Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

Open Access 01-06-2017

Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention

Authors: Argentina Ornelas, Niki Zacharias-Millward, David G. Menter, Jennifer S. Davis, Lenard Lichtenberger, David Hawke, Ernest Hawk, Eduardo Vilar, Pratip Bhattacharya, Steven Millward

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin’s chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Literature
1.
go back to reference Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.PubMedCrossRef Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.PubMedCrossRef
2.
go back to reference Chan, A. T., Arber, N., Burn, J., Chia, W. K., Elwood, P., Hull, M. A., Logan, R. F., Rothwell, P. M., & Schror, K. (2012). Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prevention Research, 5(2), 164–178.PubMedCrossRef Chan, A. T., Arber, N., Burn, J., Chia, W. K., Elwood, P., Hull, M. A., Logan, R. F., Rothwell, P. M., & Schror, K. (2012). Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prevention Research, 5(2), 164–178.PubMedCrossRef
3.
go back to reference Ishikawa, H., Wakabayashi, K., Suzuki, S., Mutoh, M., Hirata, K., Nakamura, T., Takeyama, I., Kawano, A., Gondo, N., Abe, T., Tokudome, S., Goto, C., Matsuura, N., & Sakai, T. (2013). Preventive effects of low-dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis. Double-blind randomized clinical trial. Cancer Medicine, 2(1), 50–56.PubMedPubMedCentralCrossRef Ishikawa, H., Wakabayashi, K., Suzuki, S., Mutoh, M., Hirata, K., Nakamura, T., Takeyama, I., Kawano, A., Gondo, N., Abe, T., Tokudome, S., Goto, C., Matsuura, N., & Sakai, T. (2013). Preventive effects of low-dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis. Double-blind randomized clinical trial. Cancer Medicine, 2(1), 50–56.PubMedPubMedCentralCrossRef
4.
go back to reference Benamouzig, R., Uzzan, B., Little, J., & Chaussade, S. (2005). Low dose aspirin, COX-inhibition and chemoprevention of colorectal cancer. Current Topics in Medicinal Chemistry, 5(5), 493–503.PubMedCrossRef Benamouzig, R., Uzzan, B., Little, J., & Chaussade, S. (2005). Low dose aspirin, COX-inhibition and chemoprevention of colorectal cancer. Current Topics in Medicinal Chemistry, 5(5), 493–503.PubMedCrossRef
5.
go back to reference Burn, J., Gerdes, A. M., Macrae, F., Mecklin, J. P., Moeslein, G., Olschwang, S., et al. (2011). Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomized controlled trial. Lancet, 378(9809), 2081–2087.PubMedPubMedCentralCrossRef Burn, J., Gerdes, A. M., Macrae, F., Mecklin, J. P., Moeslein, G., Olschwang, S., et al. (2011). Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomized controlled trial. Lancet, 378(9809), 2081–2087.PubMedPubMedCentralCrossRef
6.
go back to reference Patrignani, P., Sacco, A., Sostress, C., Bruno, A., Dovizio, M., Piazuelo, E., et al. (2016). Low-dose aspirin acylates cyclooxygenase-1 in human colorectal mucosa: implications for the chemoprevention of colorectal cancer. Clinical Pharmacology and Therapeutics, 102(1), 52–61.CrossRef Patrignani, P., Sacco, A., Sostress, C., Bruno, A., Dovizio, M., Piazuelo, E., et al. (2016). Low-dose aspirin acylates cyclooxygenase-1 in human colorectal mucosa: implications for the chemoprevention of colorectal cancer. Clinical Pharmacology and Therapeutics, 102(1), 52–61.CrossRef
7.
go back to reference Flossman, E., & Rothwell, P. M. (2007). Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomized and observational studies. Lancet, 369, 1603–1613.CrossRef Flossman, E., & Rothwell, P. M. (2007). Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomized and observational studies. Lancet, 369, 1603–1613.CrossRef
8.
go back to reference Crofford, L. J. (1997). COX-1 and COX-2 tissue expression: implications and predictions. Journal Rehumatology Supplement, 49, 15–19. Crofford, L. J. (1997). COX-1 and COX-2 tissue expression: implications and predictions. Journal Rehumatology Supplement, 49, 15–19.
9.
go back to reference Flower, R. J. (1974). Drugs which inhibit prostaglandin biosynthesis. Pharmacological Reviews, 26, 33–67.PubMed Flower, R. J. (1974). Drugs which inhibit prostaglandin biosynthesis. Pharmacological Reviews, 26, 33–67.PubMed
10.
go back to reference Nathan, C. (2002). Points of control in inflammation. Nature, 420, 846–885.CrossRef Nathan, C. (2002). Points of control in inflammation. Nature, 420, 846–885.CrossRef
11.
go back to reference Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef
12.
go back to reference Dubois, R. N., Abramson, S. B., Croford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B., & Lipsky, P. E. (1998). Cyclooxygenase in biology and disease. The FASEB Journal, 12, 1063–1073.PubMed Dubois, R. N., Abramson, S. B., Croford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B., & Lipsky, P. E. (1998). Cyclooxygenase in biology and disease. The FASEB Journal, 12, 1063–1073.PubMed
13.
go back to reference Schafer, A., & Bauersachs, J. (2008). Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Current Vascular Pharmacology, 6, 52–60.PubMedCrossRef Schafer, A., & Bauersachs, J. (2008). Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Current Vascular Pharmacology, 6, 52–60.PubMedCrossRef
15.
go back to reference Fersht, A. R., & Kirby, A. J. (1967). Hydrolysis of aspirin. Intramolecular general base catalysis of ester hydrolysis. Journal of the American Chemical Society, 89(19), 4857–4863.PubMedCrossRef Fersht, A. R., & Kirby, A. J. (1967). Hydrolysis of aspirin. Intramolecular general base catalysis of ester hydrolysis. Journal of the American Chemical Society, 89(19), 4857–4863.PubMedCrossRef
16.
go back to reference St. Pierre, T., & Jencks, W. P. (1968). Intramolecular catalysis in the reactions of nucleophilic reagents with aspirin. Journal of the American Chemical Society, 90(14), 3817–3827.PubMedCrossRef St. Pierre, T., & Jencks, W. P. (1968). Intramolecular catalysis in the reactions of nucleophilic reagents with aspirin. Journal of the American Chemical Society, 90(14), 3817–3827.PubMedCrossRef
17.
go back to reference Choudhary, A., Kamer, K. J., & Raines, R. T. (2011). An n→π* interaction in aspirin: Implications for structure and reactivity. The Journal of Organic Chemistry, 76(19), 7933–7937.PubMedPubMedCentralCrossRef Choudhary, A., Kamer, K. J., & Raines, R. T. (2011). An n→π* interaction in aspirin: Implications for structure and reactivity. The Journal of Organic Chemistry, 76(19), 7933–7937.PubMedPubMedCentralCrossRef
18.
go back to reference Chandrasekhar, S., & Kumar, H. V. (2011). The reaction of aspirin with base. Tetrahedron Letters, 52, 3561–3564.CrossRef Chandrasekhar, S., & Kumar, H. V. (2011). The reaction of aspirin with base. Tetrahedron Letters, 52, 3561–3564.CrossRef
19.
go back to reference Dakin, H. D., & West, R. J. (1928). A general reaction of amino acids. The Journal of Biological Chemistry, 78, 91–104. Dakin, H. D., & West, R. J. (1928). A general reaction of amino acids. The Journal of Biological Chemistry, 78, 91–104.
20.
go back to reference Hendrix, B. M., & Paquin, F. (1938). The effect of alkali treatment upon acetyl proteins. The Journal of Biological Chemistry, 124, 135–145. Hendrix, B. M., & Paquin, F. (1938). The effect of alkali treatment upon acetyl proteins. The Journal of Biological Chemistry, 124, 135–145.
