Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

01-06-2017 | NON-THEMATIC REVIEW

Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies

Authors: Sonia Gandhi, Sudhir Chandna

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

The disease-free survival following radiotherapy is often limited by the development of second/secondary cancers. This significant impediment to effective cancer treatment implicated even in the modern-day radiotherapy needs to be countered effectively. Critical analysis reveals that besides achieving effective tumor control, radiotherapy elicits certain cellular and systemic inflammatory events in tumor infiltrate, which remain relatively stable and tend to facilitate “in-field” or “out of field” oncogenesis in due course of time. Acute pro-inflammatory cytokines generated as a result of radiation-induced oxidative insult and DNA damage induce genetic instability that contributes to tumor heterogeneity and plasticity. The reverberating crosstalks between radiation-targeted tumor and its microenvironment in turn initiate inflammatory loops that feedback the immune system to manifest as systemic consequences. An “inflammatory switchover” within the tumor microenvironment is thus induced by cumulative radiation exposure, initiating pro-tumor events that can severely limit the outcome of radiotherapy. Various pro-survival tumorigenic pathways activated as a result regulate radiation-induced hypoxia, ECM remodeling, angiogenesis/vasculogenesis, and immune suppression/evasion within the tumor microenvironment. NF-κB, HIF and STAT are identified as central regulating mediators among others that orchestrate inflammatory switchover from apoptosis-mediated tumor surveillance to radiation-induced carcinogenesis. Radiation-induced interleukins stimulate recruited macrophages and endothelial cells to promote intravasation, which is further aided by release of chemokines favoring extravasation and secondary site lesions. We hence propose that delineating the inflammatory signaling network emanating from irradiation of complex tumor tissue is critical for devising suitable therapeutic strategies to prevent post-radiotherapy second cancers or metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Travis, L. B., Demark Wahnefried, W., Allan, J. M., Wood, M. E., & Ng, A. K. (2013). Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nature Reviews. Clinical Oncology, 10(5), 289–301. doi:10.1038/nrclinonc.2013.41.PubMedCrossRef Travis, L. B., Demark Wahnefried, W., Allan, J. M., Wood, M. E., & Ng, A. K. (2013). Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nature Reviews. Clinical Oncology, 10(5), 289–301. doi:10.​1038/​nrclinonc.​2013.​41.PubMedCrossRef
2.
go back to reference Ringborg, U., Bergqvist, D., Brorsson, B., Cavallin-Stahl, E., Ceberg, J., Einhorn, N., et al. (2003). The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001—summary and conclusions. Acta Oncologica, 42(5–6), 357–365.PubMedCrossRef Ringborg, U., Bergqvist, D., Brorsson, B., Cavallin-Stahl, E., Ceberg, J., Einhorn, N., et al. (2003). The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001—summary and conclusions. Acta Oncologica, 42(5–6), 357–365.PubMedCrossRef
4.
go back to reference Berrington de Gonzalez, A., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., et al. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. The Lancet Oncology, 12(4), 353–360. doi:10.1016/S1470-2045(11)70061-4.PubMedCrossRef Berrington de Gonzalez, A., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., et al. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. The Lancet Oncology, 12(4), 353–360. doi:10.​1016/​S1470-2045(11)70061-4.PubMedCrossRef
5.
go back to reference Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., et al. (1994). Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiation Research, 137(2 Suppl), S17–S67.PubMedCrossRef Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., et al. (1994). Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958-1987. Radiation Research, 137(2 Suppl), S17–S67.PubMedCrossRef
6.
go back to reference Preston, D. L., Kusumi, S., Tomonaga, M., Izumi, S., Ron, E., Kuramoto, A., et al. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiation Research, 137(2 Suppl), S68–S97.PubMedCrossRef Preston, D. L., Kusumi, S., Tomonaga, M., Izumi, S., Ron, E., Kuramoto, A., et al. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiation Research, 137(2 Suppl), S68–S97.PubMedCrossRef
7.
go back to reference Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., & Bouffler, S. (2009). Assessing cancer risks of low-dose radiation. Nature Reviews. Cancer, 9(8), 596–604. doi:10.1038/nrc2677.PubMedCrossRef Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., & Bouffler, S. (2009). Assessing cancer risks of low-dose radiation. Nature Reviews. Cancer, 9(8), 596–604. doi:10.​1038/​nrc2677.PubMedCrossRef
8.
go back to reference Robison, L. L., Armstrong, G. T., Boice, J. D., Chow, E. J., Davies, S. M., Donaldson, S. S., et al. (2009). The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. Journal of Clinical Oncology, 27(14), 2308–2318. doi:10.1200/JCO.2009.22.3339.PubMedPubMedCentralCrossRef Robison, L. L., Armstrong, G. T., Boice, J. D., Chow, E. J., Davies, S. M., Donaldson, S. S., et al. (2009). The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. Journal of Clinical Oncology, 27(14), 2308–2318. doi:10.​1200/​JCO.​2009.​22.​3339.PubMedPubMedCentralCrossRef
9.
10.
go back to reference Friedman, D. L., Whitton, J., Leisenring, W., Mertens, A. C., Hammond, S., Stovall, M., et al. (2010). Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 102(14), 1083–1095. doi:10.1093/jnci/djq238.PubMedPubMedCentralCrossRef Friedman, D. L., Whitton, J., Leisenring, W., Mertens, A. C., Hammond, S., Stovall, M., et al. (2010). Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 102(14), 1083–1095. doi:10.​1093/​jnci/​djq238.PubMedPubMedCentralCrossRef
12.
go back to reference Smith, G. (2014). UNSCEAR 2013 Report. Volume I: Report to the General Assembly, Annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. Journal of Radiological Protection, 34(3), 725–727. doi:10.1088/0952-4746/34/3/B01.PubMedCrossRef Smith, G. (2014). UNSCEAR 2013 Report. Volume I: Report to the General Assembly, Annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. Journal of Radiological Protection, 34(3), 725–727. doi:10.​1088/​0952-4746/​34/​3/​B01.PubMedCrossRef
13.
go back to reference Mancuso, M., Pasquali, E., Leonardi, S., Tanori, M., Rebessi, S., Di Majo, V., et al. (2008). Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12445–12450. doi:10.1073/pnas.0804186105.PubMedPubMedCentralCrossRef Mancuso, M., Pasquali, E., Leonardi, S., Tanori, M., Rebessi, S., Di Majo, V., et al. (2008). Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12445–12450. doi:10.​1073/​pnas.​0804186105.PubMedPubMedCentralCrossRef
14.
go back to reference Brenner, D. J., Little, J. B., & Sachs, R. K. (2001). The bystander effect in radiation oncogenesis: II. A quantitative model. Radiation Research, 155(3), 402–408.PubMedCrossRef Brenner, D. J., Little, J. B., & Sachs, R. K. (2001). The bystander effect in radiation oncogenesis: II. A quantitative model. Radiation Research, 155(3), 402–408.PubMedCrossRef
16.
go back to reference Palm, A., & Johansson, K. A. (2007). A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncologica, 46(4), 462–473. doi:10.1080/02841860701218626.PubMedCrossRef Palm, A., & Johansson, K. A. (2007). A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncologica, 46(4), 462–473. doi:10.​1080/​0284186070121862​6.PubMedCrossRef
17.
go back to reference Ghosh, S., Kumar, A., Tripathi, R. P., & Chandna, S. (2014). Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis, 35(2), 383–395. doi:10.1093/carcin/bgt303.PubMedCrossRef Ghosh, S., Kumar, A., Tripathi, R. P., & Chandna, S. (2014). Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis, 35(2), 383–395. doi:10.​1093/​carcin/​bgt303.PubMedCrossRef
20.
go back to reference Han, E. Y., Paudel, N., Sung, J., Yoon, M., Chung, W. K., & Kim, D. W. (2016). Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget, 7(16), 22960–22969. doi:10.18632/oncotarget.8392.PubMedPubMedCentralCrossRef Han, E. Y., Paudel, N., Sung, J., Yoon, M., Chung, W. K., & Kim, D. W. (2016). Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget, 7(16), 22960–22969. doi:10.​18632/​oncotarget.​8392.PubMedPubMedCentralCrossRef
22.
go back to reference Hall, E. J., & Wuu, C. S. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.PubMedCrossRef Hall, E. J., & Wuu, C. S. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.PubMedCrossRef
23.
go back to reference Chargari, C., Goodman, K. A., Diallo, I., Guy, J. B., Rancoule, C., Cosset, J. M., et al. (2016). Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models? Cancer Metastasis Reviews, 35(2), 277–288. doi:10.1007/s10555-016-9616-2.PubMedCrossRef Chargari, C., Goodman, K. A., Diallo, I., Guy, J. B., Rancoule, C., Cosset, J. M., et al. (2016). Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models? Cancer Metastasis Reviews, 35(2), 277–288. doi:10.​1007/​s10555-016-9616-2.PubMedCrossRef
24.
26.
go back to reference Golding, S. E., Rosenberg, E., Neill, S., Dent, P., Povirk, L. F., & Valerie, K. (2007). Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Research, 67(3), 1046–1053. doi:10.1158/0008-5472.CAN-06-2371.PubMedCrossRef Golding, S. E., Rosenberg, E., Neill, S., Dent, P., Povirk, L. F., & Valerie, K. (2007). Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Research, 67(3), 1046–1053. doi:10.​1158/​0008-5472.​CAN-06-2371.PubMedCrossRef
27.
go back to reference Boucher, M. J., Morisset, J., Vachon, P. H., Reed, J. C., Laine, J., & Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. Journal of Cellular Biochemistry, 79(3), 355–369.PubMedCrossRef Boucher, M. J., Morisset, J., Vachon, P. H., Reed, J. C., Laine, J., & Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. Journal of Cellular Biochemistry, 79(3), 355–369.PubMedCrossRef
28.
go back to reference Carapancea, M., Cosaceanu, D., Budiu, R., Kwiecinska, A., Tataranu, L., Ciubotaru, V., et al. (2007). Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. Journal of Neuro-Oncology, 85(3), 245–254. doi:10.1007/s11060-007-9417-0.PubMedCrossRef Carapancea, M., Cosaceanu, D., Budiu, R., Kwiecinska, A., Tataranu, L., Ciubotaru, V., et al. (2007). Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. Journal of Neuro-Oncology, 85(3), 245–254. doi:10.​1007/​s11060-007-9417-0.PubMedCrossRef
29.
go back to reference Toulany, M., Kehlbach, R., Florczak, U., Sak, A., Wang, S., Chen, J., et al. (2008). Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular Cancer Therapeutics, 7(7), 1772–1781. doi:10.1158/1535-7163.MCT-07-2200.PubMedCrossRef Toulany, M., Kehlbach, R., Florczak, U., Sak, A., Wang, S., Chen, J., et al. (2008). Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular Cancer Therapeutics, 7(7), 1772–1781. doi:10.​1158/​1535-7163.​MCT-07-2200.PubMedCrossRef
30.
go back to reference Lorimore, S. A., & Wright, E. G. (2003). Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. International Journal of Radiation Biology, 79(1), 15–25.PubMedCrossRef Lorimore, S. A., & Wright, E. G. (2003). Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. International Journal of Radiation Biology, 79(1), 15–25.PubMedCrossRef
31.
go back to reference Mukherjee, D., Coates, P. J., Lorimore, S. A., & Wright, E. G. (2012). The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiation Research, 177(1), 18–24.PubMedCrossRef Mukherjee, D., Coates, P. J., Lorimore, S. A., & Wright, E. G. (2012). The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiation Research, 177(1), 18–24.PubMedCrossRef
35.
36.
go back to reference Koturbash, I., Rugo, R. E., Hendricks, C. A., Loree, J., Thibault, B., Kutanzi, K., et al. (2006). Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene, 25(31), 4267–4275. doi:10.1038/sj.onc.1209467.PubMedCrossRef Koturbash, I., Rugo, R. E., Hendricks, C. A., Loree, J., Thibault, B., Kutanzi, K., et al. (2006). Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene, 25(31), 4267–4275. doi:10.​1038/​sj.​onc.​1209467.PubMedCrossRef
37.
go back to reference Wormann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Gorgulu, K., et al. (2016). Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151(1), 180–193 e112. doi:10.1053/j.gastro.2016.03.010.PubMedCrossRef Wormann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Gorgulu, K., et al. (2016). Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151(1), 180–193 e112. doi:10.​1053/​j.​gastro.​2016.​03.​010.PubMedCrossRef
38.
go back to reference Zhao, W., & Robbins, M. E. (2009). Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Current Medicinal Chemistry, 16(2), 130–143.PubMedCrossRef Zhao, W., & Robbins, M. E. (2009). Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Current Medicinal Chemistry, 16(2), 130–143.PubMedCrossRef
39.
go back to reference Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.1126/science.1060191.PubMedCrossRef Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.​1126/​science.​1060191.PubMedCrossRef
40.
go back to reference Chargari, C., Clemenson, C., Martins, I., Perfettini, J. L., & Deutsch, E. (2013). Understanding the functions of tumor stroma in resistance to ionizing radiation: emerging targets for pharmacological modulation. Drug Resistance Updates, 16(1–2), 10–21. doi:10.1016/j.drup.2013.01.001.PubMedCrossRef Chargari, C., Clemenson, C., Martins, I., Perfettini, J. L., & Deutsch, E. (2013). Understanding the functions of tumor stroma in resistance to ionizing radiation: emerging targets for pharmacological modulation. Drug Resistance Updates, 16(1–2), 10–21. doi:10.​1016/​j.​drup.​2013.​01.​001.PubMedCrossRef
41.
go back to reference Miyamoto, Y., Hosotani, R., Doi, R., Wada, M., Ida, J., Tsuji, S., et al. (2001). Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Research, 21(4A), 2449–2456.PubMed Miyamoto, Y., Hosotani, R., Doi, R., Wada, M., Ida, J., Tsuji, S., et al. (2001). Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Research, 21(4A), 2449–2456.PubMed
43.
go back to reference Van der Meeren, A., Monti, P., Lebaron-Jacobs, L., Marquette, C., & Gourmelon, P. (2001). Characterization of the acute inflammatory response after irradiation in mice and its regulation by interleukin 4 (Il4). Radiation Research, 155(6), 858–865.PubMedCrossRef Van der Meeren, A., Monti, P., Lebaron-Jacobs, L., Marquette, C., & Gourmelon, P. (2001). Characterization of the acute inflammatory response after irradiation in mice and its regulation by interleukin 4 (Il4). Radiation Research, 155(6), 858–865.PubMedCrossRef
44.
go back to reference Rofstad, E. K., Mathiesen, B., Henriksen, K., Kindem, K., & Galappathi, K. (2005). The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Research, 65(6), 2387–2396. doi:10.1158/0008-5472.CAN-04-3039.PubMedCrossRef Rofstad, E. K., Mathiesen, B., Henriksen, K., Kindem, K., & Galappathi, K. (2005). The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Research, 65(6), 2387–2396. doi:10.​1158/​0008-5472.​CAN-04-3039.PubMedCrossRef
45.
go back to reference Karagiannis, G. S., Poutahidis, T., Erdman, S. E., Kirsch, R., Riddell, R. H., & Diamandis, E. P. (2012). Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Molecular Cancer Research, 10(11), 1403–1418. doi:10.1158/1541-7786.MCR-12-0307.PubMedPubMedCentralCrossRef Karagiannis, G. S., Poutahidis, T., Erdman, S. E., Kirsch, R., Riddell, R. H., & Diamandis, E. P. (2012). Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Molecular Cancer Research, 10(11), 1403–1418. doi:10.​1158/​1541-7786.​MCR-12-0307.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331. doi:10.1158/0008-5472.CAN-08-0841.PubMedCrossRef Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331. doi:10.​1158/​0008-5472.​CAN-08-0841.PubMedCrossRef
49.
go back to reference Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059. doi:10.1038/nm1622.PubMedCrossRef Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059. doi:10.​1038/​nm1622.PubMedCrossRef
51.
go back to reference Calveley, V. L., Khan, M. A., Yeung, I. W., Vandyk, J., & Hill, R. P. (2005). Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. International Journal of Radiation Biology, 81(12), 887–899. doi:10.1080/09553000600568002.PubMedCrossRef Calveley, V. L., Khan, M. A., Yeung, I. W., Vandyk, J., & Hill, R. P. (2005). Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. International Journal of Radiation Biology, 81(12), 887–899. doi:10.​1080/​0955300060056800​2.PubMedCrossRef
52.
go back to reference Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J., & Li, J. J. (2009). Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radical Biology & Medicine, 46(11), 1543–1550. doi:10.1016/j.freeradbiomed.2009.03.012.CrossRef Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J., & Li, J. J. (2009). Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radical Biology & Medicine, 46(11), 1543–1550. doi:10.​1016/​j.​freeradbiomed.​2009.​03.​012.CrossRef
55.
go back to reference Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706. doi:10.1158/0008-5472.CAN-09-2982.PubMedCrossRef Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706. doi:10.​1158/​0008-5472.​CAN-09-2982.PubMedCrossRef
56.
go back to reference Merrick, A., Errington, F., Milward, K., O'Donnell, D., Harrington, K., Bateman, A., et al. (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. British Journal of Cancer, 92(8), 1450–1458. doi:10.1038/sj.bjc.6602518.PubMedPubMedCentralCrossRef Merrick, A., Errington, F., Milward, K., O'Donnell, D., Harrington, K., Bateman, A., et al. (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. British Journal of Cancer, 92(8), 1450–1458. doi:10.​1038/​sj.​bjc.​6602518.PubMedPubMedCentralCrossRef
58.
go back to reference Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G., & Lord, E. M. (2005). Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. Journal of Immunology, 174(12), 7516–7523.CrossRef Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G., & Lord, E. M. (2005). Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. Journal of Immunology, 174(12), 7516–7523.CrossRef
60.
go back to reference Liang, H., Deng, L., Chmura, S., Burnette, B., Liadis, N., Darga, T., et al. (2013). Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. Journal of Immunology, 190(11), 5874–5881. doi:10.4049/jimmunol.1202612.CrossRef Liang, H., Deng, L., Chmura, S., Burnette, B., Liadis, N., Darga, T., et al. (2013). Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. Journal of Immunology, 190(11), 5874–5881. doi:10.​4049/​jimmunol.​1202612.CrossRef
61.
go back to reference Tsai, C. S., Chen, F. H., Wang, C. C., Huang, H. L., Jung, S. M., Wu, C. J., et al. (2007). Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. International Journal of Radiation Oncology, Biology, Physics, 68(2), 499–507. doi:10.1016/j.ijrobp.2007.01.041.PubMedCrossRef Tsai, C. S., Chen, F. H., Wang, C. C., Huang, H. L., Jung, S. M., Wu, C. J., et al. (2007). Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. International Journal of Radiation Oncology, Biology, Physics, 68(2), 499–507. doi:10.​1016/​j.​ijrobp.​2007.​01.​041.PubMedCrossRef
62.
64.
go back to reference Zhang, L., Ye, S. B., Li, Z. L., Ma, G., Chen, S. P., He, J., et al. (2014). Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. International Journal of Clinical and Experimental Pathology, 7(7), 3887–3897.PubMedPubMedCentral Zhang, L., Ye, S. B., Li, Z. L., Ma, G., Chen, S. P., He, J., et al. (2014). Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. International Journal of Clinical and Experimental Pathology, 7(7), 3887–3897.PubMedPubMedCentral
66.
go back to reference Milas, L., Wike, J., Hunter, N., Volpe, J., & Basic, I. (1987). Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Research, 47(4), 1069–1075.PubMed Milas, L., Wike, J., Hunter, N., Volpe, J., & Basic, I. (1987). Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Research, 47(4), 1069–1075.PubMed
67.
go back to reference Youn, H., Son, B., Kim, W., Jun, S. Y., Lee, J. S., Lee, J. M., et al. (2015). Dissociation of MIF-rpS3 complex and sequential NF-kappaB activation is involved in IR-induced metastatic conversion of NSCLC. Journal of Cellular Biochemistry, 116(11), 2504–2516. doi:10.1002/jcb.25195.PubMedCrossRef Youn, H., Son, B., Kim, W., Jun, S. Y., Lee, J. S., Lee, J. M., et al. (2015). Dissociation of MIF-rpS3 complex and sequential NF-kappaB activation is involved in IR-induced metastatic conversion of NSCLC. Journal of Cellular Biochemistry, 116(11), 2504–2516. doi:10.​1002/​jcb.​25195.PubMedCrossRef
68.
go back to reference Kuonen, F., Laurent, J., Secondini, C., Lorusso, G., Stehle, J. C., Rausch, T., et al. (2012). Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clinical Cancer Research, 18(16), 4365–4374. doi:10.1158/1078-0432.CCR-11-3028.PubMedCrossRef Kuonen, F., Laurent, J., Secondini, C., Lorusso, G., Stehle, J. C., Rausch, T., et al. (2012). Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clinical Cancer Research, 18(16), 4365–4374. doi:10.​1158/​1078-0432.​CCR-11-3028.PubMedCrossRef
69.
go back to reference Heissig, B., Rafii, S., Akiyama, H., Ohki, Y., Sato, Y., Rafael, T., et al. (2005). Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. The Journal of Experimental Medicine, 202(6), 739–750. doi:10.1084/jem.20050959.PubMedPubMedCentralCrossRef Heissig, B., Rafii, S., Akiyama, H., Ohki, Y., Sato, Y., Rafael, T., et al. (2005). Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. The Journal of Experimental Medicine, 202(6), 739–750. doi:10.​1084/​jem.​20050959.PubMedPubMedCentralCrossRef
70.
go back to reference Stoecklein, V. M., Osuka, A., Ishikawa, S., Lederer, M. R., Wanke-Jellinek, L., & Lederer, J. A. (2015). Radiation exposure induces inflammasome pathway activation in immune cells. Journal of Immunology, 194(3), 1178–1189. doi:10.4049/jimmunol.1303051.CrossRef Stoecklein, V. M., Osuka, A., Ishikawa, S., Lederer, M. R., Wanke-Jellinek, L., & Lederer, J. A. (2015). Radiation exposure induces inflammasome pathway activation in immune cells. Journal of Immunology, 194(3), 1178–1189. doi:10.​4049/​jimmunol.​1303051.CrossRef
71.
go back to reference Pogany, G. C., & Lewis, K. C. (1985). Enhancement of cathepsin B activity in irradiated mouse testes. Journal of Radiation Research, 26(2), 248–256.PubMedCrossRef Pogany, G. C., & Lewis, K. C. (1985). Enhancement of cathepsin B activity in irradiated mouse testes. Journal of Radiation Research, 26(2), 248–256.PubMedCrossRef
72.
go back to reference Orlowski, G. M., Colbert, J. D., Sharma, S., Bogyo, M., Robertson, S. A., & Rock, K. L. (2015). Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. Journal of Immunology, 195(4), 1685–1697. doi:10.4049/jimmunol.1500509.CrossRef Orlowski, G. M., Colbert, J. D., Sharma, S., Bogyo, M., Robertson, S. A., & Rock, K. L. (2015). Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. Journal of Immunology, 195(4), 1685–1697. doi:10.​4049/​jimmunol.​1500509.CrossRef
73.
go back to reference Paquette, B., Therriault, H., & Wagner, J. R. (2013). Role of interleukin-1beta in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiation Research, 180(3), 292–298. doi:10.1667/RR3240.1.PubMedCrossRef Paquette, B., Therriault, H., & Wagner, J. R. (2013). Role of interleukin-1beta in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiation Research, 180(3), 292–298. doi:10.​1667/​RR3240.​1.PubMedCrossRef
74.
go back to reference Liu, Y. G., Chen, J. K., Zhang, Z. T., Ma, X. J., Chen, Y. C., Du, X. M., et al. (2017). NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death & Disease, 8(2), e2579. doi:10.1038/cddis.2016.460.CrossRef Liu, Y. G., Chen, J. K., Zhang, Z. T., Ma, X. J., Chen, Y. C., Du, X. M., et al. (2017). NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death & Disease, 8(2), e2579. doi:10.​1038/​cddis.​2016.​460.CrossRef
75.
go back to reference Vaupel, P., & Multhoff, G. (2016). Adenosine can thwart antitumor immune responses elicited by radiotherapy: therapeutic strategies alleviating protumor ADO activities. Strahlentherapie und Onkologie, 192(5), 279–287. doi:10.1007/s00066-016-0948-1.PubMedCrossRef Vaupel, P., & Multhoff, G. (2016). Adenosine can thwart antitumor immune responses elicited by radiotherapy: therapeutic strategies alleviating protumor ADO activities. Strahlentherapie und Onkologie, 192(5), 279–287. doi:10.​1007/​s00066-016-0948-1.PubMedCrossRef
76.
go back to reference Perez-Aso, M., Mediero, A., Low, Y. C., Levine, J., & Cronstein, B. N. (2015). Adenosine A2A receptor plays an important role in radiation-induced dermal injury. The FASEB Journal. doi:10.1096/fj.15-280388. Perez-Aso, M., Mediero, A., Low, Y. C., Levine, J., & Cronstein, B. N. (2015). Adenosine A2A receptor plays an important role in radiation-induced dermal injury. The FASEB Journal. doi:10.​1096/​fj.​15-280388.
77.
go back to reference Ferrante, C. J., Pinhal-Enfield, G., Elson, G., Cronstein, B. N., Hasko, G., Outram, S., et al. (2013). The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 36(4), 921–931. doi:10.1007/s10753-013-9621-3.PubMedPubMedCentralCrossRef Ferrante, C. J., Pinhal-Enfield, G., Elson, G., Cronstein, B. N., Hasko, G., Outram, S., et al. (2013). The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 36(4), 921–931. doi:10.​1007/​s10753-013-9621-3.PubMedPubMedCentralCrossRef
79.
80.
go back to reference Ouyang, Y., Li, H., Bu, J., Li, X., Chen, Z., & Xiao, T. (2016). Hypoxia-inducible factor-1 expression predicts osteosarcoma patients’ survival: a meta-analysis. The International Journal of Biological Markers, 31(3), e229–e234. doi:10.5301/jbm.5000216.PubMedCrossRef Ouyang, Y., Li, H., Bu, J., Li, X., Chen, Z., & Xiao, T. (2016). Hypoxia-inducible factor-1 expression predicts osteosarcoma patients’ survival: a meta-analysis. The International Journal of Biological Markers, 31(3), e229–e234. doi:10.​5301/​jbm.​5000216.PubMedCrossRef
82.
go back to reference Lo, J. F., Yu, C. C., Chiou, S. H., Huang, C. Y., Jan, C. I., Lin, S. C., et al. (2011). The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Research, 71(5), 1912–1923. doi:10.1158/0008-5472.CAN-10-2350.PubMedCrossRef Lo, J. F., Yu, C. C., Chiou, S. H., Huang, C. Y., Jan, C. I., Lin, S. C., et al. (2011). The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Research, 71(5), 1912–1923. doi:10.​1158/​0008-5472.​CAN-10-2350.PubMedCrossRef
83.
go back to reference Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., et al. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9(5), 433–446. doi:10.1016/j.stem.2011.10.001.PubMedCrossRef Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., et al. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9(5), 433–446. doi:10.​1016/​j.​stem.​2011.​10.​001.PubMedCrossRef
84.
go back to reference Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. The Journal of Biological Chemistry, 284(8), 5332–5342. doi:10.1074/jbc.M806653200.PubMedCrossRef Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. The Journal of Biological Chemistry, 284(8), 5332–5342. doi:10.​1074/​jbc.​M806653200.PubMedCrossRef
85.
go back to reference Zhu, Y., Zhao, T., Itasaka, S., Zeng, L., Yeom, C. J., Hirota, K., et al. (2013). Involvement of decreased hypoxia-inducible factor 1 activity and resultant G1-S cell cycle transition in radioresistance of perinecrotic tumor cells. Oncogene, 32(16), 2058–2068. doi:10.1038/onc.2012.223.PubMedCrossRef Zhu, Y., Zhao, T., Itasaka, S., Zeng, L., Yeom, C. J., Hirota, K., et al. (2013). Involvement of decreased hypoxia-inducible factor 1 activity and resultant G1-S cell cycle transition in radioresistance of perinecrotic tumor cells. Oncogene, 32(16), 2058–2068. doi:10.​1038/​onc.​2012.​223.PubMedCrossRef
86.
go back to reference Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., et al. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. Journal of Cellular Biochemistry, 111(3), 554–563. doi:10.1002/jcb.22739.PubMedCrossRef Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., et al. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. Journal of Cellular Biochemistry, 111(3), 554–563. doi:10.​1002/​jcb.​22739.PubMedCrossRef
88.
go back to reference Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A., & Van der Kogel, A. J. (2000). Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiation Research, 153(4), 398–404.PubMedCrossRef Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A., & Van der Kogel, A. J. (2000). Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiation Research, 153(4), 398–404.PubMedCrossRef
89.
go back to reference Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705. doi:10.1172/JCI40283.PubMedPubMedCentralCrossRef Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705. doi:10.​1172/​JCI40283.PubMedPubMedCentralCrossRef
90.
go back to reference Moeller, B. J., Cao, Y., Li, C. Y., & Dewhirst, M. W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 5(5), 429–441.PubMedCrossRef Moeller, B. J., Cao, Y., Li, C. Y., & Dewhirst, M. W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 5(5), 429–441.PubMedCrossRef
91.
go back to reference Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. doi:10.1038/nature06905.PubMedPubMedCentralCrossRef Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. doi:10.​1038/​nature06905.PubMedPubMedCentralCrossRef
92.
go back to reference Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., et al. (2013). Hypoxia inducible factor 1alpha-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. doi:10.3892/ijo.2013.1878.PubMedPubMedCentral Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., et al. (2013). Hypoxia inducible factor 1alpha-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. doi:10.​3892/​ijo.​2013.​1878.PubMedPubMedCentral
93.
go back to reference Chang, C. C., Lin, B. R., Chen, S. T., Hsieh, T. H., Li, Y. J., & Kuo, M. Y. (2011). HDAC2 promotes cell migration/invasion abilities through HIF-1alpha stabilization in human oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(7), 567–575. doi:10.1111/j.1600-0714.2011.01009.x.CrossRef Chang, C. C., Lin, B. R., Chen, S. T., Hsieh, T. H., Li, Y. J., & Kuo, M. Y. (2011). HDAC2 promotes cell migration/invasion abilities through HIF-1alpha stabilization in human oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(7), 567–575. doi:10.​1111/​j.​1600-0714.​2011.​01009.​x.CrossRef
96.
go back to reference Bertout, J. A., Majmundar, A. J., Gordan, J. D., Lam, J. C., Ditsworth, D., Keith, B., et al. (2009). HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14391–14396. doi:10.1073/pnas.0907357106.PubMedPubMedCentralCrossRef Bertout, J. A., Majmundar, A. J., Gordan, J. D., Lam, J. C., Ditsworth, D., Keith, B., et al. (2009). HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14391–14396. doi:10.​1073/​pnas.​0907357106.PubMedPubMedCentralCrossRef
98.
go back to reference Kaliski, A., Maggiorella, L., Cengel, K. A., Mathe, D., Rouffiac, V., Opolon, P., et al. (2005). Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Molecular Cancer Therapeutics, 4(11), 1717–1728. doi:10.1158/1535-7163.MCT-05-0179.PubMedCrossRef Kaliski, A., Maggiorella, L., Cengel, K. A., Mathe, D., Rouffiac, V., Opolon, P., et al. (2005). Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Molecular Cancer Therapeutics, 4(11), 1717–1728. doi:10.​1158/​1535-7163.​MCT-05-0179.PubMedCrossRef
99.
go back to reference Abdollahi, A., Griggs, D. W., Zieher, H., Roth, A., Lipson, K. E., Saffrich, R., et al. (2005). Inhibition of alpha (v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clinical Cancer Research, 11(17), 6270–6279. doi:10.1158/1078-0432.CCR-04-1223.PubMedCrossRef Abdollahi, A., Griggs, D. W., Zieher, H., Roth, A., Lipson, K. E., Saffrich, R., et al. (2005). Inhibition of alpha (v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clinical Cancer Research, 11(17), 6270–6279. doi:10.​1158/​1078-0432.​CCR-04-1223.PubMedCrossRef
100.
go back to reference Scharpfenecker, M., Kruse, J. J., Sprong, D., Russell, N. S., Ten Dijke, P., & Stewart, F. A. (2009). Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. International Journal of Radiation Oncology, Biology, Physics, 73(2), 506–513. doi:10.1016/j.ijrobp.2008.09.052.PubMedCrossRef Scharpfenecker, M., Kruse, J. J., Sprong, D., Russell, N. S., Ten Dijke, P., & Stewart, F. A. (2009). Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. International Journal of Radiation Oncology, Biology, Physics, 73(2), 506–513. doi:10.​1016/​j.​ijrobp.​2008.​09.​052.PubMedCrossRef
102.
go back to reference Annabi, B., Lee, Y. T., Martel, C., Pilorget, A., Bahary, J. P., & Beliveau, R. (2003). Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biology & Therapy, 2(6), 642–649.CrossRef Annabi, B., Lee, Y. T., Martel, C., Pilorget, A., Bahary, J. P., & Beliveau, R. (2003). Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biology & Therapy, 2(6), 642–649.CrossRef
103.
go back to reference Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6(6), 553–563. doi:10.1016/j.ccr.2004.10.011.PubMed Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6(6), 553–563. doi:10.​1016/​j.​ccr.​2004.​10.​011.PubMed
104.
go back to reference Biswas, S., Guix, M., Rinehart, C., Dugger, T. C., Chytil, A., Moses, H. L., et al. (2007). Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. The Journal of Clinical Investigation, 117(5), 1305–1313. doi:10.1172/JCI30740.PubMedPubMedCentralCrossRef Biswas, S., Guix, M., Rinehart, C., Dugger, T. C., Chytil, A., Moses, H. L., et al. (2007). Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. The Journal of Clinical Investigation, 117(5), 1305–1313. doi:10.​1172/​JCI30740.PubMedPubMedCentralCrossRef
106.
107.
go back to reference Segreto, H. R., Ferreira, A. T., Kimura, E. T., Franco, M., Egami, M. I., Silva, M. R., et al. (2002). Amifostine does not prevent activation of TGFbeta1 but induces smad 7 activation in megakaryocytes irradiated in vivo. American Journal of Hematology, 71(3), 143–151. doi:10.1002/ajh.10201.PubMedCrossRef Segreto, H. R., Ferreira, A. T., Kimura, E. T., Franco, M., Egami, M. I., Silva, M. R., et al. (2002). Amifostine does not prevent activation of TGFbeta1 but induces smad 7 activation in megakaryocytes irradiated in vivo. American Journal of Hematology, 71(3), 143–151. doi:10.​1002/​ajh.​10201.PubMedCrossRef
109.
go back to reference Tsai, J. H., Makonnen, S., Feldman, M., Sehgal, C. M., Maity, A., & Lee, W. M. (2005). Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biology & Therapy, 4(12), 1395–1400.CrossRef Tsai, J. H., Makonnen, S., Feldman, M., Sehgal, C. M., Maity, A., & Lee, W. M. (2005). Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biology & Therapy, 4(12), 1395–1400.CrossRef
110.
go back to reference Lerman, O. Z., Greives, M. R., Singh, S. P., Thanik, V. D., Chang, C. C., Seiser, N., et al. (2010). Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood, 116(18), 3669–3676. doi:10.1182/blood-2009-03-213629.PubMedCrossRef Lerman, O. Z., Greives, M. R., Singh, S. P., Thanik, V. D., Chang, C. C., Seiser, N., et al. (2010). Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood, 116(18), 3669–3676. doi:10.​1182/​blood-2009-03-213629.PubMedCrossRef
111.
go back to reference Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691. doi:10.1158/0008-5472.CAN-06-0425.PubMedCrossRef Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691. doi:10.​1158/​0008-5472.​CAN-06-0425.PubMedCrossRef
112.
go back to reference Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91(17), 1501–1504.PubMedCrossRef Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91(17), 1501–1504.PubMedCrossRef
113.
115.
go back to reference Barshishat-Kupper, M., Mungunsukh, O., Tipton, A. J., McCart, E. A., Panganiban, R. A., Davis, T. A., et al. (2011). Captopril modulates hypoxia-inducible factors and erythropoietin responses in a murine model of total body irradiation. Experimental Hematology, 39(3), 293–304. doi:10.1016/j.exphem.2010.12.002.PubMedCrossRef Barshishat-Kupper, M., Mungunsukh, O., Tipton, A. J., McCart, E. A., Panganiban, R. A., Davis, T. A., et al. (2011). Captopril modulates hypoxia-inducible factors and erythropoietin responses in a murine model of total body irradiation. Experimental Hematology, 39(3), 293–304. doi:10.​1016/​j.​exphem.​2010.​12.​002.PubMedCrossRef
119.
go back to reference Maleki Vareki, S., Rytelewski, M., Figueredo, R., Chen, D., Ferguson, P. J., Vincent, M., et al. (2014). Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget, 5(9), 2778–2791. doi:10.18632/oncotarget.1916.PubMedCrossRef Maleki Vareki, S., Rytelewski, M., Figueredo, R., Chen, D., Ferguson, P. J., Vincent, M., et al. (2014). Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget, 5(9), 2778–2791. doi:10.​18632/​oncotarget.​1916.PubMedCrossRef
120.
122.
go back to reference Tsukamoto, H., Shibata, K., Kajiyama, H., Terauchi, M., Nawa, A., & Kikkawa, F. (2007). Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecologic Oncology, 107(3), 500–504. doi:10.1016/j.ygyno.2007.08.058.PubMedCrossRef Tsukamoto, H., Shibata, K., Kajiyama, H., Terauchi, M., Nawa, A., & Kikkawa, F. (2007). Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecologic Oncology, 107(3), 500–504. doi:10.​1016/​j.​ygyno.​2007.​08.​058.PubMedCrossRef
123.
go back to reference Eke, I., Deuse, Y., Hehlgans, S., Gurtner, K., Krause, M., Baumann, M., et al. (2012). Beta(1)integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. The Journal of Clinical Investigation, 122(4), 1529–1540. doi:10.1172/JCI61350.PubMedPubMedCentralCrossRef Eke, I., Deuse, Y., Hehlgans, S., Gurtner, K., Krause, M., Baumann, M., et al. (2012). Beta(1)integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. The Journal of Clinical Investigation, 122(4), 1529–1540. doi:10.​1172/​JCI61350.PubMedPubMedCentralCrossRef
124.
go back to reference Jia, S., Jia, Y., Weeks, H. P., Ruge, F., Feng, X., Ma, R., et al. (2014). Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration. Anticancer Research, 34(5), 2185–2194.PubMed Jia, S., Jia, Y., Weeks, H. P., Ruge, F., Feng, X., Ma, R., et al. (2014). Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration. Anticancer Research, 34(5), 2185–2194.PubMed
125.
go back to reference Trog, D., Yeghiazaryan, K., Fountoulakis, M., Friedlein, A., Moenkemann, H., Haertel, N., et al. (2006). Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. European Journal of Pharmacology, 542(1–3), 8–15. doi:10.1016/j.ejphar.2006.05.026.PubMedCrossRef Trog, D., Yeghiazaryan, K., Fountoulakis, M., Friedlein, A., Moenkemann, H., Haertel, N., et al. (2006). Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. European Journal of Pharmacology, 542(1–3), 8–15. doi:10.​1016/​j.​ejphar.​2006.​05.​026.PubMedCrossRef
126.
go back to reference Qian, L. W., Mizumoto, K., Urashima, T., Nagai, E., Maehara, N., Sato, N., et al. (2002). Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clinical Cancer Research, 8(4), 1223–1227.PubMed Qian, L. W., Mizumoto, K., Urashima, T., Nagai, E., Maehara, N., Sato, N., et al. (2002). Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clinical Cancer Research, 8(4), 1223–1227.PubMed
127.
go back to reference Speake, W. J., Dean, R. A., Kumar, A., Morris, T. M., Scholefield, J. H., & Watson, S. A. (2005). Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. European Journal of Surgical Oncology, 31(8), 869–874. doi:10.1016/j.ejso.2005.05.016.PubMedCrossRef Speake, W. J., Dean, R. A., Kumar, A., Morris, T. M., Scholefield, J. H., & Watson, S. A. (2005). Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. European Journal of Surgical Oncology, 31(8), 869–874. doi:10.​1016/​j.​ejso.​2005.​05.​016.PubMedCrossRef
128.
go back to reference Gogineni, V. R., Kargiotis, O., Klopfenstein, J. D., Gujrati, M., Dinh, D. H., & Rao, J. S. (2009). RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. International Journal of Oncology, 34(1), 209–218.PubMedPubMedCentral Gogineni, V. R., Kargiotis, O., Klopfenstein, J. D., Gujrati, M., Dinh, D. H., & Rao, J. S. (2009). RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. International Journal of Oncology, 34(1), 209–218.PubMedPubMedCentral
129.
go back to reference Dancea, H. C., Shareef, M. M., & Ahmed, M. M. (2009). Role of radiation-induced TGF-beta signaling in cancer therapy. Molecular and Cellular Pharmacology, 1(1), 44–56.PubMedPubMedCentralCrossRef Dancea, H. C., Shareef, M. M., & Ahmed, M. M. (2009). Role of radiation-induced TGF-beta signaling in cancer therapy. Molecular and Cellular Pharmacology, 1(1), 44–56.PubMedPubMedCentralCrossRef
130.
go back to reference Flechsig, P., Dadrich, M., Bickelhaupt, S., Jenne, J., Hauser, K., Timke, C., et al. (2012). LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clinical Cancer Research, 18(13), 3616–3627. doi:10.1158/1078-0432.CCR-11-2855.PubMedCrossRef Flechsig, P., Dadrich, M., Bickelhaupt, S., Jenne, J., Hauser, K., Timke, C., et al. (2012). LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clinical Cancer Research, 18(13), 3616–3627. doi:10.​1158/​1078-0432.​CCR-11-2855.PubMedCrossRef
132.
go back to reference Kwak, S. Y., Yang, J. S., Kim, B. Y., Bae, I. H., & Han, Y. H. (2014). Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochimica et Biophysica Acta, 1843(3), 508–516. doi:10.1016/j.bbamcr.2013.11.021.PubMedCrossRef Kwak, S. Y., Yang, J. S., Kim, B. Y., Bae, I. H., & Han, Y. H. (2014). Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochimica et Biophysica Acta, 1843(3), 508–516. doi:10.​1016/​j.​bbamcr.​2013.​11.​021.PubMedCrossRef
134.
go back to reference Chen, F. H., Fu, S. Y., Yang, Y. C., Wang, C. C., Chiang, C. S., & Hong, J. H. (2013). Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. International Journal of Radiation Oncology, Biology, Physics, 86(4), 777–784. doi:10.1016/j.ijrobp.2013.02.036.PubMedCrossRef Chen, F. H., Fu, S. Y., Yang, Y. C., Wang, C. C., Chiang, C. S., & Hong, J. H. (2013). Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. International Journal of Radiation Oncology, Biology, Physics, 86(4), 777–784. doi:10.​1016/​j.​ijrobp.​2013.​02.​036.PubMedCrossRef
136.
go back to reference Ding, N. H., Li, J. J., & Sun, L. Q. (2013). Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets, 14(11), 1347–1356.PubMedPubMedCentralCrossRef Ding, N. H., Li, J. J., & Sun, L. Q. (2013). Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets, 14(11), 1347–1356.PubMedPubMedCentralCrossRef
138.
go back to reference Zhou, Y., Xia, L., He, Z. S., Ouyang, W., Z, H., & Xie, C. H. (2010). Modulation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in RAW264.7 cells by irradiation. Molecular Medicine Reports, 3(5), 809–813. doi:10.3892/mmr.2010.326.PubMed Zhou, Y., Xia, L., He, Z. S., Ouyang, W., Z, H., & Xie, C. H. (2010). Modulation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in RAW264.7 cells by irradiation. Molecular Medicine Reports, 3(5), 809–813. doi:10.​3892/​mmr.​2010.​326.PubMed
139.
go back to reference Qian, L. W., Mizumoto, K., Inadome, N., Nagai, E., Sato, N., Matsumoto, K., et al. (2003). Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. International Journal of Cancer, 104(5), 542–549. doi:10.1002/ijc.10997.PubMedCrossRef Qian, L. W., Mizumoto, K., Inadome, N., Nagai, E., Sato, N., Matsumoto, K., et al. (2003). Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. International Journal of Cancer, 104(5), 542–549. doi:10.​1002/​ijc.​10997.PubMedCrossRef
140.
go back to reference Verheij, M., Dewit, L., & van Mourik, J. A. (1997). Radiation-induced von Willebrand factor release. Blood, 90(5), 2109–2110.PubMed Verheij, M., Dewit, L., & van Mourik, J. A. (1997). Radiation-induced von Willebrand factor release. Blood, 90(5), 2109–2110.PubMed
141.
go back to reference Odell Jr., T. T., Jackson, C. W., & Friday, T. J. (1971). Effects of radiation on the thrombocytopoietic system of mice. Radiation Research, 48(1), 107–115.PubMedCrossRef Odell Jr., T. T., Jackson, C. W., & Friday, T. J. (1971). Effects of radiation on the thrombocytopoietic system of mice. Radiation Research, 48(1), 107–115.PubMedCrossRef
145.
go back to reference Grebhardt, S., Veltkamp, C., Strobel, P., & Mayer, D. (2012). Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. International Journal of Cancer, 131(12), 2785–2794. doi:10.1002/ijc.27591.PubMedCrossRef Grebhardt, S., Veltkamp, C., Strobel, P., & Mayer, D. (2012). Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. International Journal of Cancer, 131(12), 2785–2794. doi:10.​1002/​ijc.​27591.PubMedCrossRef
146.
go back to reference Ahn, G. O., Tseng, D., Liao, C. H., Dorie, M. J., Czechowicz, A., & Brown, J. M. (2010). Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8363–8368. doi:10.1073/pnas.0911378107.PubMedPubMedCentralCrossRef Ahn, G. O., Tseng, D., Liao, C. H., Dorie, M. J., Czechowicz, A., & Brown, J. M. (2010). Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8363–8368. doi:10.​1073/​pnas.​0911378107.PubMedPubMedCentralCrossRef
148.
151.
go back to reference Cummings, R. J., Gerber, S. A., Judge, J. L., Ryan, J. L., Pentland, A. P., & Lord, E. M. (2012). Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism. Journal of Immunology, 189(9), 4247–4257. doi:10.4049/jimmunol.1201371.CrossRef Cummings, R. J., Gerber, S. A., Judge, J. L., Ryan, J. L., Pentland, A. P., & Lord, E. M. (2012). Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism. Journal of Immunology, 189(9), 4247–4257. doi:10.​4049/​jimmunol.​1201371.CrossRef
153.
go back to reference Hallahan, D., Kuchibhotla, J., & Wyble, C. (1996). Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Research, 56(22), 5150–5155.PubMed Hallahan, D., Kuchibhotla, J., & Wyble, C. (1996). Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Research, 56(22), 5150–5155.PubMed
154.
go back to reference Zhang, H., Wong, C. C., Wei, H., Gilkes, D. M., Korangath, P., Chaturvedi, P., et al. (2012). HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 31(14), 1757–1770. doi:10.1038/onc.2011.365.PubMedCrossRef Zhang, H., Wong, C. C., Wei, H., Gilkes, D. M., Korangath, P., Chaturvedi, P., et al. (2012). HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 31(14), 1757–1770. doi:10.​1038/​onc.​2011.​365.PubMedCrossRef
155.
go back to reference Liang, H., Deng, L., Burnette, B., Weichselbaum, R. R., & Fu, Y. X. (2013). Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology, 2(9), e25668. doi:10.4161/onci.25668.PubMedPubMedCentralCrossRef Liang, H., Deng, L., Burnette, B., Weichselbaum, R. R., & Fu, Y. X. (2013). Radiation-induced tumor dormancy reflects an equilibrium between the proliferation and T lymphocyte-mediated death of malignant cells. Oncoimmunology, 2(9), e25668. doi:10.​4161/​onci.​25668.PubMedPubMedCentralCrossRef
Metadata
Title
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies
Authors
Sonia Gandhi
Sudhir Chandna
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9669-x

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine