference Wofford, J.A., H.L. Wieman, S.R. Jacobs, Y. Zhao, and J.C. Rathmell. 2008. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111: 2101–2111.PubMedPubMedCentralCrossRef Wofford, J.A., H.L. Wieman, S.R. Jacobs, Y. Zhao, and J.C. Rathmell. 2008. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111: 2101–2111.PubMedPubMedCentralCrossRef
210.
go back to reference Beier, U.H., A. Angelin, T. Akimova, L. Wang, Y. Liu, H. Xiao, M.A. Koike, S.A. Hancock, T.R. Bhatti, R. Han, J. Jiao, S.C. Veasey, C.A. Sims, J.A. Baur, D.C. Wallace, and W.W. Hancock. 2015. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29: 2315–2326.CrossRef Beier, U.H., A. Angelin, T. Akimova, L. Wang, Y. Liu, H. Xiao, M.A. Koike, S.A. Hancock, T.R. Bhatti, R. Han, J. Jiao, S.C. Veasey, C.A. Sims, J.A. Baur, D.C. Wallace, and W.W. Hancock. 2015. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29: 2315–2326.CrossRef
211.
go back to reference Michalek, R.D., V.A. Gerriets, S.R. Jacobs, A.N. Macintyre, N.J. MacIver, E.F. Mason, S.A. Sullivan, A.G. Nichols, and J.C. Rathmell. 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. Journal of immunology (Baltimore, Md. : 1950) 186: 3299–3303.CrossRef Michalek, R.D., V.A. Gerriets, S.R. Jacobs, A.N. Macintyre, N.J. MacIver, E.F. Mason, S.A. Sullivan, A.G. Nichols, and J.C. Rathmell. 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. Journal of immunology (Baltimore, Md. : 1950) 186: 3299–3303.CrossRef
213.
go back to reference Zeng, H., K. Yang, C. Cloer, G. Neale, P. Vogel, and H. Chi. 2013. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499: 485–490.PubMedPubMedCentralCrossRef Zeng, H., K. Yang, C. Cloer, G. Neale, P. Vogel, and H. Chi. 2013. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499: 485–490.PubMedPubMedCentralCrossRef
214.
go back to reference Kumar, V. 2018a. T cells and their immunometabolism: a novel way to understanding sepsis immunopathogenesis and future therapeutics. European Journal of Cell Biology. Kumar, V. 2018a. T cells and their immunometabolism: a novel way to understanding sepsis immunopathogenesis and future therapeutics. European Journal of Cell Biology.
215.
go back to reference Nalos, M., G. Parnell, R. Robergs, D. Booth, A.S. McLean, and B.M. Tang. 2016. Transcriptional reprogramming of metabolic pathways in critically ill patients. Intensive care medicine experimental 4: 21.PubMedPubMedCentralCrossRef Nalos, M., G. Parnell, R. Robergs, D. Booth, A.S. McLean, and B.M. Tang. 2016. Transcriptional reprogramming of metabolic pathways in critically ill patients. Intensive care medicine experimental 4: 21.PubMedPubMedCentralCrossRef
216.
go back to reference Dugnani, E., V. Pasquale, C. Bordignon, A. Canu, L. Piemonti, and P. Monti. 2017. Integrating T cell metabolism in cancer immunotherapy. Cancer Letters 411: 12–18.PubMedCrossRef Dugnani, E., V. Pasquale, C. Bordignon, A. Canu, L. Piemonti, and P. Monti. 2017. Integrating T cell metabolism in cancer immunotherapy. Cancer Letters 411: 12–18.PubMedCrossRef
217.
go back to reference Mockler, M.B., M.J. Conroy, and J. Lysaght. 2014. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Frontiers in Oncology 4: 107.PubMedPubMedCentralCrossRef Mockler, M.B., M.J. Conroy, and J. Lysaght. 2014. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Frontiers in Oncology 4: 107.PubMedPubMedCentralCrossRef
218.
go back to reference Hotchkiss, R.S., and L.L. Moldawer. 2014. Parallels between cancer and infectious disease. The New England Journal of Medicine 371: 380–383.PubMedCrossRef Hotchkiss, R.S., and L.L. Moldawer. 2014. Parallels between cancer and infectious disease. The New England Journal of Medicine 371: 380–383.PubMedCrossRef
219.
go back to reference Hotchkiss, R.S., Moldawer, L.L., Opal, S.M., Reinhart, K., Turnbull, I.R., Vincent, J.L., 2016. Sepsis and septic shock. Nature reviews. Disease primers 2, 16045. Hotchkiss, R.S., Moldawer, L.L., Opal, S.M., Reinhart, K., Turnbull, I.R., Vincent, J.L., 2016. Sepsis and septic shock. Nature reviews. Disease primers 2, 16045.
220.
go back to reference Zhang, Z., Deng, W., Kang, R., Xie, M., Billiar, T., Wang, H., Cao, L., Tang, D., 2016. Plumbagin protects mice from lethal sepsis by modulating immunometabolism upstream of PKM2. Molecular medicine (Cambridge, Mass.). Zhang, Z., Deng, W., Kang, R., Xie, M., Billiar, T., Wang, H., Cao, L., Tang, D., 2016. Plumbagin protects mice from lethal sepsis by modulating immunometabolism upstream of PKM2. Molecular medicine (Cambridge, Mass.).
221.
go back to reference O'Neill, L.A., and D.G. Hardie. 2013. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493: 346–355.PubMedCrossRef O'Neill, L.A., and D.G. Hardie. 2013. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493: 346–355.PubMedCrossRef
222.
go back to reference Sag, D., D. Carling, R.D. Stout, and J. Suttles. 2008. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of immunology (Baltimore, Md. : 1950) 181: 8633–8641.CrossRef Sag, D., D. Carling, R.D. Stout, and J. Suttles. 2008. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of immunology (Baltimore, Md. : 1950) 181: 8633–8641.CrossRef
223.
go back to reference Zhu, Y.P., J.R. Brown, D. Sag, L. Zhang, and J. Suttles. 2015. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. Journal of immunology (Baltimore, Md. : 1950) 194: 584–594.CrossRef Zhu, Y.P., J.R. Brown, D. Sag, L. Zhang, and J. Suttles. 2015. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. Journal of immunology (Baltimore, Md. : 1950) 194: 584–594.CrossRef
224.
go back to reference Escobar, D.A., A.M. Botero-Quintero, B.C. Kautza, J. Luciano, P. Loughran, S. Darwiche, M.R. Rosengart, B.S. Zuckerbraun, and H. Gomez. 2015. AMPK activation protects against sepsis-induced organ injury and inflammation. The Journal of Surgical Research 194: 262–272.PubMedCrossRef Escobar, D.A., A.M. Botero-Quintero, B.C. Kautza, J. Luciano, P. Loughran, S. Darwiche, M.R. Rosengart, B.S. Zuckerbraun, and H. Gomez. 2015. AMPK activation protects against sepsis-induced organ injury and inflammation. The Journal of Surgical Research 194: 262–272.PubMedCrossRef
225.
go back to reference Li, Y., N. Nourbakhsh, E. Hall, M. Hepokoski, H. Pham, J. Thomas, and P. Singh. 2016. Protective role of AMPK in sepsis associated AKI. The FASEB Journal 30: 1217.1218. Li, Y., N. Nourbakhsh, E. Hall, M. Hepokoski, H. Pham, J. Thomas, and P. Singh. 2016. Protective role of AMPK in sepsis associated AKI. The FASEB Journal 30: 1217.1218.
226.
go back to reference Castanares-Zapatero, D., M. Overtus, D. Communi, M. Horckmans, L. Bertrand, C. Oury, C. Lecut, P. Laterre, S. De man, C. Sommereyns, S. Horman, and C. Beauloye. 2012. AMP-activated protein kinase controls liposaccharide-induced hyperpermeability. Critical Care 16: P17.PubMedCentralCrossRef Castanares-Zapatero, D., M. Overtus, D. Communi, M. Horckmans, L. Bertrand, C. Oury, C. Lecut, P. Laterre, S. De man, C. Sommereyns, S. Horman, and C. Beauloye. 2012. AMP-activated protein kinase controls liposaccharide-induced hyperpermeability. Critical Care 16: P17.PubMedCentralCrossRef
227.
go back to reference Huang, J., K. Liu, S. Zhu, M. Xie, R. Kang, L. Cao, and D. Tang. 2017. AMPK regulates immunometabolism in sepsis. Brain, Behavior, and Immunity. Huang, J., K. Liu, S. Zhu, M. Xie, R. Kang, L. Cao, and D. Tang. 2017. AMPK regulates immunometabolism in sepsis. Brain, Behavior, and Immunity.
228.
go back to reference Taylor, C.T., and S.P. Colgan. 2017. Regulation of immunity and inflammation by hypoxia in immunological niches. Nature Reviews. Immunology 17: 774–785.PubMedPubMedCentralCrossRef Taylor, C.T., and S.P. Colgan. 2017. Regulation of immunity and inflammation by hypoxia in immunological niches. Nature Reviews. Immunology 17: 774–785.PubMedPubMedCentralCrossRef
229.
go back to reference Liu, Z., N. Bone, S. Jiang, D.W. Park, J.M. Tadie, J. Deshane, C.A. Rodriguez, J.F. Pittet, E. Abraham, and J.W. Zmijewski. 2015. AMP-activated protein kinase and glycogen synthase kinase 3beta modulate the severity of sepsis-induced lung injury. Molecular medicine 21(1): 937–950.PubMedPubMedCentralCrossRef Liu, Z., N. Bone, S. Jiang, D.W. Park, J.M. Tadie, J. Deshane, C.A. Rodriguez, J.F. Pittet, E. Abraham, and J.W. Zmijewski. 2015. AMP-activated protein kinase and glycogen synthase kinase 3beta modulate the severity of sepsis-induced lung injury. Molecular medicine 21(1): 937–950.PubMedPubMedCentralCrossRef
230.
go back to reference Cheng, S.C., B.P. Scicluna, R.J. Arts, M.S. Gresnigt, E. Lachmandas, E.J. Giamarellos-Bourboulis, M. Kox, G.R. Manjeri, J.A. Wagenaars, O.L. Cremer, J. Leentjens, A.J. van der Meer, F.L. van de Veerdonk, M.J. Bonten, M.J. Schultz, P.H. Willems, P. Pickkers, L.A. Joosten, T. van der Poll, and M.G. Netea. 2016. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nature Immunology 17: 406–413.PubMedCrossRef Cheng, S.C., B.P. Scicluna, R.J. Arts, M.S. Gresnigt, E. Lachmandas, E.J. Giamarellos-Bourboulis, M. Kox, G.R. Manjeri, J.A. Wagenaars, O.L. Cremer, J. Leentjens, A.J. van der Meer, F.L. van de Veerdonk, M.J. Bonten, M.J. Schultz, P.H. Willems, P. Pickkers, L.A. Joosten, T. van der Poll, and M.G. Netea. 2016. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nature Immunology 17: 406–413.PubMedCrossRef
231.
go back to reference Jha, A.K., S.C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, K.M. Stewart, J. Ashall, B. Everts, E.J. Pearce, E.M. Driggers, and M.N. Artyomov. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42: 419–430.PubMedCrossRef Jha, A.K., S.C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, K.M. Stewart, J. Ashall, B. Everts, E.J. Pearce, E.M. Driggers, and M.N. Artyomov. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42: 419–430.PubMedCrossRef
232.
go back to reference Van den Bossche, J., L.A. O'Neill, and D. Menon. 2017. Macrophage immunometabolism: where are we (going)? Trends in Immunology 38: 395–406.PubMedCrossRef Van den Bossche, J., L.A. O'Neill, and D. Menon. 2017. Macrophage immunometabolism: where are we (going)? Trends in Immunology 38: 395–406.PubMedCrossRef
233.
go back to reference Mills, E.L., B. Kelly, A. Logan, A.S.H. Costa, M. Varma, C.E. Bryant, P. Tourlomousis, J.H.M. Däbritz, E. Gottlieb, I. Latorre, S.C. Corr, G. McManus, D. Ryan, H.T. Jacobs, M. Szibor, R.J. Xavier, T. Braun, C. Frezza, M.P. Murphy, and L.A. O’Neill. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167: 457–470.e413.PubMedPubMedCentralCrossRef Mills, E.L., B. Kelly, A. Logan, A.S.H. Costa, M. Varma, C.E. Bryant, P. Tourlomousis, J.H.M. Däbritz, E. Gottlieb, I. Latorre, S.C. Corr, G. McManus, D. Ryan, H.T. Jacobs, M. Szibor, R.J. Xavier, T. Braun, C. Frezza, M.P. Murphy, and L.A. O’Neill. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167: 457–470.e413.PubMedPubMedCentralCrossRef
234.
go back to reference Patil, N.K., J.K. Bohannon, and E.R. Sherwood. 2016. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacological Research 111: 688–702.PubMedPubMedCentralCrossRef Patil, N.K., J.K. Bohannon, and E.R. Sherwood. 2016. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacological Research 111: 688–702.PubMedPubMedCentralCrossRef
235.
go back to reference Shindo, Y., A.G. Fuchs, C.G. Davis, T. Eitas, J. Unsinger, C.D. Burnham, J.M. Green, M. Morre, G.V. Bochicchio, and R.S. Hotchkiss. 2017. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. Journal of Leukocyte Biology 101: 543–554.PubMedCrossRef Shindo, Y., A.G. Fuchs, C.G. Davis, T. Eitas, J. Unsinger, C.D. Burnham, J.M. Green, M. Morre, G.V. Bochicchio, and R.S. Hotchkiss. 2017. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. Journal of Leukocyte Biology 101: 543–554.PubMedCrossRef
236.
go back to reference Venet, F., Demaret, J., Blaise, B.J., Rouget, C., Girardot, T., Idealisoa, E., Rimmele, T., Mallet, F., Lepape, A., Textoris, J., Monneret, G., 2017. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. Journal of immunology (Baltimore, Md. : 1950) 199, 1606-1615.PubMedCrossRef Venet, F., Demaret, J., Blaise, B.J., Rouget, C., Girardot, T., Idealisoa, E., Rimmele, T., Mallet, F., Lepape, A., Textoris, J., Monneret, G., 2017. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. Journal of immunology (Baltimore, Md. : 1950) 199, 1606-1615.PubMedCrossRef
237.
go back to reference Venet, F., Monneret, G., 2017. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature reviews. Nephrology. Venet, F., Monneret, G., 2017. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature reviews. Nephrology.
238.
go back to reference Venet, F., T. Rimmele, and G. Monneret. 2018. Management of sepsis-induced immunosuppression. Critical Care Clinics 34: 97–106.PubMedCrossRef Venet, F., T. Rimmele, and G. Monneret. 2018. Management of sepsis-induced immunosuppression. Critical Care Clinics 34: 97–106.PubMedCrossRef
239.
go back to reference Francois, B., Jeannet, R., Daix, T., Walton, A.H., Shotwell, M.S., Unsinger, J., Monneret, G., Rimmele, T., Blood, T., Morre, M., Gregoire, A., Mayo, G.A., Blood, J., Durum, S.K., Sherwood, E.R., Hotchkiss, R.S., 2018. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI insight 3. Francois, B., Jeannet, R., Daix, T., Walton, A.H., Shotwell, M.S., Unsinger, J., Monneret, G., Rimmele, T., Blood, T., Morre, M., Gregoire, A., Mayo, G.A., Blood, J., Durum, S.K., Sherwood, E.R., Hotchkiss, R.S., 2018. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI insight 3.
240.
go back to reference Angelin, A., Gil-de-Gomez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M.H., Wang, Z., Quinn, W.J., 3rd, Kopinski, P.K., Wang, L., Akimova, T., Liu, Y., Bhatti, T.R., Han, R., Laskin, B.L., Baur, J.A., Blair, I.A., Wallace, D.C., Hancock, W.W., Beier, U.H., 2017. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell metabolism 25, 1282-1293.e1287.PubMedPubMedCentralCrossRef Angelin, A., Gil-de-Gomez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M.H., Wang, Z., Quinn, W.J., 3rd, Kopinski, P.K., Wang, L., Akimova, T., Liu, Y., Bhatti, T.R., Han, R., Laskin, B.L., Baur, J.A., Blair, I.A., Wallace, D.C., Hancock, W.W., Beier, U.H., 2017. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell metabolism 25, 1282-1293.e1287.PubMedPubMedCentralCrossRef
241.
go back to reference Grzes, K.M., C.S. Field, and E.J. Pearce. 2017. Treg cells survive and thrive in inhospitable environments. Cell Metabolism 25: 1213–1215.PubMedCrossRef Grzes, K.M., C.S. Field, and E.J. Pearce. 2017. Treg cells survive and thrive in inhospitable environments. Cell Metabolism 25: 1213–1215.PubMedCrossRef
242.
go back to reference Cao, C., T. Ma, Y.F. Chai, and S.T. Shou. 2015. The role of regulatory T cells in immune dysfunction during sepsis. World Journal of Emergency Medicine 6: 5–9.PubMedPubMedCentralCrossRef Cao, C., T. Ma, Y.F. Chai, and S.T. Shou. 2015. The role of regulatory T cells in immune dysfunction during sepsis. World Journal of Emergency Medicine 6: 5–9.PubMedPubMedCentralCrossRef
243.
go back to reference Jiang, L.-N., Y.-M. Yao, and Z.-Y. Sheng. 2012. The role of regulatory T cells in the pathogenesis of sepsis and its clinical implication. Journal of Interferon & Cytokine Research 32: 341–349.CrossRef Jiang, L.-N., Y.-M. Yao, and Z.-Y. Sheng. 2012. The role of regulatory T cells in the pathogenesis of sepsis and its clinical implication. Journal of Interferon & Cytokine Research 32: 341–349.CrossRef
244.
go back to reference Mannick, J.B., M. Morris, H.-U.P. Hockey, G. Roma, M. Beibel, K. Kulmatycki, M. Watkins, T. Shavlakadze, W. Zhou, D. Quinn, D.J. Glass, and L.B. Klickstein. 2018. TORC1 inhibition enhances immune function and reduces infections in the elderly. Science Translational Medicine 10.PubMedCrossRef Mannick, J.B., M. Morris, H.-U.P. Hockey, G. Roma, M. Beibel, K. Kulmatycki, M. Watkins, T. Shavlakadze, W. Zhou, D. Quinn, D.J. Glass, and L.B. Klickstein. 2018. TORC1 inhibition enhances immune function and reduces infections in the elderly. Science Translational Medicine 10.PubMedCrossRef
245.
go back to reference Cantey, J.B., and S.D. Baird. 2017. Ending the culture of culture-negative sepsis in the neonatal ICU. Pediatrics 140. Cantey, J.B., and S.D. Baird. 2017. Ending the culture of culture-negative sepsis in the neonatal ICU. Pediatrics 140.
246.
go back to reference Martín, S., A. Pérez, and C. Aldecoa. 2017. Sepsis and immunosenescence in the elderly patient: a review. Frontiers in Medicine 4: 20.PubMedPubMedCentral Martín, S., A. Pérez, and C. Aldecoa. 2017. Sepsis and immunosenescence in the elderly patient: a review. Frontiers in Medicine 4: 20.PubMedPubMedCentral
247.
go back to reference Mayr, F.B., S. Yende, W.T. Linde-Zwirble, O.M. Peck-Palmer, A.E. Barnato, L.A. Weissfeld, and D.C. Angus. 2010. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. Jama 303: 2495–2503.PubMedPubMedCentralCrossRef Mayr, F.B., S. Yende, W.T. Linde-Zwirble, O.M. Peck-Palmer, A.E. Barnato, L.A. Weissfeld, and D.C. Angus. 2010. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. Jama 303: 2495–2503.PubMedPubMedCentralCrossRef
248.
go back to reference Rowe, T.A., and J.M. McKoy. 2017. Sepsis in older adults. Infectious Disease Clinics of North America 31: 731–742.PubMedCrossRef Rowe, T.A., and J.M. McKoy. 2017. Sepsis in older adults. Infectious Disease Clinics of North America 31: 731–742.PubMedCrossRef
249.
go back to reference Vardi, M., N.O. Ghanem-Zoubi, H. Bitterman, N. Abo-Helo, V. Yurin, G. Weber, and A. Laor. 2013. Sepsis in nonagenarians admitted to internal medicine departments: a comparative study of outcomes. QJM : Monthly Journal of the Association of Physicians 106: 261–266.PubMedCrossRef Vardi, M., N.O. Ghanem-Zoubi, H. Bitterman, N. Abo-Helo, V. Yurin, G. Weber, and A. Laor. 2013. Sepsis in nonagenarians admitted to internal medicine departments: a comparative study of outcomes. QJM : Monthly Journal of the Association of Physicians 106: 261–266.PubMedCrossRef
251.
go back to reference Allahyari, H., S. Heidari, M. Ghamgosha, P. Saffarian, and J. Amani. 2017. Immunotoxin: a new tool for cancer therapy. Tumor Biology 39: 1010428317692226.PubMedCrossRef Allahyari, H., S. Heidari, M. Ghamgosha, P. Saffarian, and J. Amani. 2017. Immunotoxin: a new tool for cancer therapy. Tumor Biology 39: 1010428317692226.PubMedCrossRef
252.
go back to reference Fuchs, H., A. Weng, and R. Gilabert-Oriol. 2016. Augmenting the efficacy of immunotoxins and other targeted protein toxins by endosomal escape enhancers. Toxins 8: 200.PubMedCentralCrossRef Fuchs, H., A. Weng, and R. Gilabert-Oriol. 2016. Augmenting the efficacy of immunotoxins and other targeted protein toxins by endosomal escape enhancers. Toxins 8: 200.PubMedCentralCrossRef
253.
go back to reference Markwart, R., S.A. Condotta, R.P. Requardt, F. Borken, K. Schubert, C. Weigel, M. Bauer, T.S. Griffith, M. Forster, F.M. Brunkhorst, V.P. Badovinac, and I. Rubio. 2014. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of naive T-cells but no enduring cell-autonomous defects in T-cell function. PLoS One 9: e115094.PubMedPubMedCentralCrossRef Markwart, R., S.A. Condotta, R.P. Requardt, F. Borken, K. Schubert, C. Weigel, M. Bauer, T.S. Griffith, M. Forster, F.M. Brunkhorst, V.P. Badovinac, and I. Rubio. 2014. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of naive T-cells but no enduring cell-autonomous defects in T-cell function. PLoS One 9: e115094.PubMedPubMedCentralCrossRef
Metadata
Title
Immunometabolism: Another Road to Sepsis and Its Therapeutic Targeting
Author
Vijay Kumar
Publication date
01-06-2019
Publisher
Springer US
Published in
Inflammation / Issue 3/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0939-8

Other articles of this Issue 3/2019

Inflammation 3/2019 Go to the issue