21.
go back to reference Bundgaard, H., & Larsen, C. (1976). Intramolecular and intermolecular transformations of aspirin in nonhydroxylic solvents. Journal of Pharmaceutical Sciences, 65(5), 776–778.PubMedCrossRef Bundgaard, H., & Larsen, C. (1976). Intramolecular and intermolecular transformations of aspirin in nonhydroxylic solvents. Journal of Pharmaceutical Sciences, 65(5), 776–778.PubMedCrossRef
22.
go back to reference Pinckard, R. N., Hawkins, D., & Farr, R. S. (1968). In vitro acetylation of plasma proteins, enzyme and DNA by aspirin. Nature, 219, 68–69.PubMedCrossRef Pinckard, R. N., Hawkins, D., & Farr, R. S. (1968). In vitro acetylation of plasma proteins, enzyme and DNA by aspirin. Nature, 219, 68–69.PubMedCrossRef
23.
go back to reference Al-Mondhiri, H., Marcus, A., & Spaet, T. H. (1969). Acetylation of human platelets by aspirin. Federation Proceedings, 28, 576. Al-Mondhiri, H., Marcus, A., & Spaet, T. H. (1969). Acetylation of human platelets by aspirin. Federation Proceedings, 28, 576.
24.
go back to reference Passacquale, G., Phinikarudou, A., Warboys, C., Cooper, M., Lavin, B., Alfieri, A., Andia, M. E., Botnar, R. M., & Ferro, A. (2015). Aspirin induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration. British Journal of Pharmacology, 172(14), 3548–3564.PubMedPubMedCentralCrossRef Passacquale, G., Phinikarudou, A., Warboys, C., Cooper, M., Lavin, B., Alfieri, A., Andia, M. E., Botnar, R. M., & Ferro, A. (2015). Aspirin induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration. British Journal of Pharmacology, 172(14), 3548–3564.PubMedPubMedCentralCrossRef
25.
go back to reference Watala, C., & Gwozdzinski, K. (1993). Effect of aspirin on conformation and dynamics of membrane proteins in platelets and erythrocytes. Biochemical Pharmacology, 45, 1343–1349.PubMedCrossRef Watala, C., & Gwozdzinski, K. (1993). Effect of aspirin on conformation and dynamics of membrane proteins in platelets and erythrocytes. Biochemical Pharmacology, 45, 1343–1349.PubMedCrossRef
26.
go back to reference Caterson, R. J., Duggin, G. G., Horvath, J., Mohandas, J., & Tiller, D. (1978). Aspirin protein transacetylation and inhibition of prostaglandin synthetase in kidney. British Journal of Pharmacology, 64, 353–358.PubMedPubMedCentralCrossRef Caterson, R. J., Duggin, G. G., Horvath, J., Mohandas, J., & Tiller, D. (1978). Aspirin protein transacetylation and inhibition of prostaglandin synthetase in kidney. British Journal of Pharmacology, 64, 353–358.PubMedPubMedCentralCrossRef
27.
go back to reference Green, F. A., & Jung, C. Y. (1981). Acetylation of erythrocytic membrane peptides by aspirin. Transfusion, 21, 55–58.PubMedCrossRef Green, F. A., & Jung, C. Y. (1981). Acetylation of erythrocytic membrane peptides by aspirin. Transfusion, 21, 55–58.PubMedCrossRef
28.
go back to reference McDonald, J. M., LeBlanc, D. A., Haas, A. L., & London, R. E. (1999). An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C] aspirin. Biochemical Pharmacology, 57, 1233–1244.CrossRef McDonald, J. M., LeBlanc, D. A., Haas, A. L., & London, R. E. (1999). An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C] aspirin. Biochemical Pharmacology, 57, 1233–1244.CrossRef
29.
go back to reference Rainsford, K. D., Shweitzer, A., & Brune, K. (1983). Distribution of the acetyl compared with the salicyl moiety of acetylsalicylic acid. Acetylation of macromolecules in organs wherein side effects are manifest. Biochemical Pharmacology, 32, 1301–1308.PubMedCrossRef Rainsford, K. D., Shweitzer, A., & Brune, K. (1983). Distribution of the acetyl compared with the salicyl moiety of acetylsalicylic acid. Acetylation of macromolecules in organs wherein side effects are manifest. Biochemical Pharmacology, 32, 1301–1308.PubMedCrossRef
30.
go back to reference Alfonso, L. F., Srivenugopal, K. S., Arumuga, T. V., Abbruscato, T. J., Weidanz, J. A., & Bhat, G. J. (2009). Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. International Journal of Oncology, 34, 597–608.PubMed Alfonso, L. F., Srivenugopal, K. S., Arumuga, T. V., Abbruscato, T. J., Weidanz, J. A., & Bhat, G. J. (2009). Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. International Journal of Oncology, 34, 597–608.PubMed
31.
go back to reference Yin, M. J., Yamamoto, Y., & Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of IKB kinase-B. Nature, 396(6706), 77–80.PubMedCrossRef Yin, M. J., Yamamoto, Y., & Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of IKB kinase-B. Nature, 396(6706), 77–80.PubMedCrossRef
32.
go back to reference McCarty, M. F., & Block, K. I. (2006). Preadministration of high-dose salicylates, suppressors of NF-KB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integrative Cancer Therapies, 5(3), 252–268.PubMedCrossRef McCarty, M. F., & Block, K. I. (2006). Preadministration of high-dose salicylates, suppressors of NF-KB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integrative Cancer Therapies, 5(3), 252–268.PubMedCrossRef
33.
go back to reference Shamsuddin, M., Mason, R. G., Ritchey, J. Y., Honig, G. R., & Klotz, I. (1974). Sites of acetylation of sickle cell hemoglobin by aspirin. Proceedings of the National Academy of Sciences, 71(12), 4693–4697.CrossRef Shamsuddin, M., Mason, R. G., Ritchey, J. Y., Honig, G. R., & Klotz, I. (1974). Sites of acetylation of sickle cell hemoglobin by aspirin. Proceedings of the National Academy of Sciences, 71(12), 4693–4697.CrossRef
34.
go back to reference Gerig, J. T., Katz, K. E., Reinheimer, J. D., Sullivan, G. R., et al. (1981). Examination of the aspirin acetylation site of human serum albumin by 13C NMR spectroscopy. Organizational Magnetic Resonance, 15, 158–161.CrossRef Gerig, J. T., Katz, K. E., Reinheimer, J. D., Sullivan, G. R., et al. (1981). Examination of the aspirin acetylation site of human serum albumin by 13C NMR spectroscopy. Organizational Magnetic Resonance, 15, 158–161.CrossRef
35.
go back to reference Pandita, S., & Zakir, S. G. (1998). An efficient microscale procedure for the synthesis of aspirin. Journal of Chemical Education, 75(6), 770.CrossRef Pandita, S., & Zakir, S. G. (1998). An efficient microscale procedure for the synthesis of aspirin. Journal of Chemical Education, 75(6), 770.CrossRef
36.
go back to reference Xu, A. S. L., Macdonald, J. M., Labotka, R. J., & London, R. E. (1999). NMR study of the sites of human hemoglobin acetylated by aspirin. Biochemica et Biophysica Acta., 1432, 333–349.CrossRef Xu, A. S. L., Macdonald, J. M., Labotka, R. J., & London, R. E. (1999). NMR study of the sites of human hemoglobin acetylated by aspirin. Biochemica et Biophysica Acta., 1432, 333–349.CrossRef
37.
go back to reference Loll, P. J., Picot, D., & Garavito, R. M. (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Structural Biology, 2, 637–643.PubMedCrossRef Loll, P. J., Picot, D., & Garavito, R. M. (1995). The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Structural Biology, 2, 637–643.PubMedCrossRef
38.
go back to reference Lucido, M. J., Orlando, B. J., Vecchio, A. J., & Malkowski, M. G. (2016). Crystal structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry, 55(8), 1226–1238.PubMedPubMedCentralCrossRef Lucido, M. J., Orlando, B. J., Vecchio, A. J., & Malkowski, M. G. (2016). Crystal structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry, 55(8), 1226–1238.PubMedPubMedCentralCrossRef
39.
go back to reference Pinckard, R. N., Hawkins, D., & Farr, R. S. (1970). The inhibitory effect of salicylate on the acetylation of human albumin by acetylsalicylic acid. Arthritis and Rheumatism, 13(4), 361–368.PubMedCrossRef Pinckard, R. N., Hawkins, D., & Farr, R. S. (1970). The inhibitory effect of salicylate on the acetylation of human albumin by acetylsalicylic acid. Arthritis and Rheumatism, 13(4), 361–368.PubMedCrossRef
40.
go back to reference Rowland, M., Riegelman, S., Harris, P. A., & Sholkoff, S. D. (1972). Absorption kinetics of aspirin in man following oral administration of an aqueous solution. Journal of Pharmaceutical Sciences, 61(3), 379–385.PubMedCrossRef Rowland, M., Riegelman, S., Harris, P. A., & Sholkoff, S. D. (1972). Absorption kinetics of aspirin in man following oral administration of an aqueous solution. Journal of Pharmaceutical Sciences, 61(3), 379–385.PubMedCrossRef
41.
go back to reference Rainsford, K. D., Ford, N. L., Brooks, P. M., & Watson, H. M. (1980). Plasma aspirin esterases in normal individuals, patients with alcoholic liver disase and rheumatoid arthritis: characterization and importance of the enzymic components. European Journal of Clinical Investigation, 10(5), 413–420.PubMedCrossRef Rainsford, K. D., Ford, N. L., Brooks, P. M., & Watson, H. M. (1980). Plasma aspirin esterases in normal individuals, patients with alcoholic liver disase and rheumatoid arthritis: characterization and importance of the enzymic components. European Journal of Clinical Investigation, 10(5), 413–420.PubMedCrossRef
42.
go back to reference Zhou, G., Marathe, G. K., Willard, B., & McIntyre, T. M. (2011). Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood. The Journal of Biological Chemistry, 286(40), 34820–34829.PubMedPubMedCentralCrossRef Zhou, G., Marathe, G. K., Willard, B., & McIntyre, T. M. (2011). Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood. The Journal of Biological Chemistry, 286(40), 34820–34829.PubMedPubMedCentralCrossRef
43.
go back to reference Needs, C. J., & Brooks, P. M. (1985). Clinical pharmacokinetics of the salicylates. Clinical Pharmacokinetics, 10(2), 164–177.PubMedCrossRef Needs, C. J., & Brooks, P. M. (1985). Clinical pharmacokinetics of the salicylates. Clinical Pharmacokinetics, 10(2), 164–177.PubMedCrossRef
44.
go back to reference Roth, G. J., & Majerus, P. W. (1975). The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction. Journal of Clinical Investment, 56(3), 624–632.CrossRef Roth, G. J., & Majerus, P. W. (1975). The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction. Journal of Clinical Investment, 56(3), 624–632.CrossRef
45.
go back to reference Rowland, M., & Riegelman, S. (1968). Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man. Journal of Pharmaceutical Sciences, 57, 1313–1319.CrossRef Rowland, M., & Riegelman, S. (1968). Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man. Journal of Pharmaceutical Sciences, 57, 1313–1319.CrossRef
46.
go back to reference Bhatt, D., Grosser, T., Dong, J. F., Logan, D., Jeske, W., Angiolillo, D. J., Freilinger, A. L., Lei, L., Liang, J., Moore, J. E., Cryer, B., & Marathi, P. (2017). Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus. JACC., 69(6), 604–611.CrossRef Bhatt, D., Grosser, T., Dong, J. F., Logan, D., Jeske, W., Angiolillo, D. J., Freilinger, A. L., Lei, L., Liang, J., Moore, J. E., Cryer, B., & Marathi, P. (2017). Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus. JACC., 69(6), 604–611.CrossRef
47.
go back to reference Lichtenberger, L. M., Phan, T., Fang, D., Edler, S., Philip, J., Li-Geng, T., & Dial, E. J. (2016). Bioavailability of aspirin in rats comparing the drug uptake into gastrointestinal tissue and vascular and lymphatic systems: implications on aspirin’s chempreventive action. Journal of Physics and Pharmacology, 67(5), 635–642. Lichtenberger, L. M., Phan, T., Fang, D., Edler, S., Philip, J., Li-Geng, T., & Dial, E. J. (2016). Bioavailability of aspirin in rats comparing the drug uptake into gastrointestinal tissue and vascular and lymphatic systems: implications on aspirin’s chempreventive action. Journal of Physics and Pharmacology, 67(5), 635–642.
48.
go back to reference Verbeeck, R. K., & Cardinal, J. A. (1985). Plasma protein binding of salicylic acid, phenytoin, chlorpromazine, and pethidine using equilibrium dialysis and ultracentrifugation. Arzneimittel-Forschung., 35, 903–906.PubMed Verbeeck, R. K., & Cardinal, J. A. (1985). Plasma protein binding of salicylic acid, phenytoin, chlorpromazine, and pethidine using equilibrium dialysis and ultracentrifugation. Arzneimittel-Forschung., 35, 903–906.PubMed
49.
go back to reference Aarons, L., Clifton, P., Fleming, G., & Rowland, M. (1980). Aspirin binding and the effect of albumin on spontaneous and enzyme catalyzed hydrolysis. The Journal of Pharmacy and Pharmacology, 32, 537–543.PubMedCrossRef Aarons, L., Clifton, P., Fleming, G., & Rowland, M. (1980). Aspirin binding and the effect of albumin on spontaneous and enzyme catalyzed hydrolysis. The Journal of Pharmacy and Pharmacology, 32, 537–543.PubMedCrossRef
50.
go back to reference Rendell, M., Nierenberg, J., Brannan, C., Valentine, J. L., Stephen, P. M., Dodds, S., Mercer, P., Smith, P. K., & Walder, J. (1968). Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo. Journal of Laboratory and Clinical Medicines, 108, 286–293. Rendell, M., Nierenberg, J., Brannan, C., Valentine, J. L., Stephen, P. M., Dodds, S., Mercer, P., Smith, P. K., & Walder, J. (1968). Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo. Journal of Laboratory and Clinical Medicines, 108, 286–293.
51.
go back to reference Hawkins, D., Pinckard, R. N., Crawford, I. P., & Farr, R. S. (1969). Structural changes in human serum albumin induced by ingestion of acetylsalicylic acid. The Journal of Clinical Investigation, 48(3), 536–542.PubMedPubMedCentralCrossRef Hawkins, D., Pinckard, R. N., Crawford, I. P., & Farr, R. S. (1969). Structural changes in human serum albumin induced by ingestion of acetylsalicylic acid. The Journal of Clinical Investigation, 48(3), 536–542.PubMedPubMedCentralCrossRef
52.
go back to reference Ashton, J. M., Bolme, P., & Zerihun, B. (1989). Protein binding of salicylic acid and salicyluric acid in serum from malnourished children: the influence of albumin competitive binding and non esterified fatty acids. Journal Pharmacy and Pharmacology, 41, 474–480.CrossRef Ashton, J. M., Bolme, P., & Zerihun, B. (1989). Protein binding of salicylic acid and salicyluric acid in serum from malnourished children: the influence of albumin competitive binding and non esterified fatty acids. Journal Pharmacy and Pharmacology, 41, 474–480.CrossRef
53.
go back to reference Moran, C. J., & Walker, W. H. C. (1968). The binding of salicylate to human serum. Biochemical Pharmacology, 17, 153–156.PubMedCrossRef Moran, C. J., & Walker, W. H. C. (1968). The binding of salicylate to human serum. Biochemical Pharmacology, 17, 153–156.PubMedCrossRef
54.
go back to reference Zarolinski, J. F., Keresztes, N. S., Mais, R. F., & Oester, Y. T. (1974). Effect of temperature on the binding of salicylate by human serum albumin. Biochemical Pharmacology, 23, 1767–1776.CrossRef Zarolinski, J. F., Keresztes, N. S., Mais, R. F., & Oester, Y. T. (1974). Effect of temperature on the binding of salicylate by human serum albumin. Biochemical Pharmacology, 23, 1767–1776.CrossRef
55.
go back to reference Kuehl, G.E., Bigler, J., Potter, J.D., Lampe, J.W. (2006). Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. 34(2) 199-202. Kuehl, G.E., Bigler, J., Potter, J.D., Lampe, J.W. (2006). Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. 34(2) 199-202.
56.
go back to reference Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.PubMedCrossRef Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.PubMedCrossRef
57.
go back to reference Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., et al. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.PubMedCrossRef Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., et al. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.PubMedCrossRef
58.
go back to reference Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.PubMedCrossRef Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.PubMedCrossRef
59.
go back to reference Jacobs, E. J., Newton, C. C., Gapstur, S. M., & Thun, M. J. (2012). Daily aspirin use and cancer mortality in a large US cohort. Journal of the National Cancer Institute, 104(16), 1208–1217.PubMedCrossRef Jacobs, E. J., Newton, C. C., Gapstur, S. M., & Thun, M. J. (2012). Daily aspirin use and cancer mortality in a large US cohort. Journal of the National Cancer Institute, 104(16), 1208–1217.PubMedCrossRef
60.
go back to reference Ratnasinghe, L. D., Graubard, B. I., Kahle, L., Tangrea, J. A., Taylor, P. R., & Hawk, E. (2004). Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Research, 24(5B), 3177–3184.PubMed Ratnasinghe, L. D., Graubard, B. I., Kahle, L., Tangrea, J. A., Taylor, P. R., & Hawk, E. (2004). Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Research, 24(5B), 3177–3184.PubMed
61.
go back to reference Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef
62.
go back to reference Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef
63.
go back to reference Benamouzig, R., Deyra, J., Martin, A., Girard, B., Jullian, E., Piednoir, B., et al. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology, 125(2), 328–336.PubMedCrossRef Benamouzig, R., Deyra, J., Martin, A., Girard, B., Jullian, E., Piednoir, B., et al. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology, 125(2), 328–336.PubMedCrossRef
64.
go back to reference Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50.PubMedPubMedCentralCrossRef Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50.PubMedPubMedCentralCrossRef
65.
go back to reference Tocantins, L. M. (1938). The mammalian blood platelet in health and disease. Medicine, 17, 155–260.CrossRef Tocantins, L. M. (1938). The mammalian blood platelet in health and disease. Medicine, 17, 155–260.CrossRef
66.
go back to reference Besis, M. (1973). Living blood cells and their ultrastructure. New York: Springer-Verlag. Besis, M. (1973). Living blood cells and their ultrastructure. New York: Springer-Verlag.
67.
go back to reference White, J. G., & Escolar, G. (1993). Current concepts of platelet membrane response to surface activation. Platelets, 4, 175–198.PubMedCrossRef White, J. G., & Escolar, G. (1993). Current concepts of platelet membrane response to surface activation. Platelets, 4, 175–198.PubMedCrossRef
68.
go back to reference Schwertz, H., Koster, S., Kahr, W. H., Michetti, N., Kraemer, B. F., Weitz, D. A., Blaylock, R. C., Kraiss, L. W., Greinacher, A., Zimmerman, G. A., & Weyrich, A. S. (2010). Anucleate platelets generate progeny. Blood, 18, 3801–3809.CrossRef Schwertz, H., Koster, S., Kahr, W. H., Michetti, N., Kraemer, B. F., Weitz, D. A., Blaylock, R. C., Kraiss, L. W., Greinacher, A., Zimmerman, G. A., & Weyrich, A. S. (2010). Anucleate platelets generate progeny. Blood, 18, 3801–3809.CrossRef
69.
go back to reference Mitchell, W. B., Li, J. H., French, D. L., & Coller, B. S. (2006). αIIbβ3 biogenesis is controlled by engagement of αIIb in the calnexin cycle via N15-linked glycan. Blood, 107(7), 2713–2719.PubMedPubMedCentralCrossRef Mitchell, W. B., Li, J. H., French, D. L., & Coller, B. S. (2006). αIIbβ3 biogenesis is controlled by engagement of αIIb in the calnexin cycle via N15-linked glycan. Blood, 107(7), 2713–2719.PubMedPubMedCentralCrossRef
70.
go back to reference Saur, S. J., Sangkhae, V., Geddis, A. E., Kaushansky, K., & Hitchcock, L. S. (2010). Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood, 115(6), 1254–1263.PubMedPubMedCentralCrossRef Saur, S. J., Sangkhae, V., Geddis, A. E., Kaushansky, K., & Hitchcock, L. S. (2010). Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood, 115(6), 1254–1263.PubMedPubMedCentralCrossRef
71.
go back to reference Risitano, A., Beaulieu, L. M., Vitseva, O., & Freedman, J. E. (2012). Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 119, 6288–6295.PubMedPubMedCentralCrossRef Risitano, A., Beaulieu, L. M., Vitseva, O., & Freedman, J. E. (2012). Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 119, 6288–6295.PubMedPubMedCentralCrossRef
72.
go back to reference Clancy, L., & Freedman, J. E. (2014). New paradigms in thrombosis: novel mediators in biomarkers platelet RNA transfer. Journal of Thrombosis and Thrombolysis, 37(1), 12–16.PubMedPubMedCentralCrossRef Clancy, L., & Freedman, J. E. (2014). New paradigms in thrombosis: novel mediators in biomarkers platelet RNA transfer. Journal of Thrombosis and Thrombolysis, 37(1), 12–16.PubMedPubMedCentralCrossRef
73.
go back to reference Laffont, B., Courduan, A., Ple, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef Laffont, B., Courduan, A., Ple, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef
74.
go back to reference Gidlof, O., Van Der Burg, M., Ohman, J., Gilie, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121(19), 3908–3917.PubMedCrossRef Gidlof, O., Van Der Burg, M., Ohman, J., Gilie, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121(19), 3908–3917.PubMedCrossRef
75.
go back to reference Kim, J. A., Jung, Y. J., Seoh, J. Y., Woo, S. Y., Seo, J. S., & Kim, H. L. (2002). Gene expression profile of megakaryocytes from human cord blood CD34(+) cells ex vivo expanded by thrombopoietin. Stem Cells, 20(5), 402–416.PubMedCrossRef Kim, J. A., Jung, Y. J., Seoh, J. Y., Woo, S. Y., Seo, J. S., & Kim, H. L. (2002). Gene expression profile of megakaryocytes from human cord blood CD34(+) cells ex vivo expanded by thrombopoietin. Stem Cells, 20(5), 402–416.PubMedCrossRef
76.
go back to reference Senis, Y. A., Tomlinson, M. G., Garcia, A., Dumon, S., Heath, V. L., Herbert, J., Cobbold, S. P., Spalton, J. C., Ayman, S., et al. (2007). A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine kinase-based inhibitory motif protein. Molecular & Cellular Proteomics, 6(3), 548–563.CrossRef Senis, Y. A., Tomlinson, M. G., Garcia, A., Dumon, S., Heath, V. L., Herbert, J., Cobbold, S. P., Spalton, J. C., Ayman, S., et al. (2007). A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine kinase-based inhibitory motif protein. Molecular & Cellular Proteomics, 6(3), 548–563.CrossRef
77.
go back to reference Garcia, A., Senis, Y. A., & Tomlinson, M. G. (2011). Serial analysis of gene expression (SAGE) for studying the platelet and megakaryocyte transcriptome. In A. Garcia & Y. A. Senis (Eds.), Platelet proteomics: Principles, analysis and applications. Hoboken, NJ, USA: John Wiley & Sons, Inc.CrossRef Garcia, A., Senis, Y. A., & Tomlinson, M. G. (2011). Serial analysis of gene expression (SAGE) for studying the platelet and megakaryocyte transcriptome. In A. Garcia & Y. A. Senis (Eds.), Platelet proteomics: Principles, analysis and applications. Hoboken, NJ, USA: John Wiley & Sons, Inc.CrossRef
78.
go back to reference Smith, J. B., & Willis, A. L. (1971). Aspirin selectively inhibits prostaglandin production in human platelets. Nature: New Biology, 231(25), 235–237. Smith, J. B., & Willis, A. L. (1971). Aspirin selectively inhibits prostaglandin production in human platelets. Nature: New Biology, 231(25), 235–237.
79.
go back to reference Ebbeling, L., Robertson, C., McNicol, A., & Gerrard, J. M. (1992). Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood, 80, 718–723.PubMed Ebbeling, L., Robertson, C., McNicol, A., & Gerrard, J. M. (1992). Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood, 80, 718–723.PubMed
80.
go back to reference Gerrard, J. M., White, J. G., Rao, G. H. R., & Townsend, D. (1976). Localization of platelet prostaglandin production in the platelet dense tubular system. The American Journal of Pathology, 83, 283–294.PubMedPubMedCentral Gerrard, J. M., White, J. G., Rao, G. H. R., & Townsend, D. (1976). Localization of platelet prostaglandin production in the platelet dense tubular system. The American Journal of Pathology, 83, 283–294.PubMedPubMedCentral
81.
go back to reference Xu, Y., Phipps, S., Turner, M. J., & Simmons, D. L. (2010). The N-terminus of COX-1 and its effect on cyclooxygenase-1 catalytic activity. Journal of Genetics and Genomics, 37, 117–123.PubMedCrossRef Xu, Y., Phipps, S., Turner, M. J., & Simmons, D. L. (2010). The N-terminus of COX-1 and its effect on cyclooxygenase-1 catalytic activity. Journal of Genetics and Genomics, 37, 117–123.PubMedCrossRef
82.
go back to reference Hamberg, M., & Samuelsson, B. (1973). Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proceedings of the National Academy of Sciences, 70, 899–903.CrossRef Hamberg, M., & Samuelsson, B. (1973). Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proceedings of the National Academy of Sciences, 70, 899–903.CrossRef
83.
go back to reference Hamberg, M., Svensson, J., & Sammuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences, 72, 2994–2998.CrossRef Hamberg, M., Svensson, J., & Sammuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences, 72, 2994–2998.CrossRef
84.
go back to reference Knapp, H. R., Oelz, O., Sweetman, B. J., & Oates, J. A. (1978). Synthesis and metabolism of prostaglandins E2, F2α and D2 by the rat gastrointestinal tract. Stimulation by a hypertonic environment in vitro. Prostaglandins, 15, 751–757.PubMedCrossRef Knapp, H. R., Oelz, O., Sweetman, B. J., & Oates, J. A. (1978). Synthesis and metabolism of prostaglandins E2, F2α and D2 by the rat gastrointestinal tract. Stimulation by a hypertonic environment in vitro. Prostaglandins, 15, 751–757.PubMedCrossRef
85.
go back to reference Peskar, B. M. (1977). On the synthesis of prostaglandins by human gastric mucosa and its modification by drugs. Biochemistry Biophysics Acta, 487, 307–314.CrossRef Peskar, B. M. (1977). On the synthesis of prostaglandins by human gastric mucosa and its modification by drugs. Biochemistry Biophysics Acta, 487, 307–314.CrossRef
86.
go back to reference Darling, R. L., Romero, J. J., Dial, E. J., Akunda, J. K., Langenbach, R., & Lichtenberger, L. M. (2004). The effects of aspirin on gastric mucosal integrity, surface hydrophobicity, prostaglandin metabolism in cyclooxygenase knockout mice. Gastroenterology, 127, 94–104.PubMedCrossRef Darling, R. L., Romero, J. J., Dial, E. J., Akunda, J. K., Langenbach, R., & Lichtenberger, L. M. (2004). The effects of aspirin on gastric mucosal integrity, surface hydrophobicity, prostaglandin metabolism in cyclooxygenase knockout mice. Gastroenterology, 127, 94–104.PubMedCrossRef
87.
go back to reference Saniadabi, A. R., Lowe, G. D., Belch, J. J., Barbenel, J. C., & Forbes, C. D. (1984). Effect of prostacyclin (epoprostenol) on the aggregation of human platelets in whole blood in vitro. Haemostasis, 14(6), 487–494. Saniadabi, A. R., Lowe, G. D., Belch, J. J., Barbenel, J. C., & Forbes, C. D. (1984). Effect of prostacyclin (epoprostenol) on the aggregation of human platelets in whole blood in vitro. Haemostasis, 14(6), 487–494.
88.
go back to reference Rocca, B., Secchiero, P., Ciabattoni, G., Ranelleti, F. O., Catani, L., Guidotti, L., Melloni, E., Maggiano, N., Zauli, G., & Patrono, C. (2002). Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proceedings of the National Academy of Sciences, 99(11), 7634–7639.CrossRef Rocca, B., Secchiero, P., Ciabattoni, G., Ranelleti, F. O., Catani, L., Guidotti, L., Melloni, E., Maggiano, N., Zauli, G., & Patrono, C. (2002). Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proceedings of the National Academy of Sciences, 99(11), 7634–7639.CrossRef
89.
go back to reference Zatterberg, E., Lundberg, L. G., & Palmblad, J. (2003). Expression of Cox-2, tie-2 and glycodelin by megakaryocytes in patients with chronic myeloid leukemia and polycythaemia vera. British Journal of Haematology, 121, 497–499.CrossRef Zatterberg, E., Lundberg, L. G., & Palmblad, J. (2003). Expression of Cox-2, tie-2 and glycodelin by megakaryocytes in patients with chronic myeloid leukemia and polycythaemia vera. British Journal of Haematology, 121, 497–499.CrossRef
90.
go back to reference Hu, Q., Cho, M. S., Thiagarajan, P., Aung, F. M., Sood, A. K., & Afshar-Kharghan, V. (2016). A small amount of cyclooxygenase 2 (COX2) is constitutively expressed in platelets. Platelets, 28(1), 99–102.PubMedCrossRef Hu, Q., Cho, M. S., Thiagarajan, P., Aung, F. M., Sood, A. K., & Afshar-Kharghan, V. (2016). A small amount of cyclooxygenase 2 (COX2) is constitutively expressed in platelets. Platelets, 28(1), 99–102.PubMedCrossRef
91.
go back to reference Mulugeta, S., Suzuki, T., Hernandez, N. T., Griesser, M., Boeglin, W. E., & Schneider, C. (2010). Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2. The Journal of Lipid Research, 51(3), 575–585.PubMedCrossRef Mulugeta, S., Suzuki, T., Hernandez, N. T., Griesser, M., Boeglin, W. E., & Schneider, C. (2010). Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2. The Journal of Lipid Research, 51(3), 575–585.PubMedCrossRef
92.
go back to reference Rowlinson, S. W., Crews, B. C., Goodwin, D. C., Schneider, C., Gierse, J. K., & Marnett, L. J. (2000). Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2. Why acetylated COX-1 does not synthesize 15-(R)-hete. Journal of Biology and Chemistry, 275(9), 6586–6591.CrossRef Rowlinson, S. W., Crews, B. C., Goodwin, D. C., Schneider, C., Gierse, J. K., & Marnett, L. J. (2000). Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2. Why acetylated COX-1 does not synthesize 15-(R)-hete. Journal of Biology and Chemistry, 275(9), 6586–6591.CrossRef
93.
go back to reference Blanco, F. J., Guitian, R., Moreno, J., De Toro, F. J., & Galdo, F. (1999). Effect of anti-inflammatory drugs on COX-1 and COX-2 activity in human articular chondrocytes. The Journal of Rheumatology, 26(6), 1366–1373.PubMed Blanco, F. J., Guitian, R., Moreno, J., De Toro, F. J., & Galdo, F. (1999). Effect of anti-inflammatory drugs on COX-1 and COX-2 activity in human articular chondrocytes. The Journal of Rheumatology, 26(6), 1366–1373.PubMed
94.
go back to reference Sharma, N. P., Dong, L., Yuan, C., et al. (2010). Asymmetric acetylation of the cycloosygenase-2 homodymer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acid. Molecular Pharmacology, 77, 979–986.PubMedPubMedCentralCrossRef Sharma, N. P., Dong, L., Yuan, C., et al. (2010). Asymmetric acetylation of the cycloosygenase-2 homodymer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acid. Molecular Pharmacology, 77, 979–986.PubMedPubMedCentralCrossRef
95.
go back to reference Dovizio, M., Bruno, A., Tacconelli, S., & Patrignani, P. (2013). Mode of action of aspirin as a chemopreventive agent. Prospects for Chemoprevention and Colorectal Neopolasia., 31–65. Dovizio, M., Bruno, A., Tacconelli, S., & Patrignani, P. (2013). Mode of action of aspirin as a chemopreventive agent. Prospects for Chemoprevention and Colorectal Neopolasia., 31–65.
96.
go back to reference Gockcen, M., & Yunis, E. (1963). Fibrinogen as part of platelet structure. Nature (London), 200–590. Gockcen, M., & Yunis, E. (1963). Fibrinogen as part of platelet structure. Nature (London), 200–590.
97.
go back to reference Nachman, R. L., Marcus, A. J., & Zucker-Franklin, D. (1964). Subcellular localization of platelet fibrinogen. Blood, 24, 853. Nachman, R. L., Marcus, A. J., & Zucker-Franklin, D. (1964). Subcellular localization of platelet fibrinogen. Blood, 24, 853.
98.
go back to reference Nachman, R. L., Marcus, A. J., & Zucker-Franklin, D. (1967). Immunologic studies of proteins associated with subcellular fractions of normal human platelets. The Journal of Laboratory and Clinical Medicine, 69, 651–658.PubMed Nachman, R. L., Marcus, A. J., & Zucker-Franklin, D. (1967). Immunologic studies of proteins associated with subcellular fractions of normal human platelets. The Journal of Laboratory and Clinical Medicine, 69, 651–658.PubMed
99.
go back to reference Bjornsson, T. C., Schneider, D. E., & Berger, H. (1988). Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. The Journal of Pharmacology and Experimental Therapeutics, 250, 154–161. Bjornsson, T. C., Schneider, D. E., & Berger, H. (1988). Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. The Journal of Pharmacology and Experimental Therapeutics, 250, 154–161.
100.
go back to reference Pedersen, O. S., Kase, B. F., & Reichelt, K. L. (1994). Influence of human plasma or serum albumin on ADP- or vasopressin-induced calcium increases in human platelets. Scandinavian Journal of Clinical and Laboratory Investigation, 54(1), 67–74.PubMedCrossRef Pedersen, O. S., Kase, B. F., & Reichelt, K. L. (1994). Influence of human plasma or serum albumin on ADP- or vasopressin-induced calcium increases in human platelets. Scandinavian Journal of Clinical and Laboratory Investigation, 54(1), 67–74.PubMedCrossRef
101.
go back to reference Bridges, K. R., Schmidt, G. J., Jensen, M., Cerami, A., & Bunn, H. F. (1975). The acetylation of hemoglobin by aspirin. In vitro and in vivo. The Journal of Clinical Investigation, 56(1), 201–207.PubMedPubMedCentralCrossRef Bridges, K. R., Schmidt, G. J., Jensen, M., Cerami, A., & Bunn, H. F. (1975). The acetylation of hemoglobin by aspirin. In vitro and in vivo. The Journal of Clinical Investigation, 56(1), 201–207.PubMedPubMedCentralCrossRef
102.
go back to reference Finamore, F., Priego-Capote, F., Nolli, S., Fontana, P., & Sanchez, J. C. (2015). Aspirin mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation. EuPA Open Proteomics, 8, 116–127.CrossRef Finamore, F., Priego-Capote, F., Nolli, S., Fontana, P., & Sanchez, J. C. (2015). Aspirin mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation. EuPA Open Proteomics, 8, 116–127.CrossRef
103.
go back to reference Singhal, R., Annarapu, G. K., Pandey, A., Chawla, S., Ojha, A., Gupta, A., et al. (2015). Hemoglobin interaction with GP1ba induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis. Haematologica, 100(12), 1526–1533.PubMedPubMedCentralCrossRef Singhal, R., Annarapu, G. K., Pandey, A., Chawla, S., Ojha, A., Gupta, A., et al. (2015). Hemoglobin interaction with GP1ba induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis. Haematologica, 100(12), 1526–1533.PubMedPubMedCentralCrossRef
104.
go back to reference Herter, J. M., Rossaint, J., & Zarbock, A. (2014). Platelets in inflammation and immunity. Journal of Thrombosis and Haemostasis : JTH., 12, 1764–1775.PubMedCrossRef Herter, J. M., Rossaint, J., & Zarbock, A. (2014). Platelets in inflammation and immunity. Journal of Thrombosis and Haemostasis : JTH., 12, 1764–1775.PubMedCrossRef
105.
go back to reference Damas, J. K., Waehre, T., Yndestad, A., Otterdal, K., Hognestad, A., Solum, N. O., Gullestad, L., Froland, S. S., & Aukrust, P. (2003). Interleukin-7-mediated inflammation in unstable angina: possible role of chemokines and platelets. Circulation, 107, 2670–2676.PubMedCrossRef Damas, J. K., Waehre, T., Yndestad, A., Otterdal, K., Hognestad, A., Solum, N. O., Gullestad, L., Froland, S. S., & Aukrust, P. (2003). Interleukin-7-mediated inflammation in unstable angina: possible role of chemokines and platelets. Circulation, 107, 2670–2676.PubMedCrossRef
106.
go back to reference Niu, N., & Qin, X. (2013). New insights into IL-7 signaling pathways during early and late T-cell development. Cell Molecular Immunology, 10(3), 187–189.CrossRef Niu, N., & Qin, X. (2013). New insights into IL-7 signaling pathways during early and late T-cell development. Cell Molecular Immunology, 10(3), 187–189.CrossRef
107.
go back to reference Akashi, I., Kondo, M., & Weissman, I. L. (1998). Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunological Reviews, 165, 13–28.PubMedCrossRef Akashi, I., Kondo, M., & Weissman, I. L. (1998). Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunological Reviews, 165, 13–28.PubMedCrossRef
108.
go back to reference Capitini, C. M., Chisti, A. A., & Mackrall, C. L. (2009). Modulating T cell homeostasis with IL-7: preclinical and clinical studies. Journal of Internal Medicine, 262(2), 141–153.CrossRef Capitini, C. M., Chisti, A. A., & Mackrall, C. L. (2009). Modulating T cell homeostasis with IL-7: preclinical and clinical studies. Journal of Internal Medicine, 262(2), 141–153.CrossRef
109.
go back to reference Nadar, S., Blann, A. D., & Lip, G. Y. (2006). Effects of aspirin on intra-platelet vascular endothelial growth factor, angiopoietin-1, and p-selectin levels in hypertensive patients. American Journal of Hypertension . , 19, 970–977 discussion 978.PubMedCrossRef Nadar, S., Blann, A. D., & Lip, G. Y. (2006). Effects of aspirin on intra-platelet vascular endothelial growth factor, angiopoietin-1, and p-selectin levels in hypertensive patients. American Journal of Hypertension . , 19, 970–977 discussion 978.PubMedCrossRef
110.
go back to reference Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390.PubMedPubMedCentralCrossRef Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390.PubMedPubMedCentralCrossRef
111.
go back to reference Coppinger, J. A., O'Connor, R., Wynne, K., Flanagan, M., Sullivan, M., Maguire, P. B., Fitzgerald, D. J., & Cagney, G. (2007). Moderation of the platelet releasate response by aspirin. Blood, 109, 4786–4792.PubMedCrossRef Coppinger, J. A., O'Connor, R., Wynne, K., Flanagan, M., Sullivan, M., Maguire, P. B., Fitzgerald, D. J., & Cagney, G. (2007). Moderation of the platelet releasate response by aspirin. Blood, 109, 4786–4792.PubMedCrossRef
112.
go back to reference Sanset, P. M. (2012). CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer. Thrombosis Research, 129(Suppl 1), S97–100.CrossRef Sanset, P. M. (2012). CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer. Thrombosis Research, 129(Suppl 1), S97–100.CrossRef
113.
go back to reference De Winter, P., Leoni, P., & Abraham, D. (2008). Connective tissue growth factor. Structure-function relationships of a mosaic, multifunctional protein. Growth Factors, 26(2), 80–91.PubMedCrossRef De Winter, P., Leoni, P., & Abraham, D. (2008). Connective tissue growth factor. Structure-function relationships of a mosaic, multifunctional protein. Growth Factors, 26(2), 80–91.PubMedCrossRef
114.
go back to reference Brigstock, D. R. (2002). Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis, 5(3), 153–165.PubMedCrossRef Brigstock, D. R. (2002). Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis, 5(3), 153–165.PubMedCrossRef
115.
go back to reference Marimuthu, S., Chivukula, R. S., Alfonso, L. F., Moridani, M., Hagen, F. K., & Bhat, G. J. (2011). Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: identification of novel targets. International Journal Of Oncology., 39, 1273–1283.PubMed Marimuthu, S., Chivukula, R. S., Alfonso, L. F., Moridani, M., Hagen, F. K., & Bhat, G. J. (2011). Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: identification of novel targets. International Journal Of Oncology., 39, 1273–1283.PubMed
116.
go back to reference Ai, G., Dachineni, R., Kumar, D. R., Marimuthu, S., Alfonso, L. F., & Bhat, G. J. (2016). Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine., 37, 6007–6016.CrossRef Ai, G., Dachineni, R., Kumar, D. R., Marimuthu, S., Alfonso, L. F., & Bhat, G. J. (2016). Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine., 37, 6007–6016.CrossRef
117.
go back to reference Burkhart, J. M., Vaudel, M., Gambaryan, S., Radau, S., Walter, U., Martens, L., Geiger, J., Sickmann, A., & Zahedi, R. P. (2012). The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood, 120, e73–e82.PubMedCrossRef Burkhart, J. M., Vaudel, M., Gambaryan, S., Radau, S., Walter, U., Martens, L., Geiger, J., Sickmann, A., & Zahedi, R. P. (2012). The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood, 120, e73–e82.PubMedCrossRef
118.
go back to reference Bateman, L. A., Zaro, B. W., Miller, S. M., & Pratt, M. R. (2013). An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. JACS., 135, 14568–14573.CrossRef Bateman, L. A., Zaro, B. W., Miller, S. M., & Pratt, M. R. (2013). An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. JACS., 135, 14568–14573.CrossRef
119.
go back to reference Wang, J., Zhang, C. J., Zhang, J., He, Y., Lee, Y. M., Chen, S., Lim, T. K., Ng, S., Shen, H. M., & Lin, Q. (2015). Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports, 5, 7896.PubMedPubMedCentralCrossRef Wang, J., Zhang, C. J., Zhang, J., He, Y., Lee, Y. M., Chen, S., Lim, T. K., Ng, S., Shen, H. M., & Lin, Q. (2015). Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports, 5, 7896.PubMedPubMedCentralCrossRef
120.
go back to reference Ouseph, M. M., Huang, Y., Banerjee, M., Joshi, S., MacDonald, L., Zhong, Y., Liu, H., Li, X., Xiang, B., Zhang, G., et al. (2015). Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood, 126, 1224–1233.PubMedPubMedCentralCrossRef Ouseph, M. M., Huang, Y., Banerjee, M., Joshi, S., MacDonald, L., Zhong, Y., Liu, H., Li, X., Xiang, B., Zhang, G., et al. (2015). Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood, 126, 1224–1233.PubMedPubMedCentralCrossRef
121.
go back to reference Smolkava, K., Jezek, P. (2012). The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. International Journal of Cell Biology. Article ID 273947, 12 pages. Smolkava, K., Jezek, P. (2012). The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. International Journal of Cell Biology. Article ID 273947, 12 pages.
122.
go back to reference Weinert, B. T., Scholz, C., Wagner, S., Iesmantavicius, V., Su, D., Daniel, J. A., & Chouhary, C. (2013). Lysine succinylation is a frequent occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Reports, 4, 842–851.PubMedCrossRef Weinert, B. T., Scholz, C., Wagner, S., Iesmantavicius, V., Su, D., Daniel, J. A., & Chouhary, C. (2013). Lysine succinylation is a frequent occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Reports, 4, 842–851.PubMedCrossRef
123.
go back to reference Levonen, A. L., Hill, B. G., Kansanen, E., Zhang, J., & Darley-Usmar, V. M. (2014). Redox regulation of antioxidants, autophagy and the response to stress: implications for electrophile therapeutics. Free Radical Biology & Medicine, 71, 196–207.CrossRef Levonen, A. L., Hill, B. G., Kansanen, E., Zhang, J., & Darley-Usmar, V. M. (2014). Redox regulation of antioxidants, autophagy and the response to stress: implications for electrophile therapeutics. Free Radical Biology & Medicine, 71, 196–207.CrossRef
124.
go back to reference Tatham, M. H., Cole, C., Scullion, P., Wilkie, R., Westwood, N. J., Stark, L. A., & Hay, R. T. (2017). A proteomic approach to analyze the aspirin-mediated lysine acetylome. Molecular & Cellular Proteomics : MCP., 16, 310–326.PubMedCrossRef Tatham, M. H., Cole, C., Scullion, P., Wilkie, R., Westwood, N. J., Stark, L. A., & Hay, R. T. (2017). A proteomic approach to analyze the aspirin-mediated lysine acetylome. Molecular & Cellular Proteomics : MCP., 16, 310–326.PubMedCrossRef
125.
go back to reference Sabari, B. R., Zhang, D., Allis, C. D., & Zhao, Y. (2017). Metabolic regulation of gene expression through histone acylation. Nature Reviews. Molecular Cell Biology, 18, 90–101.PubMedCrossRef Sabari, B. R., Zhang, D., Allis, C. D., & Zhao, Y. (2017). Metabolic regulation of gene expression through histone acylation. Nature Reviews. Molecular Cell Biology, 18, 90–101.PubMedCrossRef
126.
go back to reference McRedmond, J. P., Park, S. D., Reilly, D. F., Coppinger, J. A., Maguire, P. B., Shields, D. C., & Fitzgerald, D. J. (2004). Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Molecular & Cellular Proteomics : MCP., 3, 133–144.CrossRef McRedmond, J. P., Park, S. D., Reilly, D. F., Coppinger, J. A., Maguire, P. B., Shields, D. C., & Fitzgerald, D. J. (2004). Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Molecular & Cellular Proteomics : MCP., 3, 133–144.CrossRef
127.
go back to reference Reuter, H., & Gross, R. (1978). Platelet metabolism. Supplement Thrombosis Hemostasis 1, 63, 87–95. Reuter, H., & Gross, R. (1978). Platelet metabolism. Supplement Thrombosis Hemostasis 1, 63, 87–95.
128.
go back to reference Chacko, B. K., Kramer, P. A., Ravi, S., Johnson, M. S., Hardy, R. W., Ballinger, S. W., & Darley-Usmar, V. M. (2013). Methods for defining distinct bioenergetics profiles in platelet, lymphocytes, monocytes and neutrophils, and the oxidative burst for human blood. Journal of Technical Methodology and Pathology, 93, 690–700. Chacko, B. K., Kramer, P. A., Ravi, S., Johnson, M. S., Hardy, R. W., Ballinger, S. W., & Darley-Usmar, V. M. (2013). Methods for defining distinct bioenergetics profiles in platelet, lymphocytes, monocytes and neutrophils, and the oxidative burst for human blood. Journal of Technical Methodology and Pathology, 93, 690–700.
129.
go back to reference Choudhary, C., et al. (2009). Lysine Acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834–840.PubMedCrossRef Choudhary, C., et al. (2009). Lysine Acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834–840.PubMedCrossRef
130.
go back to reference Kim, S. C., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell, 23, 607–618.PubMedCrossRef Kim, S. C., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell, 23, 607–618.PubMedCrossRef
132.
go back to reference Hallows, W. C., et al. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proceedings of the National Academy of Sciences, 103, 10230–10235.CrossRef Hallows, W. C., et al. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proceedings of the National Academy of Sciences, 103, 10230–10235.CrossRef
134.
go back to reference Kim, E. Y., Kim, W. K., Kang, H. J., Kim, J. H., et al. (2012). Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. Journal of Lipid Research, 53(9), 1864–1876.PubMedPubMedCentralCrossRef Kim, E. Y., Kim, W. K., Kang, H. J., Kim, J. H., et al. (2012). Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. Journal of Lipid Research, 53(9), 1864–1876.PubMedPubMedCentralCrossRef
135.
go back to reference Schlicker, C., Gertz, M., Papatheodoru, P., Kachholz, B., et al. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of Molecular Biology, 382(3), 790–801.PubMedCrossRef Schlicker, C., Gertz, M., Papatheodoru, P., Kachholz, B., et al. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of Molecular Biology, 382(3), 790–801.PubMedCrossRef
136.
go back to reference Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences, 61(1), 46–52.CrossRef Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences, 61(1), 46–52.CrossRef
137.
go back to reference Camerer, E., Qazi, A. A., Duong, D. N., et al. (2004). Platelets protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef Camerer, E., Qazi, A. A., Duong, D. N., et al. (2004). Platelets protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef
138.
go back to reference Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impending natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185.PubMedCrossRef Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impending natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185.PubMedCrossRef
139.
go back to reference Palumbo, J. S., & Degen, J. L. (2007). Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thrombosis Research, 120(Suppl. 2), S22–S28.PubMedCrossRef Palumbo, J. S., & Degen, J. L. (2007). Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thrombosis Research, 120(Suppl. 2), S22–S28.PubMedCrossRef
140.
go back to reference Biggerstaff, J. P., Seth, N., Amirkhosravi, A., Amaya, N., Fogarty, S., Meyer, T. V., et al. (1999). Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clinical & Experimental Metastasis, 17(8), 723–730.CrossRef Biggerstaff, J. P., Seth, N., Amirkhosravi, A., Amaya, N., Fogarty, S., Meyer, T. V., et al. (1999). Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clinical & Experimental Metastasis, 17(8), 723–730.CrossRef
141.
go back to reference Kakkar, A. K., DeRuvo, N., Chinswangwatanakul, V., Tebbutt, S., & Williamson, R. C. (1995). Extrinsic-pathway activation in cancer with high factor VIIa and tissue factor. Lancet, 346(8981), 1004–1005.PubMedCrossRef Kakkar, A. K., DeRuvo, N., Chinswangwatanakul, V., Tebbutt, S., & Williamson, R. C. (1995). Extrinsic-pathway activation in cancer with high factor VIIa and tissue factor. Lancet, 346(8981), 1004–1005.PubMedCrossRef
142.
go back to reference Ruf, W., & Mueller, B. M. (2006). Thrombin generation and he pathogenesis of cancer. Seminars in Thrombosis and Hemostasis, 32(Suppl.1), 61–68.PubMedCrossRef Ruf, W., & Mueller, B. M. (2006). Thrombin generation and he pathogenesis of cancer. Seminars in Thrombosis and Hemostasis, 32(Suppl.1), 61–68.PubMedCrossRef
143.
go back to reference Adams, G. N., Rosenfeldt, L., Frederick, M., Miller, W., Waltz, D., et al. (2015). Colon Cancer growth and dissemination relies upon thrombin, stromal PAR-1 and fibrinogen. Cancer Research, 75(19), 4235–4243.PubMedPubMedCentralCrossRef Adams, G. N., Rosenfeldt, L., Frederick, M., Miller, W., Waltz, D., et al. (2015). Colon Cancer growth and dissemination relies upon thrombin, stromal PAR-1 and fibrinogen. Cancer Research, 75(19), 4235–4243.PubMedPubMedCentralCrossRef
144.
go back to reference Mueller, B. M., Reisfeld, R. A., Edgington, T. S., & Ruf, W. (1992). Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proceedings of the National Academy of Sciences, 89(24), 11832–11836.CrossRef Mueller, B. M., Reisfeld, R. A., Edgington, T. S., & Ruf, W. (1992). Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proceedings of the National Academy of Sciences, 89(24), 11832–11836.CrossRef
145.
go back to reference Nierodzik, M. L., Bain, R. M., Liu, L. X., Shivji, M., Takeshita, K., & Karpatkin, S. (1996). Presence of the seven transmembrane thrombin receptor on human tumor cells: effect of activation on tumor adhesion to platelets and tumor tyrosine phosphorylation. British Journal of Haematology, 92(2), 452–457.PubMedCrossRef Nierodzik, M. L., Bain, R. M., Liu, L. X., Shivji, M., Takeshita, K., & Karpatkin, S. (1996). Presence of the seven transmembrane thrombin receptor on human tumor cells: effect of activation on tumor adhesion to platelets and tumor tyrosine phosphorylation. British Journal of Haematology, 92(2), 452–457.PubMedCrossRef
146.
go back to reference Soon-Cho, M., Bottsford-Miller, J., Vasquez, H. G., et al. (2012). Platelets increase the proliferation of ovarian cancer cells. Blood, 120(24), 4869–4872.CrossRef Soon-Cho, M., Bottsford-Miller, J., Vasquez, H. G., et al. (2012). Platelets increase the proliferation of ovarian cancer cells. Blood, 120(24), 4869–4872.CrossRef
147.
go back to reference Guillem-Llobat, P., Dovizio, M., Bruno, A., Ricciotti, E., Cufino, V., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef Guillem-Llobat, P., Dovizio, M., Bruno, A., Ricciotti, E., Cufino, V., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef
148.
go back to reference Lichtenberger, L., Fang, D., Bick, R. J., Boindexter, B. J., Phan, T., et al. (2016). Unlocking aspirin chempreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Previous Research, 10(2), 142–151.CrossRef Lichtenberger, L., Fang, D., Bick, R. J., Boindexter, B. J., Phan, T., et al. (2016). Unlocking aspirin chempreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Previous Research, 10(2), 142–151.CrossRef
149.
go back to reference Huang, Y., Lichtenberger, L., Taylor, M., Bottsford-Miller, J. N., Haemmerle, M., et al. (2016). Antitumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Molecular Cancer Therapy., 15(12), 2894–2904.CrossRef Huang, Y., Lichtenberger, L., Taylor, M., Bottsford-Miller, J. N., Haemmerle, M., et al. (2016). Antitumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Molecular Cancer Therapy., 15(12), 2894–2904.CrossRef
Metadata
Title
Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention
Authors
Argentina Ornelas
Niki Zacharias-Millward
David G. Menter
Jennifer S. Davis
Lenard Lichtenberger
David Hawke
Ernest Hawk
Eduardo Vilar
Pratip Bhattacharya
Steven Millward
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9675-z

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine