Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

Open Access 01-06-2017

Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?

Authors: Marek Z. Wojtukiewicz, Dominika Hempel, Ewa Sierko, Stephanie C. Tucker, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as “cancers follow bleeding.” The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Literature
1.
go back to reference Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef
2.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef
3.
go back to reference Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin - unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35, 213–233.PubMedCrossRef Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin - unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35, 213–233.PubMedCrossRef
4.
go back to reference Choe, K. S. C. J., Chan, J. M., Carroll, P. R., D’Amico, A. V., & Liauw, S. L. (2012). Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. Journal of Clinical Oncology, 30(28), 3540–3544.PubMedPubMedCentralCrossRef Choe, K. S. C. J., Chan, J. M., Carroll, P. R., D’Amico, A. V., & Liauw, S. L. (2012). Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. Journal of Clinical Oncology, 30(28), 3540–3544.PubMedPubMedCentralCrossRef
5.
go back to reference Gerotziafas, G. T. P. C., Hatmi, M., Samama, M. M., & Elalamy, I. (2008). Clinical studies with anticoagulants to improve survival in cancer patients. Pathophysiology of Haemostasis and Thrombosis, 36(3–4), 204–211.PubMed Gerotziafas, G. T. P. C., Hatmi, M., Samama, M. M., & Elalamy, I. (2008). Clinical studies with anticoagulants to improve survival in cancer patients. Pathophysiology of Haemostasis and Thrombosis, 36(3–4), 204–211.PubMed
6.
go back to reference Sekiguchi, T., Takemoto, A., Takagi, S., Takatori, K., Sato, S., Takami, M., & Fujita, N. (2016). Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 7(4), 3934–3946.PubMedCrossRef Sekiguchi, T., Takemoto, A., Takagi, S., Takatori, K., Sato, S., Takami, M., & Fujita, N. (2016). Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 7(4), 3934–3946.PubMedCrossRef
7.
go back to reference Holmes, C. E., Levis, J. E., Schneider, D. J., Bambace, N. M., Sharma, D., Lal, I., et al. (2016). Platelet phenotype changes associated with breast cancer and its treatment. Platelets, 27(7), 703–711.PubMedCrossRef Holmes, C. E., Levis, J. E., Schneider, D. J., Bambace, N. M., Sharma, D., Lal, I., et al. (2016). Platelet phenotype changes associated with breast cancer and its treatment. Platelets, 27(7), 703–711.PubMedCrossRef
8.
go back to reference Ho-Tin-Noé, B., Goerge, T., & Wagner, D. D. (2009). Platelets: guardians of tumor vasculature. Cancer Research, 69(14), 5623–5626.PubMedCrossRef Ho-Tin-Noé, B., Goerge, T., & Wagner, D. D. (2009). Platelets: guardians of tumor vasculature. Cancer Research, 69(14), 5623–5626.PubMedCrossRef
9.
go back to reference Ho-Tin-Noé, B., Goerge, T., Cifuni, S. M., Duerschmied, D., & Wagner, D. D. (2008). Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Research, 68(16), 6851–6858.PubMedPubMedCentralCrossRef Ho-Tin-Noé, B., Goerge, T., Cifuni, S. M., Duerschmied, D., & Wagner, D. D. (2008). Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Research, 68(16), 6851–6858.PubMedPubMedCentralCrossRef
10.
go back to reference Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105, 178.PubMedCrossRef Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105, 178.PubMedCrossRef
11.
12.
go back to reference Lian, L., Li, W., Li, Z. Y., Mao, Y. X., Zhang, Y. T., Zhao, Y. M., et al. (2013). Inhibition of MCF-7 breast cancer cell-induced platelet aggregation using a combination of antiplatelet drugs. Oncology Letters, 5(2), 675–680.PubMed Lian, L., Li, W., Li, Z. Y., Mao, Y. X., Zhang, Y. T., Zhao, Y. M., et al. (2013). Inhibition of MCF-7 breast cancer cell-induced platelet aggregation using a combination of antiplatelet drugs. Oncology Letters, 5(2), 675–680.PubMed
13.
go back to reference Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer and Metastasis Reviews, 34(4), 775–796.PubMedPubMedCentralCrossRef Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer and Metastasis Reviews, 34(4), 775–796.PubMedPubMedCentralCrossRef
14.
go back to reference Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Scientific Report, 7, 42186. doi:10.1038/srep42186.CrossRef Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Scientific Report, 7, 42186. doi:10.​1038/​srep42186.CrossRef
15.
go back to reference Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(Suppl 1), S30–S37.PubMedCrossRef Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(Suppl 1), S30–S37.PubMedCrossRef
16.
go back to reference Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.PubMedCrossRef Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.PubMedCrossRef
17.
go back to reference Shiao, J., Thomas, K. M., Rahimi, A. S., Rao, R., Yan, J., Xie, X. J., et al. (2017). Aspirin/antiplatelet agent use improves disease-free survival and reduces the risk of distant metastases in stage II and III triple-negative breast cancer patients. Breast Cancer Research and Treatment, 161(3), 463–471.PubMedCrossRef Shiao, J., Thomas, K. M., Rahimi, A. S., Rao, R., Yan, J., Xie, X. J., et al. (2017). Aspirin/antiplatelet agent use improves disease-free survival and reduces the risk of distant metastases in stage II and III triple-negative breast cancer patients. Breast Cancer Research and Treatment, 161(3), 463–471.PubMedCrossRef
18.
go back to reference Guillem-Llobat, P., Dovizio, M., Bruno, A., Ricciotti, E., Cufino, V., Sacco, A., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef Guillem-Llobat, P., Dovizio, M., Bruno, A., Ricciotti, E., Cufino, V., Sacco, A., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef
19.
go back to reference Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., & McCarty, O. J. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189.PubMedCrossRef Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., & McCarty, O. J. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189.PubMedCrossRef
20.
go back to reference Lee, P. C., Yeh, C. M., Hu, Y. W., Chen, C. C., Liu, C. J., Su, C. W., et al. (2016). Antiplatelet therapy is associated with a better prognosis for patients with hepatitis B virus-related hepatocellular carcinoma after liver resection. Annals of Surgical Oncology, 23(Suppl 5), 874–883.PubMedCrossRef Lee, P. C., Yeh, C. M., Hu, Y. W., Chen, C. C., Liu, C. J., Su, C. W., et al. (2016). Antiplatelet therapy is associated with a better prognosis for patients with hepatitis B virus-related hepatocellular carcinoma after liver resection. Annals of Surgical Oncology, 23(Suppl 5), 874–883.PubMedCrossRef
21.
go back to reference Furlan, C., Steffan, A., Polesel, J., Trovo, M., Gobitti, C., Vaccher, E., et al. (2015). Lower platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma: a retrospective analysis. Biomarker Research, 3(25), 1–3. Furlan, C., Steffan, A., Polesel, J., Trovo, M., Gobitti, C., Vaccher, E., et al. (2015). Lower platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma: a retrospective analysis. Biomarker Research, 3(25), 1–3.
22.
go back to reference Downer, M.K., Allard, C.B., Preston, M.A., Gazian, J.M., Stampfer, M.J., Mucci, L.A. et al. (2017). Regular Aspirin Use and the Risk of Lethal Prostate Cancer in the Physicians’ Health Study. European Urology Feb 8. pii: S0302–2838(17)30069–6. doi:10.1016/j.eururo.2017.01.044. Downer, M.K., Allard, C.B., Preston, M.A., Gazian, J.M., Stampfer, M.J., Mucci, L.A. et al. (2017). Regular Aspirin Use and the Risk of Lethal Prostate Cancer in the Physicians’ Health Study. European Urology Feb 8. pii: S0302–2838(17)30069–6. doi:10.​1016/​j.​eururo.​2017.​01.​044.
23.
go back to reference Holmes, M. D., Chen, W. Y., Li, L., Hertzmark, E., Spiegelman, D., & Hankinson, S. E. (2010). Aspirin intake and survival after breast cancer. Journal of Clinical Oncology, 28(9), 1467–1472.PubMedPubMedCentralCrossRef Holmes, M. D., Chen, W. Y., Li, L., Hertzmark, E., Spiegelman, D., & Hankinson, S. E. (2010). Aspirin intake and survival after breast cancer. Journal of Clinical Oncology, 28(9), 1467–1472.PubMedPubMedCentralCrossRef
24.
go back to reference Rothwell, P. M. F. F., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41.PubMedCrossRef Rothwell, P. M. F. F., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41.PubMedCrossRef
25.
go back to reference Leader, A., Zelikson-Saporta, R., Pereg, D., Spectre, G., Rozovski, U., Raanani, P. et al. (2017). The Effect of Combined Aspirin and Clopidogrel Treatment on Cancer Incidence. American Journal Medicine, Feb 14. doi:10.1016/j.amjmed.2017.01.022. Leader, A., Zelikson-Saporta, R., Pereg, D., Spectre, G., Rozovski, U., Raanani, P. et al. (2017). The Effect of Combined Aspirin and Clopidogrel Treatment on Cancer Incidence. American Journal Medicine, Feb 14. doi:10.​1016/​j.​amjmed.​2017.​01.​022.
26.
go back to reference Cook, N. R., Lee, I. M., Gaziano, J. M., Gordon, D., Ridker, P. M., Manson, J. E., et al. (2005). Low-dose aspirin in the primary prevention of cancer: the Women’s Health Study: a randomized controlled trial. Journal of the American Medical Association, 294(1), 47–55.PubMedCrossRef Cook, N. R., Lee, I. M., Gaziano, J. M., Gordon, D., Ridker, P. M., Manson, J. E., et al. (2005). Low-dose aspirin in the primary prevention of cancer: the Women’s Health Study: a randomized controlled trial. Journal of the American Medical Association, 294(1), 47–55.PubMedCrossRef
28.
go back to reference Kodela, R., Chattopadhyay, M., Velázquez-Martínez, C. A., & Kashfi, K. (2015). NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared to aspirin, is gastrointestinal safe with all the classic therapeutic indications. Biochemical Pharmacology, 98(4), 564–572.PubMedPubMedCentralCrossRef Kodela, R., Chattopadhyay, M., Velázquez-Martínez, C. A., & Kashfi, K. (2015). NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared to aspirin, is gastrointestinal safe with all the classic therapeutic indications. Biochemical Pharmacology, 98(4), 564–572.PubMedPubMedCentralCrossRef
29.
go back to reference Serebruany, V. L., Cherepanov, V., Cabrera-Fuentes, H. A., & Kim, M. H. (2015). Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thrombosis and Haemostasis, 114(6), 1104–1112.PubMedCrossRef Serebruany, V. L., Cherepanov, V., Cabrera-Fuentes, H. A., & Kim, M. H. (2015). Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thrombosis and Haemostasis, 114(6), 1104–1112.PubMedCrossRef
30.
go back to reference Serebruany, V. L., Cherepanov, V., Golukhova, E. Z., & Kim, M. H. (2015). The dual antiplatelet therapy trial after the FDA update: noncardiovascular deaths, cancer and optimal treatment duration. Cardiology, 132(2), 74–80.PubMedCrossRef Serebruany, V. L., Cherepanov, V., Golukhova, E. Z., & Kim, M. H. (2015). The dual antiplatelet therapy trial after the FDA update: noncardiovascular deaths, cancer and optimal treatment duration. Cardiology, 132(2), 74–80.PubMedCrossRef
31.
go back to reference Serebruany, V. L., Tomek, A., & Kim, M. H. (2015). Survival after solid cancers in antithrombotic trials. American Journal of Cardiology, 116(6), 969–972.PubMedCrossRef Serebruany, V. L., Tomek, A., & Kim, M. H. (2015). Survival after solid cancers in antithrombotic trials. American Journal of Cardiology, 116(6), 969–972.PubMedCrossRef
32.
go back to reference Hicks, B. M., Murray, L. J., Hughes, C., & Cardwell, C. R. (2015). Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiology and Drug Safety, 24(8), 830–840.PubMedCrossRef Hicks, B. M., Murray, L. J., Hughes, C., & Cardwell, C. R. (2015). Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiology and Drug Safety, 24(8), 830–840.PubMedCrossRef
33.
go back to reference Tranum, B. L., & Haut, A. (1974). Thrombocytosis: platelet kinetics in neoplasia. Journal of Laboratory and Clinical Medicine, 84(5), 615–619.PubMed Tranum, B. L., & Haut, A. (1974). Thrombocytosis: platelet kinetics in neoplasia. Journal of Laboratory and Clinical Medicine, 84(5), 615–619.PubMed
34.
go back to reference Sharma, D., Brummel-Ziedins, K. E., Bouchard, B. A., & Holmes, C. E. (2014). Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. Journal of Cellular Physiology, 229(8), 1005–1115.PubMedCrossRef Sharma, D., Brummel-Ziedins, K. E., Bouchard, B. A., & Holmes, C. E. (2014). Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. Journal of Cellular Physiology, 229(8), 1005–1115.PubMedCrossRef
35.
go back to reference Li, R., Ren, M., Chen, N., Luo, M., Deng, X., Xia, J., et al. (2014). Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BioMed Center Cancer, 14, 167. doi:10.1186/1471-2407-14-167. Li, R., Ren, M., Chen, N., Luo, M., Deng, X., Xia, J., et al. (2014). Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BioMed Center Cancer, 14, 167. doi:10.​1186/​1471-2407-14-167.
36.
go back to reference Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences, 61, 46–52.CrossRef Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences, 61, 46–52.CrossRef
37.
go back to reference Allensworth, S. K., Langstraat, C. L., Martin, J. R., Lemens, M. A., McGree, M. E., Weaver, A. L., et al. (2013). Evaluating the prognostic significance of preoperative thrombocytosis in epithelial ovarian cancer. Gynecologic Oncology, 130(3), 499–504.PubMedPubMedCentralCrossRef Allensworth, S. K., Langstraat, C. L., Martin, J. R., Lemens, M. A., McGree, M. E., Weaver, A. L., et al. (2013). Evaluating the prognostic significance of preoperative thrombocytosis in epithelial ovarian cancer. Gynecologic Oncology, 130(3), 499–504.PubMedPubMedCentralCrossRef
38.
go back to reference Karpatkin, S., Pearlstein, E., Salk, P. L., & Yogeeswaran, G. (1981). Role of platelets in tumor cell metastases. Annals of the New York Academy of Sciences, 370, 101–118.PubMedCrossRef Karpatkin, S., Pearlstein, E., Salk, P. L., & Yogeeswaran, G. (1981). Role of platelets in tumor cell metastases. Annals of the New York Academy of Sciences, 370, 101–118.PubMedCrossRef
39.
go back to reference Rachidi, S., Wallace, K., Day, T. A., Alberg, A. J., & Li, Z. (2014). Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. Journal of Hematology & Oncology, 27(7), 65. doi:10.1186/s13045-014-0065-5.CrossRef Rachidi, S., Wallace, K., Day, T. A., Alberg, A. J., & Li, Z. (2014). Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. Journal of Hematology & Oncology, 27(7), 65. doi:10.​1186/​s13045-014-0065-5.CrossRef
40.
go back to reference Jacobsen, J., Grankvist, K., Rasmuson, T., & Ljungberg, B. (2002). Prognostic importance of serum vascular endothelial growth factor in relation to platelet and leukocyte counts in human renal cell carcinoma. European Journal of Cancer Prevention, 11(3), 245–252.PubMedCrossRef Jacobsen, J., Grankvist, K., Rasmuson, T., & Ljungberg, B. (2002). Prognostic importance of serum vascular endothelial growth factor in relation to platelet and leukocyte counts in human renal cell carcinoma. European Journal of Cancer Prevention, 11(3), 245–252.PubMedCrossRef
41.
go back to reference Steele, M., & Voutsadakis, I. A. (2017). Pre-treatment platelet counts as a prognostic and predictive factor in stage II and III rectal adenocarcinoma. World Journal Gastrointestinal Oncology, 9(1), 42–49.CrossRef Steele, M., & Voutsadakis, I. A. (2017). Pre-treatment platelet counts as a prognostic and predictive factor in stage II and III rectal adenocarcinoma. World Journal Gastrointestinal Oncology, 9(1), 42–49.CrossRef
42.
go back to reference Mantas, D., Kostakis, I. D., Machairas, N., & Markopoulos, C. (2016). White blood cell and platelet indices as prognostic markers in patients with invasive ductal breast carcinoma. Oncology Letters, 12(2), 1610–1614.PubMedPubMedCentral Mantas, D., Kostakis, I. D., Machairas, N., & Markopoulos, C. (2016). White blood cell and platelet indices as prognostic markers in patients with invasive ductal breast carcinoma. Oncology Letters, 12(2), 1610–1614.PubMedPubMedCentral
43.
go back to reference Bottsford-Miller, J., Choi, H. J., Dalton, H. J., Stone, R. L., Cho, M. S., Haemmerle, M., et al. (2015). Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clinical Cancer Research, 21(3), 602–610.PubMedCrossRef Bottsford-Miller, J., Choi, H. J., Dalton, H. J., Stone, R. L., Cho, M. S., Haemmerle, M., et al. (2015). Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clinical Cancer Research, 21(3), 602–610.PubMedCrossRef
44.
go back to reference Shen, X. M., Xia, Y. Y., Lian, L., Zhou, C., Li, X. L., Han, S. G., et al. (2016). Mean platelet volume provides beneficial diagnostic and prognostic information for patients with resectable gastric cancer. Oncology Letters, 12(4), 2501–2506.PubMedPubMedCentral Shen, X. M., Xia, Y. Y., Lian, L., Zhou, C., Li, X. L., Han, S. G., et al. (2016). Mean platelet volume provides beneficial diagnostic and prognostic information for patients with resectable gastric cancer. Oncology Letters, 12(4), 2501–2506.PubMedPubMedCentral
46.
go back to reference Zhao, Q. T., Yuan, Z., Zhang, H., Zhang, X. P., Wang, H. E., Wang, Z. K., & Duan, G. C. (2016). Prognostic role of platelet to lymphocyte ratio in non-small cell lung cancers: a meta-analysis including 3,720 patients. International Journal of Cancer, 139(1), 164–170.PubMedCrossRef Zhao, Q. T., Yuan, Z., Zhang, H., Zhang, X. P., Wang, H. E., Wang, Z. K., & Duan, G. C. (2016). Prognostic role of platelet to lymphocyte ratio in non-small cell lung cancers: a meta-analysis including 3,720 patients. International Journal of Cancer, 139(1), 164–170.PubMedCrossRef
47.
go back to reference Zhou, X., Du, Y., Huang, Z., Xu, J., Qiu, T., Wang, J., Wang, T., et al. (2014). Prognostic value of PLR in various cancers: a meta-analysis. PloS One, 9(6), e101119.PubMedPubMedCentralCrossRef Zhou, X., Du, Y., Huang, Z., Xu, J., Qiu, T., Wang, J., Wang, T., et al. (2014). Prognostic value of PLR in various cancers: a meta-analysis. PloS One, 9(6), e101119.PubMedPubMedCentralCrossRef
49.
go back to reference Mezouar, S., Frère, C., Darbousset, R., Mege, D., Crescence, L., Dignat-George, F., Panicot-Dubois, L., et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thrombosis Research, 139, 65–76. Mezouar, S., Frère, C., Darbousset, R., Mege, D., Crescence, L., Dignat-George, F., Panicot-Dubois, L., et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thrombosis Research, 139, 65–76.
50.
go back to reference Bergmann, S., & Hammerschmidt, S. (2007). Fibrinolysis and host response in bacterial infections. Thrombosis and Haemostasis, 98(3), 512–520.PubMed Bergmann, S., & Hammerschmidt, S. (2007). Fibrinolysis and host response in bacterial infections. Thrombosis and Haemostasis, 98(3), 512–520.PubMed
51.
go back to reference Chauhan, A.S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., et al. (2017). Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. Federation of American Societies for Experimental Biology, Mar 15. pii: fj.201600982R. Chauhan, A.S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., et al. (2017). Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. Federation of American Societies for Experimental Biology, Mar 15. pii: fj.201600982R.
52.
go back to reference Cicero, L. A., Raposo, G., & Zhang, H. G. (2013). The cell biology of exosomes: historical and perspectives, Emerging concepts of tumor exosome–mediated cell-cell communication. New York: Springer. Cicero, L. A., Raposo, G., & Zhang, H. G. (2013). The cell biology of exosomes: historical and perspectives, Emerging concepts of tumor exosome–mediated cell-cell communication. New York: Springer.
54.
go back to reference Riedl, J., Kaider, A., Marosi, C., Prager, G. W., Eichelberger, B., Assinger, A., et al. (2017). Decreased platelet reactivity in patients with cancer is associated with high risk of venous thromboembolism and poor prognosis. Thrombosis and Haemostasis, 117(1), 90–98.PubMedCrossRef Riedl, J., Kaider, A., Marosi, C., Prager, G. W., Eichelberger, B., Assinger, A., et al. (2017). Decreased platelet reactivity in patients with cancer is associated with high risk of venous thromboembolism and poor prognosis. Thrombosis and Haemostasis, 117(1), 90–98.PubMedCrossRef
55.
go back to reference Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124(8), 1773–1777.PubMedCrossRef Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124(8), 1773–1777.PubMedCrossRef
56.
go back to reference Hu, Q., Wang, M., Cho, M. S., Wang, C., Nick, A. M., Thiagarajan, P., et al. (2016). Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. Biochimica et Biophysica Acta Clinical, 6, 76–81.PubMedPubMedCentral Hu, Q., Wang, M., Cho, M. S., Wang, C., Nick, A. M., Thiagarajan, P., et al. (2016). Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. Biochimica et Biophysica Acta Clinical, 6, 76–81.PubMedPubMedCentral
57.
go back to reference Ren, J. G., Zhang, W., Liu, B., Man, Q. W., Xiong, X. P., Li, C., et al. (2016). Clinical significance and roles in angiogenesis of circulating microparticles in oral cancer. Journal of Dental Research, 95(8), 860–867.PubMedCrossRef Ren, J. G., Zhang, W., Liu, B., Man, Q. W., Xiong, X. P., Li, C., et al. (2016). Clinical significance and roles in angiogenesis of circulating microparticles in oral cancer. Journal of Dental Research, 95(8), 860–867.PubMedCrossRef
58.
go back to reference Żmigrodzka, M., Guzera, M., Miśkiewicz, A., Jagielski, D., & Winnicka, A. (2016). The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumor Biology, 37(11), 14391–14401.PubMedPubMedCentralCrossRef Żmigrodzka, M., Guzera, M., Miśkiewicz, A., Jagielski, D., & Winnicka, A. (2016). The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumor Biology, 37(11), 14391–14401.PubMedPubMedCentralCrossRef
59.
go back to reference Helley, D., Banu, E., Bouziane, A., Banu, A., Scotte, F., Fischer, A. M., & Oudard, S. (2009). Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. European Urology, 56(3), 479–484.PubMedCrossRef Helley, D., Banu, E., Bouziane, A., Banu, A., Scotte, F., Fischer, A. M., & Oudard, S. (2009). Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. European Urology, 56(3), 479–484.PubMedCrossRef
60.
go back to reference Heinmöller, E., Weinel, R. J., Heidtmann, H. H., Salge, U., Seitz, R., Schmitz, I., et al. (1996). Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. Cancer Research and Clinical Oncology, 122(12), 735–744.PubMedCrossRef Heinmöller, E., Weinel, R. J., Heidtmann, H. H., Salge, U., Seitz, R., Schmitz, I., et al. (1996). Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. Cancer Research and Clinical Oncology, 122(12), 735–744.PubMedCrossRef
61.
go back to reference Alonso-Escolano, D., Strongin, A. Y., Chung, A. W., Deryugina, E. I., & Radomski, M. W. (2004). Membrane type-1 matrix metalloproteinase stimulates tumor cell-induced platelet aggregation: role of receptor glycoproteins. British Journal of Pharmacology, 141(2), 241–252.PubMedCrossRef Alonso-Escolano, D., Strongin, A. Y., Chung, A. W., Deryugina, E. I., & Radomski, M. W. (2004). Membrane type-1 matrix metalloproteinase stimulates tumor cell-induced platelet aggregation: role of receptor glycoproteins. British Journal of Pharmacology, 141(2), 241–252.PubMedCrossRef
62.
go back to reference Yan, M., & Jurasz, P. (2016). The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochimica et Biophysica Acta, 1863(3), 392–400.PubMedCrossRef Yan, M., & Jurasz, P. (2016). The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochimica et Biophysica Acta, 1863(3), 392–400.PubMedCrossRef
63.
go back to reference Im, J. H., Fu, W., Wang, H., Bhatia, S. K., Hammer, D. A., Kowalska, M. A., & Muschel, R. J. (2004). Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Research, 64(23), 8613–8619.PubMedCrossRef Im, J. H., Fu, W., Wang, H., Bhatia, S. K., Hammer, D. A., Kowalska, M. A., & Muschel, R. J. (2004). Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Research, 64(23), 8613–8619.PubMedCrossRef
64.
go back to reference Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.PubMedCrossRef Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.PubMedCrossRef
65.
go back to reference Kopp, H. G., Placke, T., & Salih, H. R. (2009). Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Research, 69(19), 7775–7783.PubMedCrossRef Kopp, H. G., Placke, T., & Salih, H. R. (2009). Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Research, 69(19), 7775–7783.PubMedCrossRef
66.
go back to reference Ogawa, F., Amano, H., Ito, Y., Matsui, Y., Hosono, K., Kitasato, H., et al. (2014). Aspirin reduces lung cancer metastasis to regional lymph nodes. Biomedicine and Pharmacotherapy, 68(1), 79–86.PubMedCrossRef Ogawa, F., Amano, H., Ito, Y., Matsui, Y., Hosono, K., Kitasato, H., et al. (2014). Aspirin reduces lung cancer metastasis to regional lymph nodes. Biomedicine and Pharmacotherapy, 68(1), 79–86.PubMedCrossRef
67.
go back to reference Gautam, S., Roy, S., Ansari, M. N., Saeedan, A. S., Saraf, S. A., & Kaithwas, G. (2017). DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention. Breast Cancer, 24(2), 180–190.PubMedCrossRef Gautam, S., Roy, S., Ansari, M. N., Saeedan, A. S., Saraf, S. A., & Kaithwas, G. (2017). DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention. Breast Cancer, 24(2), 180–190.PubMedCrossRef
68.
go back to reference Hall, Z., Ament, Z., Wilson, C. H., Burkhart, D. L., Ashmore, T., Koulman, A., et al. (2016). Myc expression drives aberrant lipid metabolism in lung cancer. Cancer Research, 76(16), 4608–4618.PubMedCrossRef Hall, Z., Ament, Z., Wilson, C. H., Burkhart, D. L., Ashmore, T., Koulman, A., et al. (2016). Myc expression drives aberrant lipid metabolism in lung cancer. Cancer Research, 76(16), 4608–4618.PubMedCrossRef
69.
go back to reference Knab, L. M., Grippo, P. J., & Bentrem, D. J. (2014). Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase. World Journal Gastroenterology, 20(31), 10729–10739.CrossRef Knab, L. M., Grippo, P. J., & Bentrem, D. J. (2014). Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase. World Journal Gastroenterology, 20(31), 10729–10739.CrossRef
70.
71.
go back to reference Dilly, A. K., Tang, K., Guo, Y., Joshi, S., Ekambaram, P., Maddipati, K. R., et al. (2017). Convergence of eicosanoid and integrin biology: role of Src in 12-LOX activation. Experimental Cell Research, 351(1), 1–10.PubMedCrossRef Dilly, A. K., Tang, K., Guo, Y., Joshi, S., Ekambaram, P., Maddipati, K. R., et al. (2017). Convergence of eicosanoid and integrin biology: role of Src in 12-LOX activation. Experimental Cell Research, 351(1), 1–10.PubMedCrossRef
72.
go back to reference Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., Kandouz, M., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.PubMedPubMedCentralCrossRef Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., Kandouz, M., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.PubMedPubMedCentralCrossRef
73.
go back to reference Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Mollecular Life Sciences, 59(5), 799–807.CrossRef Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Mollecular Life Sciences, 59(5), 799–807.CrossRef
74.
go back to reference Maskrey, B. H., Bermúdez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. Journal of Biological Chemistry, 282(28), 20151–20163.PubMedCrossRef Maskrey, B. H., Bermúdez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. Journal of Biological Chemistry, 282(28), 20151–20163.PubMedCrossRef
75.
go back to reference Kandouz, M., Nie, D., Pidgeon, G. P., Krishnamoorthy, S., Maddipati, K. R., & Honn, K. V. (2003). Platelet-type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins and Other Lipid Mediators, 71(3–4), 189–204.PubMedCrossRef Kandouz, M., Nie, D., Pidgeon, G. P., Krishnamoorthy, S., Maddipati, K. R., & Honn, K. V. (2003). Platelet-type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins and Other Lipid Mediators, 71(3–4), 189–204.PubMedCrossRef
76.
go back to reference Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Reserch, 46(10), 5061–5063. Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Reserch, 46(10), 5061–5063.
77.
go back to reference Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.PubMedCrossRef Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.PubMedCrossRef
78.
go back to reference Thun, M. J., Jacobs, E. J., & Patrono, C. (2012). The role of aspirin in cancer prevention. Nature Reviews. Clinical Oncology, 9(5), 259–267.PubMedCrossRef Thun, M. J., Jacobs, E. J., & Patrono, C. (2012). The role of aspirin in cancer prevention. Nature Reviews. Clinical Oncology, 9(5), 259–267.PubMedCrossRef
79.
go back to reference Sutcliffe, P., Connock, M., Gurung, T., Freeman, K., Johnson, S., Kandala, N. B., et al. (2013). Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer: a systematic review and overview of reviews. Health Technology Assessments, 17(43), 1–253. Sutcliffe, P., Connock, M., Gurung, T., Freeman, K., Johnson, S., Kandala, N. B., et al. (2013). Aspirin for prophylactic use in the primary prevention of cardiovascular disease and cancer: a systematic review and overview of reviews. Health Technology Assessments, 17(43), 1–253.
80.
go back to reference Coppinger, J. A., O'Connor, R., Wynne, K., Flanagan, M., Sullivan, M., Maguire, P. B., et al. (2007). Moderation of the platelet releasate response by aspirin. Blood, 109(11), 4786–4792.PubMedCrossRef Coppinger, J. A., O'Connor, R., Wynne, K., Flanagan, M., Sullivan, M., Maguire, P. B., et al. (2007). Moderation of the platelet releasate response by aspirin. Blood, 109(11), 4786–4792.PubMedCrossRef
81.
go back to reference Zhao, L., Zhang, W., Chen, M., Zhang, J., Zhang, M., & Dai, K. (2013). Aspirin induces platelet apoptosis. Platelets, 24(8), 637–642.PubMedCrossRef Zhao, L., Zhang, W., Chen, M., Zhang, J., Zhang, M., & Dai, K. (2013). Aspirin induces platelet apoptosis. Platelets, 24(8), 637–642.PubMedCrossRef
82.
go back to reference Di Francesco, L., López Contreras, L. A., Sacco, A., & Patrignani, P. (2015). New insights into the mechanism of action of aspirin in the prevention of colorectal neoplasia. Current Pharmaceutical Design, 21(35), 5116–5126.PubMedCrossRef Di Francesco, L., López Contreras, L. A., Sacco, A., & Patrignani, P. (2015). New insights into the mechanism of action of aspirin in the prevention of colorectal neoplasia. Current Pharmaceutical Design, 21(35), 5116–5126.PubMedCrossRef
83.
go back to reference Ding, J. H., Yuan, L. Y., Huang, R. B., & Chen, G. A. (2014). Aspirin inhibits proliferation and induces apoptosis of multiple myeloma cells through regulation of Bcl-2 and Bax and suppression of VEGF. European Journal of Haematology, 93(4), 329–339.PubMedCrossRef Ding, J. H., Yuan, L. Y., Huang, R. B., & Chen, G. A. (2014). Aspirin inhibits proliferation and induces apoptosis of multiple myeloma cells through regulation of Bcl-2 and Bax and suppression of VEGF. European Journal of Haematology, 93(4), 329–339.PubMedCrossRef
84.
go back to reference Ding, J. H., Yuan, L. Y., & Chen, G. A. (2017). Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT. Oncology Letters, 13(2), 647–654.PubMed Ding, J. H., Yuan, L. Y., & Chen, G. A. (2017). Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT. Oncology Letters, 13(2), 647–654.PubMed
85.
go back to reference Cooke, N. M., Spillane, C. D., Sheils, O., O'Leary, J., & Kenny, D. (2015). Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BioMed Central Cancer, 15, 627–637.PubMedPubMedCentral Cooke, N. M., Spillane, C. D., Sheils, O., O'Leary, J., & Kenny, D. (2015). Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BioMed Central Cancer, 15, 627–637.PubMedPubMedCentral
86.
go back to reference Vad, N. M., Kudugunti, S. K., Wang, H., Bhat, G. J., & Moridani, M. Y. (2014). Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumor Biology, 35(5), 4967–4976.PubMedCrossRef Vad, N. M., Kudugunti, S. K., Wang, H., Bhat, G. J., & Moridani, M. Y. (2014). Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumor Biology, 35(5), 4967–4976.PubMedCrossRef
87.
go back to reference Sitia, G., Iannacone, M., & Guidotti, L. G. (2013). Anti-platelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. Journal of Hepatology, 59(5), 1135–1138.PubMedCrossRef Sitia, G., Iannacone, M., & Guidotti, L. G. (2013). Anti-platelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. Journal of Hepatology, 59(5), 1135–1138.PubMedCrossRef
89.
go back to reference He, Y., Huang, H., Farischon, C., Li, D., Du, Z., Zhang, K., et al. (2017). Combined effects of atorvastatin and aspirin on growth and apoptosis in human prostate cancer cells. Oncology Reports, 37(2), 953–960.PubMed He, Y., Huang, H., Farischon, C., Li, D., Du, Z., Zhang, K., et al. (2017). Combined effects of atorvastatin and aspirin on growth and apoptosis in human prostate cancer cells. Oncology Reports, 37(2), 953–960.PubMed
90.
go back to reference Aiolfi, R., & Sitia, G. (2014). Emerging role of dual antiplatelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 1, 183–186.PubMedPubMedCentral Aiolfi, R., & Sitia, G. (2014). Emerging role of dual antiplatelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 1, 183–186.PubMedPubMedCentral
92.
go back to reference Hochmuth, F., Jochem, M., & Schlattmann, P. (2016). Meta-analysis of aspirin use and risk of lung cancer shows notable results. European Journal of Cancer Prevention, 25(4), 259–268.PubMedCrossRef Hochmuth, F., Jochem, M., & Schlattmann, P. (2016). Meta-analysis of aspirin use and risk of lung cancer shows notable results. European Journal of Cancer Prevention, 25(4), 259–268.PubMedCrossRef
93.
go back to reference Medina, C., Harmon, S., Inkielewicz, I., Santos-Martinez, M. J., Jones, M., Cantwell, P., et al. (2012). Differential inhibition of tumor cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin. British Journal of Pharmacology, 166(3), 938–949.PubMedPubMedCentralCrossRef Medina, C., Harmon, S., Inkielewicz, I., Santos-Martinez, M. J., Jones, M., Cantwell, P., et al. (2012). Differential inhibition of tumor cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin. British Journal of Pharmacology, 166(3), 938–949.PubMedPubMedCentralCrossRef
94.
go back to reference Bando, H., Yamashita, T., & Tsubura, E. (1984). Effects of antiplatelet agents on pulmonary metastases. Gann, 75, 284–291.PubMed Bando, H., Yamashita, T., & Tsubura, E. (1984). Effects of antiplatelet agents on pulmonary metastases. Gann, 75, 284–291.PubMed
95.
go back to reference Mamytbeková, A., Rezábek, K., Kacerovská, H., Grimová, J., & Svobodová, J. (1986). Antimetastatic effect of flurbiprofen and other platelet aggregation inhibitors. Neoplasma, 33, 417–421.PubMed Mamytbeková, A., Rezábek, K., Kacerovská, H., Grimová, J., & Svobodová, J. (1986). Antimetastatic effect of flurbiprofen and other platelet aggregation inhibitors. Neoplasma, 33, 417–421.PubMed
96.
go back to reference Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effect of tromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Research, 46, 5061–5063.PubMed Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effect of tromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Research, 46, 5061–5063.PubMed
97.
go back to reference Olson, J. D., Zaleski, A., Herrmann, D., & Flood, P. A. (1989). Adhesion of platelets to purified solid-phase von Willebrand factor: effects of wall shear rate, ADP, thrombin, and ristocetin. Journal of Laboratory and Clinical Medicine, 114(1), 6–18.PubMed Olson, J. D., Zaleski, A., Herrmann, D., & Flood, P. A. (1989). Adhesion of platelets to purified solid-phase von Willebrand factor: effects of wall shear rate, ADP, thrombin, and ristocetin. Journal of Laboratory and Clinical Medicine, 114(1), 6–18.PubMed
98.
go back to reference Jurasz, P., Stewart, M. W., Radomski, A., Khadour, F., Duszyk, M., & Radomski, M. W. (2001). Role of von Willebrand factor in tumour cell-induced platelet aggregation: differential regulation by NO and prostacyclin. British Journal of Pharmacology, 134, 1104–1112.PubMedPubMedCentralCrossRef Jurasz, P., Stewart, M. W., Radomski, A., Khadour, F., Duszyk, M., & Radomski, M. W. (2001). Role of von Willebrand factor in tumour cell-induced platelet aggregation: differential regulation by NO and prostacyclin. British Journal of Pharmacology, 134, 1104–1112.PubMedPubMedCentralCrossRef
99.
go back to reference Stürmer, T., Glynn, R. J., Lee, I. M., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1998). Aspirin use and colorectal cancer: post-trial follow-up data from the Physicians’ Health Study. Annuals of Internal Medicine, 128(9), 713–720.CrossRef Stürmer, T., Glynn, R. J., Lee, I. M., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1998). Aspirin use and colorectal cancer: post-trial follow-up data from the Physicians’ Health Study. Annuals of Internal Medicine, 128(9), 713–720.CrossRef
100.
go back to reference Cooper, K., Squires, H., Carroll, C., Papaioannou, D., Booth, A., Logan, R. F., Maguire, C., et al. (2010). Chemoprevention of colorectal cancer: systematic review and economic evaluation. Health Technology Assessment, 14(32), 1–206.CrossRef Cooper, K., Squires, H., Carroll, C., Papaioannou, D., Booth, A., Logan, R. F., Maguire, C., et al. (2010). Chemoprevention of colorectal cancer: systematic review and economic evaluation. Health Technology Assessment, 14(32), 1–206.CrossRef
101.
go back to reference Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., & Meade, T. W. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376(9754), 1741–1750.PubMedCrossRef Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., & Meade, T. W. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376(9754), 1741–1750.PubMedCrossRef
102.
go back to reference Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527.PubMedCrossRef Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527.PubMedCrossRef
103.
go back to reference Bosettik, C., Gallus, S., & La Vecchia, C. (2009). Aspirin and cancer risk: a summary review to 2007. Recent Results in Cancer Research, 181, 231–251.CrossRef Bosettik, C., Gallus, S., & La Vecchia, C. (2009). Aspirin and cancer risk: a summary review to 2007. Recent Results in Cancer Research, 181, 231–251.CrossRef
104.
go back to reference Rothwell, P. M., Price, J. F., Fowkes, F. G., Zanchetti, A., Roncaglioni, M. C., Tognoni, G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612.PubMedCrossRef Rothwell, P. M., Price, J. F., Fowkes, F. G., Zanchetti, A., Roncaglioni, M. C., Tognoni, G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612.PubMedCrossRef
105.
go back to reference Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 379(9826), 1591–1601.PubMedCrossRef Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 379(9826), 1591–1601.PubMedCrossRef
106.
go back to reference Gierach, G. L., Lacey, J. V., Schatzkin, A., Leitzmann, M. F., Richesson, D., Hollenbeck, A. R., & Brinton, L. A. (2008). Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP diet and health study. Breast Cancer Research, 10(2), R38.PubMedPubMedCentralCrossRef Gierach, G. L., Lacey, J. V., Schatzkin, A., Leitzmann, M. F., Richesson, D., Hollenbeck, A. R., & Brinton, L. A. (2008). Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP diet and health study. Breast Cancer Research, 10(2), R38.PubMedPubMedCentralCrossRef
108.
go back to reference Takkouche, B., Regueira-Mendez, C., & Etminan, M. (2008). Breast cancer and use of nonsteroidal anti-inflammatory drugs: a metaanalysis. Journal National Cancer Institute, 100(20), 1439–1447.CrossRef Takkouche, B., Regueira-Mendez, C., & Etminan, M. (2008). Breast cancer and use of nonsteroidal anti-inflammatory drugs: a metaanalysis. Journal National Cancer Institute, 100(20), 1439–1447.CrossRef
109.
go back to reference Dasgupta, K., Di Cesar, D., Ghosn, J., Rajan, R., Mahmud, S., & Rahme, E. (2006). Association between nonsteroidal anti-inflammatory drugs and prostate cancer occurrence. Cancer Journal, 12(2), 130–135. Dasgupta, K., Di Cesar, D., Ghosn, J., Rajan, R., Mahmud, S., & Rahme, E. (2006). Association between nonsteroidal anti-inflammatory drugs and prostate cancer occurrence. Cancer Journal, 12(2), 130–135.
110.
go back to reference Habel, L. A., Zhao, W., & Stanford, J. L. (2002). Daily aspirin use and prostate cancer risk in a large, multiracial cohort in the US. Cancer Causes & Control, 13(5), 427–434.CrossRef Habel, L. A., Zhao, W., & Stanford, J. L. (2002). Daily aspirin use and prostate cancer risk in a large, multiracial cohort in the US. Cancer Causes & Control, 13(5), 427–434.CrossRef
111.
go back to reference Jacobs, E. J., Rodriguez, C., Mondul, A. M., Connell, C. J., Henley, S. J., Calle, E. E., & Thun, M. J. (2005). A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. Journal of National Cancer Institute, 97(13), 975–980.CrossRef Jacobs, E. J., Rodriguez, C., Mondul, A. M., Connell, C. J., Henley, S. J., Calle, E. E., & Thun, M. J. (2005). A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. Journal of National Cancer Institute, 97(13), 975–980.CrossRef
112.
go back to reference Mahmud, S. M., Franco, E. L., & Aprikian, A. G. (2010). Use of nonsteroidal anti-inflammatory drugs and prostate cancer risk: a meta-analysis. International Journal of Cancer, 127, 1680–1691.PubMedCrossRef Mahmud, S. M., Franco, E. L., & Aprikian, A. G. (2010). Use of nonsteroidal anti-inflammatory drugs and prostate cancer risk: a meta-analysis. International Journal of Cancer, 127, 1680–1691.PubMedCrossRef
113.
go back to reference Jacobs, C. D., Chun, S. G., Yan, J., Xie, X. J., Pistenmaa, D. A., Hannan, R., Lotan, Y., et al. (2014). Aspirin improves outcome in high risk prostate cancer patients treated with radiation therapy. Cancer Biology & Therapy, 15(6), 699–706.CrossRef Jacobs, C. D., Chun, S. G., Yan, J., Xie, X. J., Pistenmaa, D. A., Hannan, R., Lotan, Y., et al. (2014). Aspirin improves outcome in high risk prostate cancer patients treated with radiation therapy. Cancer Biology & Therapy, 15(6), 699–706.CrossRef
114.
go back to reference Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., & Honn, K. V. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Review, 26(3–4), 503–524.CrossRef Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., & Honn, K. V. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Review, 26(3–4), 503–524.CrossRef
115.
go back to reference Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., & Tímár, J. (2004). 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., & Tímár, J. (2004). 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef
116.
go back to reference Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14(20), 6525–6530.PubMedCrossRef Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14(20), 6525–6530.PubMedCrossRef
117.
go back to reference Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834.PubMedCrossRef Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834.PubMedCrossRef
118.
go back to reference Lövey, J., Nie, D., Tóvári, J., Kenessey, I., Tímár, J., Kandouz, M., et al. (2013). Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase. Cancer Letters, 335(2), 495–501.PubMedCrossRef Lövey, J., Nie, D., Tóvári, J., Kenessey, I., Tímár, J., Kandouz, M., et al. (2013). Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase. Cancer Letters, 335(2), 495–501.PubMedCrossRef
119.
go back to reference Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapy, 1(11), 929–935. Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapy, 1(11), 929–935.
120.
go back to reference Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed
121.
go back to reference Wang, Y., Sun, Y., Li, D., Zhang, L., Wang, K., Zuo, Y., et al. (2013). Platelet P2Y12 is involved in murine pulmonary metastasis. PloS One, 8(11), e80780.PubMedPubMedCentralCrossRef Wang, Y., Sun, Y., Li, D., Zhang, L., Wang, K., Zuo, Y., et al. (2013). Platelet P2Y12 is involved in murine pulmonary metastasis. PloS One, 8(11), e80780.PubMedPubMedCentralCrossRef
122.
go back to reference Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21(2), 85–93.PubMedCrossRef Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21(2), 85–93.PubMedCrossRef
123.
go back to reference Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef
124.
go back to reference Gebremeskel, S., LeVatte, T., Liwski, R. S., Johnston, B., & Bezuhly, M. (2015). The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. International Journal of Cancer, 136(1), 234–240.PubMedCrossRef Gebremeskel, S., LeVatte, T., Liwski, R. S., Johnston, B., & Bezuhly, M. (2015). The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. International Journal of Cancer, 136(1), 234–240.PubMedCrossRef
125.
go back to reference Bastida, E., Escolar, G., Almirall, L., & Ordinas, A. (1986). Platelet activation induced by a human neuroblastoma tumor cell line is reduced by prior administration of ticlopidine. Thrombosis and Haemostasis, 55(3), 333–337.PubMed Bastida, E., Escolar, G., Almirall, L., & Ordinas, A. (1986). Platelet activation induced by a human neuroblastoma tumor cell line is reduced by prior administration of ticlopidine. Thrombosis and Haemostasis, 55(3), 333–337.PubMed
126.
go back to reference Mah-Becherel, M. C., Céraline, J., Deplanque, G., Chenard, M. P., Bergerat, J. P., Cazenave, J. P., & Klein-Soyer, C. (2002). Anti-angiogenic effects of the thienopyridine SR 25989 in vitro and in vivo in a murine pulmonary metastasis model. British Journal of Cancer, 86(5), 803–810.PubMedPubMedCentralCrossRef Mah-Becherel, M. C., Céraline, J., Deplanque, G., Chenard, M. P., Bergerat, J. P., Cazenave, J. P., & Klein-Soyer, C. (2002). Anti-angiogenic effects of the thienopyridine SR 25989 in vitro and in vivo in a murine pulmonary metastasis model. British Journal of Cancer, 86(5), 803–810.PubMedPubMedCentralCrossRef
127.
go back to reference Kohga, S., Kinjo, M., Tanaka, K., Ogawa, H., Ishihara, M., & Tanaka, N. (1981). Effects of 5-(2-chlorobenzyl)-4,5,6,7,-tetrahydrothieno[3,2-C]pyridine hydrochloride (ticlopidine), a platelet aggregation inhibitor, on blood-borne metastasis. Cancer Research, 41, 4710–4714.PubMed Kohga, S., Kinjo, M., Tanaka, K., Ogawa, H., Ishihara, M., & Tanaka, N. (1981). Effects of 5-(2-chlorobenzyl)-4,5,6,7,-tetrahydrothieno[3,2-C]pyridine hydrochloride (ticlopidine), a platelet aggregation inhibitor, on blood-borne metastasis. Cancer Research, 41, 4710–4714.PubMed
128.
go back to reference Fabra, A., de Castellarnau, C., Carretero, F., Martinez, E., Sancho, M. J., & Rutllant, M. L. (1987). Effects of ticlopidine on metastasis production in mice bearing Lewis lung carcinoma. Invasion & Metastasis, 7, 53–60. Fabra, A., de Castellarnau, C., Carretero, F., Martinez, E., Sancho, M. J., & Rutllant, M. L. (1987). Effects of ticlopidine on metastasis production in mice bearing Lewis lung carcinoma. Invasion & Metastasis, 7, 53–60.
129.
go back to reference Mezouar, S., Darbousset, R., Dignat-George, F., Panicot-Dubois, L., & Dubois, C. (2015). Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. International Journal of Cancer, 136(2), 462–475.PubMedCrossRef Mezouar, S., Darbousset, R., Dignat-George, F., Panicot-Dubois, L., & Dubois, C. (2015). Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. International Journal of Cancer, 136(2), 462–475.PubMedCrossRef
130.
go back to reference Geddings, J. E., Hisada, Y., Boulaftali, Y., Getz, T. M., Whelihan, M., Fuentes, R., et al. (2016). Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis, 14(1), 153–166.PubMedCrossRef Geddings, J. E., Hisada, Y., Boulaftali, Y., Getz, T. M., Whelihan, M., Fuentes, R., et al. (2016). Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis, 14(1), 153–166.PubMedCrossRef
131.
go back to reference Roop, R. P., Naughton, M. J., Van Poznak, C., Schneider, J. G., Lammers, P. E., Pluard, T. J., et al. (2013). A randomized phase II trial investigating the effect of platelet function inhibition on circulating tumor cells in patients with metastatic breast cancer. Clinical Breast Cancer, 13(6), 409–415.PubMedPubMedCentralCrossRef Roop, R. P., Naughton, M. J., Van Poznak, C., Schneider, J. G., Lammers, P. E., Pluard, T. J., et al. (2013). A randomized phase II trial investigating the effect of platelet function inhibition on circulating tumor cells in patients with metastatic breast cancer. Clinical Breast Cancer, 13(6), 409–415.PubMedPubMedCentralCrossRef
132.
go back to reference Serebruany, V. L. (2015). Ticagrelor shift from PLATO to PEGASUS: vanished mortality benefit, excess cancer deaths, massive discontinuations, and overshooting target events. International Journal of Cardiology, 201, 508–512.PubMedCrossRef Serebruany, V. L. (2015). Ticagrelor shift from PLATO to PEGASUS: vanished mortality benefit, excess cancer deaths, massive discontinuations, and overshooting target events. International Journal of Cardiology, 201, 508–512.PubMedCrossRef
133.
go back to reference Li, X., Fries, S., Li, R., Lawson, J. A., Propert, K. J., Diamond, S. L., et al. (2014). Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences, 111(47), 16830–16835.CrossRef Li, X., Fries, S., Li, R., Lawson, J. A., Propert, K. J., Diamond, S. L., et al. (2014). Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences, 111(47), 16830–16835.CrossRef
134.
go back to reference Jin, J., Quinton, T. M., Zhang, J., Rittenhouse, S. E., & Kunapuli, S. P. (2002). Adenosine diphosphate (ADP)-induced thromboxane a(2) generation in human platelets requires coordinated signaling through integrin alpha(IIb)beta(3) and ADP receptors. Blood, 99(1), 193–198.PubMedCrossRef Jin, J., Quinton, T. M., Zhang, J., Rittenhouse, S. E., & Kunapuli, S. P. (2002). Adenosine diphosphate (ADP)-induced thromboxane a(2) generation in human platelets requires coordinated signaling through integrin alpha(IIb)beta(3) and ADP receptors. Blood, 99(1), 193–198.PubMedCrossRef
135.
go back to reference Wei, C. K., Chang, F. R., Hsieh, P. W., & Wu, C. C. (2015). Inhibition of the interactions between metastatic human breast cancer cells and platelets by β-nitrostyrene derivatives. Life Sciences, 143, 147–155.PubMedCrossRef Wei, C. K., Chang, F. R., Hsieh, P. W., & Wu, C. C. (2015). Inhibition of the interactions between metastatic human breast cancer cells and platelets by β-nitrostyrene derivatives. Life Sciences, 143, 147–155.PubMedCrossRef
136.
go back to reference Uluçkan, O., Eagleton, M. C., Floyd, D. H., Morgan, E. A., Hirbe, A. C., Kramer, M., et al. (2008). APT102, a novel adpase, cooperates with aspirin to disrupt bone metastasis in mice. Journal of Cellular Biochemistry, 104(4), 1311–1323.PubMedPubMedCentralCrossRef Uluçkan, O., Eagleton, M. C., Floyd, D. H., Morgan, E. A., Hirbe, A. C., Kramer, M., et al. (2008). APT102, a novel adpase, cooperates with aspirin to disrupt bone metastasis in mice. Journal of Cellular Biochemistry, 104(4), 1311–1323.PubMedPubMedCentralCrossRef
137.
go back to reference Giordano, A., Musumeci, G., D'Angelillo, A., Rossini, R., Zoccai, G. B., Messina, S., et al. (2016). Effects of glycoprotein IIb/IIIa antagonists: anti-platelet aggregation and beyond. Current Drug Metabolism, 17(2), 194–203.PubMedCrossRef Giordano, A., Musumeci, G., D'Angelillo, A., Rossini, R., Zoccai, G. B., Messina, S., et al. (2016). Effects of glycoprotein IIb/IIIa antagonists: anti-platelet aggregation and beyond. Current Drug Metabolism, 17(2), 194–203.PubMedCrossRef
138.
go back to reference Dardik, R., Savion, N., Kaufmann, Y., & Varon, D. (1998). Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA. British Journal of Cancer, 77(12), 2069–2075.PubMedPubMedCentralCrossRef Dardik, R., Savion, N., Kaufmann, Y., & Varon, D. (1998). Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA. British Journal of Cancer, 77(12), 2069–2075.PubMedPubMedCentralCrossRef
139.
go back to reference Yu, Y., Zhou, X. D., Liu, Y. K., Ren, N., Chen, J., & Zhao, Y. J. (2002). Platelets promote the adhesion of human hepatoma cells with a highly metastatic potential to extracellular matrix protein: involvement of platelet P-selectin and GP IIb-IIIa. Journal Cancer Research and Clinical Oncology, 128(5), 283–287.PubMedCrossRef Yu, Y., Zhou, X. D., Liu, Y. K., Ren, N., Chen, J., & Zhao, Y. J. (2002). Platelets promote the adhesion of human hepatoma cells with a highly metastatic potential to extracellular matrix protein: involvement of platelet P-selectin and GP IIb-IIIa. Journal Cancer Research and Clinical Oncology, 128(5), 283–287.PubMedCrossRef
140.
go back to reference Stouffer, G. A., & Smyth, S. S. (2003). Effects of thrombin on interactions between beta3-integrins and extracellular matrix in platelets and vascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(11), 1971–1978.PubMedCrossRef Stouffer, G. A., & Smyth, S. S. (2003). Effects of thrombin on interactions between beta3-integrins and extracellular matrix in platelets and vascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(11), 1971–1978.PubMedCrossRef
141.
go back to reference Grossi, I. M., Fitzgerald, L. A., Kendall, A., Taylor, J. D., Sloane, B. F., & Honn, K. V. (1987). Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proceedings of the Society for Experimental Biology and Medicine, 186(3), 378–383.PubMedCrossRef Grossi, I. M., Fitzgerald, L. A., Kendall, A., Taylor, J. D., Sloane, B. F., & Honn, K. V. (1987). Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proceedings of the Society for Experimental Biology and Medicine, 186(3), 378–383.PubMedCrossRef
142.
go back to reference Karpatkin, S., Pearlstein, E., Ambrogio, C., & Coller, B. S. (1988). Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 81(4), 1012–1019.PubMedPubMedCentralCrossRef Karpatkin, S., Pearlstein, E., Ambrogio, C., & Coller, B. S. (1988). Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 81(4), 1012–1019.PubMedPubMedCentralCrossRef
143.
go back to reference Coller, B. S. (2001). Anti-GpIIb/IIIa drugs: current strategies and future directions. Thrombosis and Haemostasis, 86, 427–443.PubMed Coller, B. S. (2001). Anti-GpIIb/IIIa drugs: current strategies and future directions. Thrombosis and Haemostasis, 86, 427–443.PubMed
144.
go back to reference Huang, F., & Hong, E. (2004). Platelet glycoprotein IIb/IIIa inhibition and its clinical use. Cardiovascular & Hematological Agents in Medicinal Chemistry, 2(3), 187–196.CrossRef Huang, F., & Hong, E. (2004). Platelet glycoprotein IIb/IIIa inhibition and its clinical use. Cardiovascular & Hematological Agents in Medicinal Chemistry, 2(3), 187–196.CrossRef
145.
go back to reference Kononczuk, J., Surazynski, A., Czyzewska, U., Prokop, I., Tomczyk, M., Palka, J., & Miltyk, W. (2015). αIIbβ3-integrin ligands: abciximab and eptifibatide as proapoptotic factors in MCF-7 human breast cancer cells. Current Drug Targets, 16(13), 1429–1437.PubMedCrossRef Kononczuk, J., Surazynski, A., Czyzewska, U., Prokop, I., Tomczyk, M., Palka, J., & Miltyk, W. (2015). αIIbβ3-integrin ligands: abciximab and eptifibatide as proapoptotic factors in MCF-7 human breast cancer cells. Current Drug Targets, 16(13), 1429–1437.PubMedCrossRef
146.
go back to reference Hagemeyer, C. E., & Peter, K. (2010). Targeting the platelet integrin GPIIb/IIIa. Current Pharmaceutical Design, 16(37), 4119–4133.PubMedCrossRef Hagemeyer, C. E., & Peter, K. (2010). Targeting the platelet integrin GPIIb/IIIa. Current Pharmaceutical Design, 16(37), 4119–4133.PubMedCrossRef
147.
go back to reference Sheu, J. R., Lin, C. H., Peng, H. C., Teng, C. M., & Huang, T. F. (1993). Triflavin, an Arg-Gly-Asp-containing peptide, inhibits tumor cell-induced platelet aggregation. Japanese Journal of Cancer Research, 84(10), 1062–1071.PubMedCrossRef Sheu, J. R., Lin, C. H., Peng, H. C., Teng, C. M., & Huang, T. F. (1993). Triflavin, an Arg-Gly-Asp-containing peptide, inhibits tumor cell-induced platelet aggregation. Japanese Journal of Cancer Research, 84(10), 1062–1071.PubMedCrossRef
148.
go back to reference Lonsdorf, A. S., Krämer, B. F., Fahrleitner, M., Schönberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef Lonsdorf, A. S., Krämer, B. F., Fahrleitner, M., Schönberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef
149.
go back to reference Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74, 282–290.PubMed Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74, 282–290.PubMed
150.
go back to reference Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1990). Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor-cell-activated platelets and experimental metastasis. Platelets, 10, 285–292.CrossRef Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1990). Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor-cell-activated platelets and experimental metastasis. Platelets, 10, 285–292.CrossRef
151.
go back to reference Chiang, H. S., Swaim, M. W., & Huang, T. F. (1994). Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin. British Journal of Haematology, 87, 325–331.PubMedCrossRef Chiang, H. S., Swaim, M. W., & Huang, T. F. (1994). Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin. British Journal of Haematology, 87, 325–331.PubMedCrossRef
152.
go back to reference Chiang, H. S., Swaim, M. W., & Huang, T. F. (1995). The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells. British Journal of Cancer, 71, 265–270.PubMedPubMedCentralCrossRef Chiang, H. S., Swaim, M. W., & Huang, T. F. (1995). The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells. British Journal of Cancer, 71, 265–270.PubMedPubMedCentralCrossRef
153.
go back to reference Swaim, M. W., Chiang, H. S., & Huang, T. F. (1996). Characterisation of platelet aggregation induced by PC-3 human prostate adenocarcinoma cells and inhibited by venom peptides, trigramin and rhodostomin. European Journal of Cancer, 32A(4), 715–721.PubMedCrossRef Swaim, M. W., Chiang, H. S., & Huang, T. F. (1996). Characterisation of platelet aggregation induced by PC-3 human prostate adenocarcinoma cells and inhibited by venom peptides, trigramin and rhodostomin. European Journal of Cancer, 32A(4), 715–721.PubMedCrossRef
154.
go back to reference Bakewell, S. J., Nestor, P., Prasad, S., Tomasson, M. H., Dowland, N., Mehrotra, M., et al. (2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14205–14210.PubMedPubMedCentralCrossRef Bakewell, S. J., Nestor, P., Prasad, S., Tomasson, M. H., Dowland, N., Mehrotra, M., et al. (2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14205–14210.PubMedPubMedCentralCrossRef
155.
go back to reference Schneider, J. G., Amend, S. R., & Weilbaecher, K. N. (2011). Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone, 48(1), 54–65.PubMedCrossRef Schneider, J. G., Amend, S. R., & Weilbaecher, K. N. (2011). Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone, 48(1), 54–65.PubMedCrossRef
156.
go back to reference Esposito, M., & Kang, Y. (2014). Targeting tumor-stromal interactions in bone metastasis. Pharmacology Therapy, 141(2), 222–233.CrossRef Esposito, M., & Kang, Y. (2014). Targeting tumor-stromal interactions in bone metastasis. Pharmacology Therapy, 141(2), 222–233.CrossRef
157.
go back to reference Zhang, W., Dang, S., Hong, T., Tang, J., Fan, J., Bu, D., et al. (2012). A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood, 120(14), 2889–2898.PubMedPubMedCentralCrossRef Zhang, W., Dang, S., Hong, T., Tang, J., Fan, J., Bu, D., et al. (2012). A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood, 120(14), 2889–2898.PubMedPubMedCentralCrossRef
158.
go back to reference Amirkhosravi, A., Mousam, S. A., Amaya, M., Blaydes, S., Desai, H., Meyer, T., & Francis, J. L. (2003). Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454.Thrombosis and. Haemostasis, 90(3), 549–554. Amirkhosravi, A., Mousam, S. A., Amaya, M., Blaydes, S., Desai, H., Meyer, T., & Francis, J. L. (2003). Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454.Thrombosis and. Haemostasis, 90(3), 549–554.
159.
go back to reference Trikha, M., Zhou, Z., Jordan, J., & Nakada, M. T. (2000). ReoPro and m7E3 F(ab’)2 inhibit β3 integrin mediated tumor growh and angiogenesis. Proceedings of the American Association for Cancer Research, 42, 824 [Abstract]. Trikha, M., Zhou, Z., Jordan, J., & Nakada, M. T. (2000). ReoPro and m7E3 F(ab’)2 inhibit β3 integrin mediated tumor growh and angiogenesis. Proceedings of the American Association for Cancer Research, 42, 824 [Abstract].
160.
go back to reference Huang, Z., Miao, X., Patarroyo, M., Nilsson, G. P., Pernow, J., & Li, N. (2016). Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. Thrombosis and Haemostasis, 14(3), 606–618.CrossRef Huang, Z., Miao, X., Patarroyo, M., Nilsson, G. P., Pernow, J., & Li, N. (2016). Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. Thrombosis and Haemostasis, 14(3), 606–618.CrossRef
161.
go back to reference Zhu, G., Zhang, Q., Reddy, E.C., Carrim, N., Chen, Y., Xu, X.R., et al. (2017). Integrin PSI domain has endogenous thiol isomerase function and is a novel target for anti-platelet therapy. Blood, 2017 Jan 25. doi: 10.1182/blood-2016-07-729400. Zhu, G., Zhang, Q., Reddy, E.C., Carrim, N., Chen, Y., Xu, X.R., et al. (2017). Integrin PSI domain has endogenous thiol isomerase function and is a novel target for anti-platelet therapy. Blood, 2017 Jan 25. doi: 10.​1182/​blood-2016-07-729400.
162.
go back to reference Qian, W., Tao, L., Wang, Y., Zhang, F., Li, M., Huang, S., et al. (2015). Downregulation of Integrins in cancer cells and anti-platelet properties are involved in holothurian glycosaminoglycan-mediated disruption of the interaction of cancer cells and platelets in Hematogenous metastasis. Journal of Vascular Research, 52(3), 197–209.PubMedCrossRef Qian, W., Tao, L., Wang, Y., Zhang, F., Li, M., Huang, S., et al. (2015). Downregulation of Integrins in cancer cells and anti-platelet properties are involved in holothurian glycosaminoglycan-mediated disruption of the interaction of cancer cells and platelets in Hematogenous metastasis. Journal of Vascular Research, 52(3), 197–209.PubMedCrossRef
163.
go back to reference Hall, C. L., Dubyk, C. W., Riesenberger, T. A., Shein, D., Keller, E. T., & van Golen, K. L. (2008). Type I collagen receptor (alpha2beta1) signaling promotes prostate cancer invasion through RhoC GTPase. Neoplasia, 10(8), 797–803.PubMedPubMedCentralCrossRef Hall, C. L., Dubyk, C. W., Riesenberger, T. A., Shein, D., Keller, E. T., & van Golen, K. L. (2008). Type I collagen receptor (alpha2beta1) signaling promotes prostate cancer invasion through RhoC GTPase. Neoplasia, 10(8), 797–803.PubMedPubMedCentralCrossRef
164.
go back to reference Eke, I., Zscheppang, K., Dickreuter, E., Hickmann, L., Mazzeo, E., Unger, K., et al. (2015). Simultaneous β1 integrin-EGFR targeting and radiosensitization of human head and neck cancer. Journal of the National Cancer Institute, 107(2). doi:10.1093/jnci/dju419. Eke, I., Zscheppang, K., Dickreuter, E., Hickmann, L., Mazzeo, E., Unger, K., et al. (2015). Simultaneous β1 integrin-EGFR targeting and radiosensitization of human head and neck cancer. Journal of the National Cancer Institute, 107(2). doi:10.​1093/​jnci/​dju419.
165.
go back to reference Erpenbeck, L., & Schön, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef Erpenbeck, L., & Schön, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef
166.
go back to reference Bambace, N. M., & Holmes, C. E. (2011). The platelet contribution to cancer progression. Journal Thrombosis and Haemostasis, 9(2), 237–249.CrossRef Bambace, N. M., & Holmes, C. E. (2011). The platelet contribution to cancer progression. Journal Thrombosis and Haemostasis, 9(2), 237–249.CrossRef
167.
go back to reference Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal Thrombosis and Haemostasis, 7(10), 1713–1717.CrossRef Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal Thrombosis and Haemostasis, 7(10), 1713–1717.CrossRef
168.
go back to reference Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences, 104(21), 9024–9028.CrossRef Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences, 104(21), 9024–9028.CrossRef
169.
go back to reference Nieswandt, B., & Watson, S. P. (2003). Platelet-collagen interaction: is GPVI the central receptor? Blood, 102, 449–461.PubMedCrossRef Nieswandt, B., & Watson, S. P. (2003). Platelet-collagen interaction: is GPVI the central receptor? Blood, 102, 449–461.PubMedCrossRef
170.
go back to reference Erpenbeck, L., Nieswandt, B., Schön, M., Pozgajova, M., & Schön, M. P. Inhibition of platelet GPIbalpha and promotion of melanoma metastasis. Journal of Investigative Dermatology, 130(2), 576–586. Erpenbeck, L., Nieswandt, B., Schön, M., Pozgajova, M., & Schön, M. P. Inhibition of platelet GPIbalpha and promotion of melanoma metastasis. Journal of Investigative Dermatology, 130(2), 576–586.
172.
go back to reference Stevenson, J. L., Varki, A., & Borsig, L. (2007). Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thrombosis Research, 120(suppl2), S107–S111.PubMedCrossRef Stevenson, J. L., Varki, A., & Borsig, L. (2007). Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thrombosis Research, 120(suppl2), S107–S111.PubMedCrossRef
173.
go back to reference Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revised: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. PNAS, 98, 3352–3357.PubMedPubMedCentralCrossRef Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revised: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. PNAS, 98, 3352–3357.PubMedPubMedCentralCrossRef
174.
go back to reference Ludwig, R. J., Beohme, B., Podda, M., Henschler, R., Jager, E., Tandi, C., et al. (2004). Endothelial P-selectin as a target of heparinb action in experimental melanoma lung metastasis. Cancer Research, 64, 2743–2750.PubMedCrossRef Ludwig, R. J., Beohme, B., Podda, M., Henschler, R., Jager, E., Tandi, C., et al. (2004). Endothelial P-selectin as a target of heparinb action in experimental melanoma lung metastasis. Cancer Research, 64, 2743–2750.PubMedCrossRef
175.
go back to reference Kozlowski, E. O., Pavao, M. S., & Borsig, L. (2011). Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin. Journal Thrombosis and Haemostasis, 9(9), 1807–1815.CrossRef Kozlowski, E. O., Pavao, M. S., & Borsig, L. (2011). Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin. Journal Thrombosis and Haemostasis, 9(9), 1807–1815.CrossRef
176.
go back to reference Di Vito, C., Navone, S. E., Marfia, G., Abdel Hadi, L., Mancuso, M. E., Pecci, A., et al. (2016). Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release. Platelets, 29, 1–10. doi:10.1080/09537104.2016.1247208.CrossRef Di Vito, C., Navone, S. E., Marfia, G., Abdel Hadi, L., Mancuso, M. E., Pecci, A., et al. (2016). Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release. Platelets, 29, 1–10. doi:10.​1080/​09537104.​2016.​1247208.CrossRef
177.
go back to reference Nylander, S., Mattsson, C., Ramström, S., & Lindahl, T. L. (2003). The relative importance of the ADP receptors, P2Y12 and P2Y1, in thrombin-induced platelet activation. Thrombosis Research, 111(1–2), 65–73.PubMedCrossRef Nylander, S., Mattsson, C., Ramström, S., & Lindahl, T. L. (2003). The relative importance of the ADP receptors, P2Y12 and P2Y1, in thrombin-induced platelet activation. Thrombosis Research, 111(1–2), 65–73.PubMedCrossRef
178.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the Americsan Association for Cancer Research, Washington, Proceedings of AACR, 31, Abstract 476. Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the Americsan Association for Cancer Research, Washington, Proceedings of AACR, 31, Abstract 476.
179.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V.. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22. Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V.. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22.
180.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91. Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91.
181.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef
182.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.PubMedCrossRef
183.
go back to reference Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed
184.
go back to reference Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedPubMedCentralCrossRef Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedPubMedCentralCrossRef
185.
go back to reference Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMed Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMed
186.
go back to reference Pearlstein, E., Ambrogio, C., Gasic, G., Karpatkin, S., et al. (1982). Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor: dansylarginine N-(3-ethyl-1, 5-pentanediyl)amide. Progress in Clinical and Biological Research, 89, 479–502.PubMed Pearlstein, E., Ambrogio, C., Gasic, G., Karpatkin, S., et al. (1982). Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor: dansylarginine N-(3-ethyl-1, 5-pentanediyl)amide. Progress in Clinical and Biological Research, 89, 479–502.PubMed
187.
go back to reference Nieman, M. T., LaRusch, G., Fang, C., Zhou, Y., & Schmaier, A. H. (2010). Oral thrombostatin FM19 inhibits prostate cancer. Thrombosis and Haemostasis, 104(5), 1044–1048.PubMedPubMedCentralCrossRef Nieman, M. T., LaRusch, G., Fang, C., Zhou, Y., & Schmaier, A. H. (2010). Oral thrombostatin FM19 inhibits prostate cancer. Thrombosis and Haemostasis, 104(5), 1044–1048.PubMedPubMedCentralCrossRef
188.
go back to reference Lu, Q., Lv, M., Xu, E., Shao, F., Feng, Y., Yang, J., & Shi, L. (2015). Recombinant hirudin suppresses the viability, adhesion, migration and invasion of Hep-2 human laryngeal cancer cells. Oncology Reports, 33(3), 1358–1364.PubMed Lu, Q., Lv, M., Xu, E., Shao, F., Feng, Y., Yang, J., & Shi, L. (2015). Recombinant hirudin suppresses the viability, adhesion, migration and invasion of Hep-2 human laryngeal cancer cells. Oncology Reports, 33(3), 1358–1364.PubMed
189.
go back to reference Guo, R. R., Liu, Y., Lu, W. L., Zhao, J. H., Wang, X. Q., Zhang, H., et al. (2008). A recombinant peptide, hirudin, potentiates the inhibitory effects of stealthy liposomal vinblastine on the growth and metastasis of melanoma. Biological and Pharmacological Bulletin, 31(4), 696–702.CrossRef Guo, R. R., Liu, Y., Lu, W. L., Zhao, J. H., Wang, X. Q., Zhang, H., et al. (2008). A recombinant peptide, hirudin, potentiates the inhibitory effects of stealthy liposomal vinblastine on the growth and metastasis of melanoma. Biological and Pharmacological Bulletin, 31(4), 696–702.CrossRef
190.
go back to reference Sassi, M., Chakroun, T., Mbemba, E., Van Dreden, P., Elalamy, I., Larsen, A. K., & Gerotziafas, G. T. (2017). The antithrombotic potential of tinzaparin and enoxaparin upon thrombin generation triggered in vitro by human ovarian cancer cells IGROV1. Clinical and Applied Thrombosis/Hemostasis, 23(2), 155–163.PubMedCrossRef Sassi, M., Chakroun, T., Mbemba, E., Van Dreden, P., Elalamy, I., Larsen, A. K., & Gerotziafas, G. T. (2017). The antithrombotic potential of tinzaparin and enoxaparin upon thrombin generation triggered in vitro by human ovarian cancer cells IGROV1. Clinical and Applied Thrombosis/Hemostasis, 23(2), 155–163.PubMedCrossRef
191.
go back to reference Niers, T. M., Klerk, C. P., DiNisio, M., Van Noorden, C. J., Büller, H. R., Reitsma, P. H., & Richel, D. J. (2007). Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Critical Reviews in Oncology and Hematology, 61(3), 195–207.CrossRef Niers, T. M., Klerk, C. P., DiNisio, M., Van Noorden, C. J., Büller, H. R., Reitsma, P. H., & Richel, D. J. (2007). Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Critical Reviews in Oncology and Hematology, 61(3), 195–207.CrossRef
192.
go back to reference Laubli, H., & Borsig, L. (2009). Heparins attenuate cancer metastasis: are selectins the link? Cancer Investment, 27(5), 474–481.CrossRef Laubli, H., & Borsig, L. (2009). Heparins attenuate cancer metastasis: are selectins the link? Cancer Investment, 27(5), 474–481.CrossRef
193.
go back to reference Borsig, L. (2007). Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Seminars in Thrombosis and Hemostasis, 33(5), 540–546.PubMedCrossRef Borsig, L. (2007). Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Seminars in Thrombosis and Hemostasis, 33(5), 540–546.PubMedCrossRef
194.
go back to reference Varki, N. M., & Varki, A. (2002). Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Seminars in Thrombosis and Hemostasis, 28(1), 53–66.PubMedCrossRef Varki, N. M., & Varki, A. (2002). Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Seminars in Thrombosis and Hemostasis, 28(1), 53–66.PubMedCrossRef
195.
go back to reference Stevenson, J. L., Choi, S. H., & Varki, A. (2005). Differential metastasis inhibition by clinically relevant levels of heparins: correlation with selectin inhibition, not antithrombotic activity. Clinical Cancer Research, 11(19), 7003–7011.PubMedCrossRef Stevenson, J. L., Choi, S. H., & Varki, A. (2005). Differential metastasis inhibition by clinically relevant levels of heparins: correlation with selectin inhibition, not antithrombotic activity. Clinical Cancer Research, 11(19), 7003–7011.PubMedCrossRef
196.
go back to reference Gomes, A. M., Kozlowski, E. O., Borsig, L., Teixeira, F. C., Vlodavsky, I., & Pavão, M. S. (2015). Antitumor properties of a new non-anticoagulant heparin analog from the mollusc Nodipecten nodosus: effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology, 25(4), 386–393.PubMedCrossRef Gomes, A. M., Kozlowski, E. O., Borsig, L., Teixeira, F. C., Vlodavsky, I., & Pavão, M. S. (2015). Antitumor properties of a new non-anticoagulant heparin analog from the mollusc Nodipecten nodosus: effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology, 25(4), 386–393.PubMedCrossRef
197.
go back to reference Battinelli, E. M., Markens, B. A., Kulenthirarajan, R. A., Machlus, K. R., Flaumenhaft, R., & Italiano, J. E. (2014). Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response. Blood, 123(1), 101–112.PubMedPubMedCentralCrossRef Battinelli, E. M., Markens, B. A., Kulenthirarajan, R. A., Machlus, K. R., Flaumenhaft, R., & Italiano, J. E. (2014). Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response. Blood, 123(1), 101–112.PubMedPubMedCentralCrossRef
198.
go back to reference Goertz, L., Schneider, S. W., Desch, A., Mayer, F. T., Koett, J., Nowak, K., et al. (2016). Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget, 7(42), 68527–68545.PubMedPubMedCentralCrossRef Goertz, L., Schneider, S. W., Desch, A., Mayer, F. T., Koett, J., Nowak, K., et al. (2016). Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget, 7(42), 68527–68545.PubMedPubMedCentralCrossRef
199.
200.
go back to reference Asanuma, K., Wakabayashi, H., Okamoto, T., Asanuma, Y., Akita, N., Yoshikawa, T., et al. (2013). The thrombin inhibitor, argatroban, inhibits breast cancer metastasis to bone. Breast Cancer, 20(3), 241–246.PubMedCrossRef Asanuma, K., Wakabayashi, H., Okamoto, T., Asanuma, Y., Akita, N., Yoshikawa, T., et al. (2013). The thrombin inhibitor, argatroban, inhibits breast cancer metastasis to bone. Breast Cancer, 20(3), 241–246.PubMedCrossRef
201.
go back to reference Asanuma, K., Wakabayashi, H., Hayashi, T., Okuyama, N., Seto, M., Matsumine, A., Kusuzaki, K., et al. (2004). Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis. Oncology, 67(2), 166–173.PubMedCrossRef Asanuma, K., Wakabayashi, H., Hayashi, T., Okuyama, N., Seto, M., Matsumine, A., Kusuzaki, K., et al. (2004). Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis. Oncology, 67(2), 166–173.PubMedCrossRef
202.
go back to reference DeFeo, K., Hayes, C., Chernick, M., Ryn, J. V., & Gilmour, S. K. (2010). Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biology and Therapy, 10, 1001–1008.PubMedCrossRef DeFeo, K., Hayes, C., Chernick, M., Ryn, J. V., & Gilmour, S. K. (2010). Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biology and Therapy, 10, 1001–1008.PubMedCrossRef
203.
go back to reference Alexander, E. T., Minton, A. R., Hayes, C. S., Goss, A., Van Ryn, J., Gilmour, S. K., et al. (2015). Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biology & Therapy, 16(12), 1802–1811. doi:10.1080/15384047.2015.1078025.CrossRef Alexander, E. T., Minton, A. R., Hayes, C. S., Goss, A., Van Ryn, J., Gilmour, S. K., et al. (2015). Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biology & Therapy, 16(12), 1802–1811. doi:10.​1080/​15384047.​2015.​1078025.CrossRef
204.
go back to reference Alexander, E. T., Minton, A. R., Peters, M. C., van Ryn, J., & Gilmour, S. K. (2016). Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget, 7(51), 85291–85305.PubMedPubMedCentral Alexander, E. T., Minton, A. R., Peters, M. C., van Ryn, J., & Gilmour, S. K. (2016). Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget, 7(51), 85291–85305.PubMedPubMedCentral
205.
go back to reference Shi, K., Damhofer, H., Daalhuisen, J., Ten Brink, M., Richel, D. J., & Spek, C. A. (2017). Dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer in mice. Molecular Medicine, 6, 23. doi:10.2119/molmed.2016.00214. Shi, K., Damhofer, H., Daalhuisen, J., Ten Brink, M., Richel, D. J., & Spek, C. A. (2017). Dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer in mice. Molecular Medicine, 6, 23. doi:10.​2119/​molmed.​2016.​00214.
206.
go back to reference Vianello, F., Sambado, L., Goss, A., Fabris, F., & Prandoni, P. (2016). Dabigatran antagonizes growth, cell-cycle progression, migration, and endothelial tube formation induced by thrombin in breast and glioblastoma cell lines. Cancer Medicine, 5(10), 2886–2898.PubMedPubMedCentralCrossRef Vianello, F., Sambado, L., Goss, A., Fabris, F., & Prandoni, P. (2016). Dabigatran antagonizes growth, cell-cycle progression, migration, and endothelial tube formation induced by thrombin in breast and glioblastoma cell lines. Cancer Medicine, 5(10), 2886–2898.PubMedPubMedCentralCrossRef
207.
go back to reference Rousseau, A., Van Dreden, P., Mbemba, E., Elalamy, I., Larsen, A., & Gerotziafas, G. T. (2015). Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thrombosis Research, 136(6), 1273–1279.PubMedCrossRef Rousseau, A., Van Dreden, P., Mbemba, E., Elalamy, I., Larsen, A., & Gerotziafas, G. T. (2015). Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thrombosis Research, 136(6), 1273–1279.PubMedCrossRef
208.
go back to reference Kirwan, C. C., Bundred, N. J., Castle, J., Clarke, R., Dive, C., Morris, J., et al. (2016). PO-36 thrombin inhibition preoperatively (TIP) in early breast cancer, the first clinical trial of NOACs as an anti-cancer agent: trial methodology. Thrombosis Research, 140(Suppl 1), S189–S190. doi:10.1016/S0049-3848(16)30169-4.PubMedCrossRef Kirwan, C. C., Bundred, N. J., Castle, J., Clarke, R., Dive, C., Morris, J., et al. (2016). PO-36 thrombin inhibition preoperatively (TIP) in early breast cancer, the first clinical trial of NOACs as an anti-cancer agent: trial methodology. Thrombosis Research, 140(Suppl 1), S189–S190. doi:10.​1016/​S0049-3848(16)30169-4.PubMedCrossRef
209.
go back to reference Zhang, P., Feng, S., Liu, G., Wang, H., Zhu, H., Ren, Q., et al. (2016). Mutant B-Raf (V600E) promotes melanoma paracellular transmigration by inducing thrombin-mediated endothelial junction breakdown. Journal of Biological Chemistry, 291(5), 2087–2106.PubMedCrossRef Zhang, P., Feng, S., Liu, G., Wang, H., Zhu, H., Ren, Q., et al. (2016). Mutant B-Raf (V600E) promotes melanoma paracellular transmigration by inducing thrombin-mediated endothelial junction breakdown. Journal of Biological Chemistry, 291(5), 2087–2106.PubMedCrossRef
210.
go back to reference Kakkar AK. Low molecular weight heparin and survival in cancer. (2005). Haematological Report, 1: 27. Kakkar AK. Low molecular weight heparin and survival in cancer. (2005). Haematological Report, 1: 27.
211.
go back to reference Camerer, E., Qazi, A. A., Duong, D., Cornelissen, I., Advincula, R., & Coughlin, S. R. (2004). Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef Camerer, E., Qazi, A. A., Duong, D., Cornelissen, I., Advincula, R., & Coughlin, S. R. (2004). Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef
212.
go back to reference Etulain, J., Mena, H. A., Negrotto, S., & Schattner, M. (2015). Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets, 26(8), 799–804.PubMedCrossRef Etulain, J., Mena, H. A., Negrotto, S., & Schattner, M. (2015). Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets, 26(8), 799–804.PubMedCrossRef
213.
go back to reference Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Journal of Thrombosis and Haemostasis, 13(3), 465–476.PubMedCrossRef Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Journal of Thrombosis and Haemostasis, 13(3), 465–476.PubMedCrossRef
214.
go back to reference Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M., Oates, J. A., et al. (2011). Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arteriosclerosis, Thrombosis, Vascular, and Biology, 31(2), 435–442.CrossRef Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M., Oates, J. A., et al. (2011). Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arteriosclerosis, Thrombosis, Vascular, and Biology, 31(2), 435–442.CrossRef
215.
go back to reference Thomas, C. P., Morgan, L. T., Maskrey, B. H., Murphy, R. C., Kühn, H., Hazen, S. L., et al. (2010). Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. The Journal of Biological Chemistry, 285(10), 6891–6903.PubMedPubMedCentralCrossRef Thomas, C. P., Morgan, L. T., Maskrey, B. H., Murphy, R. C., Kühn, H., Hazen, S. L., et al. (2010). Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. The Journal of Biological Chemistry, 285(10), 6891–6903.PubMedPubMedCentralCrossRef
216.
go back to reference Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O'Callaghan, K., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedPubMedCentralCrossRef Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O'Callaghan, K., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedPubMedCentralCrossRef
217.
go back to reference Melnikova, V. O., Balasubramanian, K., Villares, G. J., Dobroff, A. S., Zigler, M., Wang, H., et al. (2009). Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanomacell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. Journal of Biological Chemistry, 284(42), 28845–28855.PubMedPubMedCentralCrossRef Melnikova, V. O., Balasubramanian, K., Villares, G. J., Dobroff, A. S., Zigler, M., Wang, H., et al. (2009). Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanomacell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. Journal of Biological Chemistry, 284(42), 28845–28855.PubMedPubMedCentralCrossRef
218.
go back to reference Hackler, P. C., Reuss, S., Konger, R. L., Travers, J. B., & Sahu, R. P. (2014). Systemic platelet-activating factor receptor activation augments experimental lung tumor growth and metastasis. Cancer Growth Metastasis, 7, 27–32.PubMedPubMedCentral Hackler, P. C., Reuss, S., Konger, R. L., Travers, J. B., & Sahu, R. P. (2014). Systemic platelet-activating factor receptor activation augments experimental lung tumor growth and metastasis. Cancer Growth Metastasis, 7, 27–32.PubMedPubMedCentral
219.
go back to reference Ferracini, M., Sahu, R. P., Harrison, K. A., Waeiss, R. A., Murphy, R. C., Jancar, S., et al. (2015). Topical photodynamic therapy induces systemic immunosuppression via generation of platelet-activating factor receptor ligands. Journal of Investigative Dermatology, 135(1), 321–323.PubMedCrossRef Ferracini, M., Sahu, R. P., Harrison, K. A., Waeiss, R. A., Murphy, R. C., Jancar, S., et al. (2015). Topical photodynamic therapy induces systemic immunosuppression via generation of platelet-activating factor receptor ligands. Journal of Investigative Dermatology, 135(1), 321–323.PubMedCrossRef
220.
go back to reference Sahu, R. P., Kozman, A. A., Yao, Y., DaSilva, S. C., Rezania, S., Martel, K. C., et al. (2012). Loss of the platelet activating factor receptor in mice augments PMA-induced inflammation and cutaneous chemical carcinogenesis. Carcinogenesis, 33(3), 694–701.PubMedPubMedCentralCrossRef Sahu, R. P., Kozman, A. A., Yao, Y., DaSilva, S. C., Rezania, S., Martel, K. C., et al. (2012). Loss of the platelet activating factor receptor in mice augments PMA-induced inflammation and cutaneous chemical carcinogenesis. Carcinogenesis, 33(3), 694–701.PubMedPubMedCentralCrossRef
221.
go back to reference Bihl, J. C., Rapp, C. M., Chen, Y., & Travers, J. B. (2016). UVB generates microvesicle particle release in part due to platelet-activating factor signaling. Photochemistry and Photobiology, 92(3), 503–506.PubMedPubMedCentralCrossRef Bihl, J. C., Rapp, C. M., Chen, Y., & Travers, J. B. (2016). UVB generates microvesicle particle release in part due to platelet-activating factor signaling. Photochemistry and Photobiology, 92(3), 503–506.PubMedPubMedCentralCrossRef
222.
go back to reference Sahu, R. P., Rezania, S., Ocana, J. A., DaSilva-Arnold, S. C., Bradish, J. R., Richey, J. D., et al. (2014). Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin. PloS One, 9(11), e111608.PubMedPubMedCentralCrossRef Sahu, R. P., Rezania, S., Ocana, J. A., DaSilva-Arnold, S. C., Bradish, J. R., Richey, J. D., et al. (2014). Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin. PloS One, 9(11), e111608.PubMedPubMedCentralCrossRef
223.
go back to reference Domiano, B. P., Derian, C. K., Maryanoff, B. E., Zhang, H. C., & Gordon, P. A. (2003). RWJ-58259: a selective antagonists of protease activated receptor-1. Cardiovascular Drug Review, 21, 313–326.CrossRef Domiano, B. P., Derian, C. K., Maryanoff, B. E., Zhang, H. C., & Gordon, P. A. (2003). RWJ-58259: a selective antagonists of protease activated receptor-1. Cardiovascular Drug Review, 21, 313–326.CrossRef
224.
go back to reference Hosokawa, K., Ohnishi, T., Miura, N., Sameshima, H., Koide, T., Tanaka, K. A., Maruyama, I., et al. (2014). Antithrombotic effects of PAR1 and PAR4 antagonists evaluated under flow and static conditions. Thrombosis Research, 133(1), 66–72.PubMedCrossRef Hosokawa, K., Ohnishi, T., Miura, N., Sameshima, H., Koide, T., Tanaka, K. A., Maruyama, I., et al. (2014). Antithrombotic effects of PAR1 and PAR4 antagonists evaluated under flow and static conditions. Thrombosis Research, 133(1), 66–72.PubMedCrossRef
225.
go back to reference Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, T., & N.E. (2006). Blockage of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, T., & N.E. (2006). Blockage of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef
226.
go back to reference Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedPubMedCentralCrossRef Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedPubMedCentralCrossRef
227.
go back to reference French, S. L., Arthur, J. F., Lee, H., Nesbitt, W. S., Andrews, R. K., Gardiner, E. E., & Hamilton, J. R. (2016). Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. Journal of Thrombosis and Haemostasis, 14(8), 1642–1654.PubMedCrossRef French, S. L., Arthur, J. F., Lee, H., Nesbitt, W. S., Andrews, R. K., Gardiner, E. E., & Hamilton, J. R. (2016). Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. Journal of Thrombosis and Haemostasis, 14(8), 1642–1654.PubMedCrossRef
228.
go back to reference Cunningham, M., McIntosh, K., Bushell, T., Sloan, G., & Plevin, R. (2016). Proteinase-activated receptors (PARs) as targets for antiplatelet therapy. Biochemical Society Transations, 44(2), 606–612.CrossRef Cunningham, M., McIntosh, K., Bushell, T., Sloan, G., & Plevin, R. (2016). Proteinase-activated receptors (PARs) as targets for antiplatelet therapy. Biochemical Society Transations, 44(2), 606–612.CrossRef
229.
go back to reference Ottaiano, T. F., Andrade, S. S., de Oliveira, C., Silva, M. C., Buri, M. V., Juliano, M. A., et al. (2017). Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie, 135, 72–81.PubMedCrossRef Ottaiano, T. F., Andrade, S. S., de Oliveira, C., Silva, M. C., Buri, M. V., Juliano, M. A., et al. (2017). Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie, 135, 72–81.PubMedCrossRef
230.
go back to reference Shirai, T., Inoue, O., Tamura, S., Tsukiji, N., Sasaki, T., Endo, H., et al. (2017). C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. Journal of Thrombosis and Haemostasis, 15(3), 513–525.PubMedCrossRef Shirai, T., Inoue, O., Tamura, S., Tsukiji, N., Sasaki, T., Endo, H., et al. (2017). C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. Journal of Thrombosis and Haemostasis, 15(3), 513–525.PubMedCrossRef
231.
go back to reference Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., Matsuura, N., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61.PubMed Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., Matsuura, N., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61.PubMed
232.
go back to reference Suzuki-Inoue, K. (2011). Essential in vivo roles of the platelet activation receptor CLEC-2 in tumor metastasis, lymphangiogenesis and thrombus formation. Journal of Biochemistry, 150(2), 127–132.PubMedCrossRef Suzuki-Inoue, K. (2011). Essential in vivo roles of the platelet activation receptor CLEC-2 in tumor metastasis, lymphangiogenesis and thrombus formation. Journal of Biochemistry, 150(2), 127–132.PubMedCrossRef
233.
go back to reference Chang, Y. W., Hsieh, P. W., Chang, Y. T., Lu, M. H., Huang, T. F., Chong, K. Y., et al. (2015). Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget, 6(40), 42733–42748.PubMedPubMedCentralCrossRef Chang, Y. W., Hsieh, P. W., Chang, Y. T., Lu, M. H., Huang, T. F., Chong, K. Y., et al. (2015). Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget, 6(40), 42733–42748.PubMedPubMedCentralCrossRef
234.
go back to reference Riedl, J., Preusser, M., Nazari, P. M., Posch, F., Panzer, S., Marosi, C., et al. (2017). Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. doi:10.1182/blood-2016-06-720714. Riedl, J., Preusser, M., Nazari, P. M., Posch, F., Panzer, S., Marosi, C., et al. (2017). Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. doi:10.​1182/​blood-2016-06-720714.
235.
go back to reference Lourbakos, A., Yuan, Y. P., Jenkins, A. L., Travis, J., Andrade-Gordon, P., Santulli, R., & Potempa, J. (2001). Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood, 97(12), 3790–3797.PubMedCrossRef Lourbakos, A., Yuan, Y. P., Jenkins, A. L., Travis, J., Andrade-Gordon, P., Santulli, R., & Potempa, J. (2001). Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood, 97(12), 3790–3797.PubMedCrossRef
236.
go back to reference Kida, Y., Higashimoto, Y., Inoue, H., Shimizu, T., & Kuwano, K. (2008). A novel secreted protease from Pseudomonas Aeruginosa activates NF-kappaB through protease-activated receptors. Cellular Microbiology, 10, 1491–1504.PubMedCrossRef Kida, Y., Higashimoto, Y., Inoue, H., Shimizu, T., & Kuwano, K. (2008). A novel secreted protease from Pseudomonas Aeruginosa activates NF-kappaB through protease-activated receptors. Cellular Microbiology, 10, 1491–1504.PubMedCrossRef
237.
go back to reference Dulon, S., Leduc, D., Cottrell, G. S., D'Alayer, J., Hansen, K. K., Bunnett, N. W., & Hollenberg, M. D. (2005). Pseudomonas Aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 32, 411–419.PubMedCrossRef Dulon, S., Leduc, D., Cottrell, G. S., D'Alayer, J., Hansen, K. K., Bunnett, N. W., & Hollenberg, M. D. (2005). Pseudomonas Aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 32, 411–419.PubMedCrossRef
238.
go back to reference Majumdar, S., Dutta, S., Das, T., Chattopadhyay, P., & Mukherjee, A. K. (2015). Antiplatelet and antithrombotic activity of a fibrin(ogen)olytic protease from Bacillus Cereus strain FF01. International Journal of Biological Macromolecules, 79, 477–489.PubMedCrossRef Majumdar, S., Dutta, S., Das, T., Chattopadhyay, P., & Mukherjee, A. K. (2015). Antiplatelet and antithrombotic activity of a fibrin(ogen)olytic protease from Bacillus Cereus strain FF01. International Journal of Biological Macromolecules, 79, 477–489.PubMedCrossRef
239.
go back to reference D'Asti, E., Chennakrishnaiah, S., Lee, T. H., & Rak, J. (2016). Extracellular vesicles in brain tumor progression. Cellular and Molecular Neurobiology, 36(3), 383–407.PubMedCrossRef D'Asti, E., Chennakrishnaiah, S., Lee, T. H., & Rak, J. (2016). Extracellular vesicles in brain tumor progression. Cellular and Molecular Neurobiology, 36(3), 383–407.PubMedCrossRef
240.
go back to reference Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P., & de Gruijl, T. D. (2014). Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochimica et Biophysica Acta, 1846(2), 560–575.PubMed Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P., & de Gruijl, T. D. (2014). Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochimica et Biophysica Acta, 1846(2), 560–575.PubMed
241.
go back to reference Laffont, B., Corduan, A., Plé, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef Laffont, B., Corduan, A., Plé, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef
242.
go back to reference Sadej, R., Grudowska, A., Turczyk, L., Kordek, R., & Romanska, H. M. (2014). CD151 in cancer progression and metastasis: a complex scenario. Laboratory Investigation, 94(1), 41–51.PubMedCrossRef Sadej, R., Grudowska, A., Turczyk, L., Kordek, R., & Romanska, H. M. (2014). CD151 in cancer progression and metastasis: a complex scenario. Laboratory Investigation, 94(1), 41–51.PubMedCrossRef
243.
go back to reference Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Lo Russo, L., et al. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615–1623.PubMedPubMedCentral Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Lo Russo, L., et al. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615–1623.PubMedPubMedCentral
244.
go back to reference Deng, Y. I., Verron, E., & Rohanizadeh, R. (2016). Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Research, 36(11), 5639–5647.PubMedCrossRef Deng, Y. I., Verron, E., & Rohanizadeh, R. (2016). Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Research, 36(11), 5639–5647.PubMedCrossRef
245.
go back to reference Lu, W. J., Chang, N. C., Jayakumar, T., Liao, J. C., Lin, M. J., Wang, S. H., et al. (2014). Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP. Thrombosis Research, 134(6), 1301–1310.PubMedCrossRef Lu, W. J., Chang, N. C., Jayakumar, T., Liao, J. C., Lin, M. J., Wang, S. H., et al. (2014). Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP. Thrombosis Research, 134(6), 1301–1310.PubMedCrossRef
246.
go back to reference Chang, Y., Hsu, W. H., Lu, W. J., Jayakumar, T., Liao, J. C., Lin, M. J., et al. (2015). Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation. Current Pharmaceutical Biotechnology, 16(5), 451–461.PubMedCrossRef Chang, Y., Hsu, W. H., Lu, W. J., Jayakumar, T., Liao, J. C., Lin, M. J., et al. (2015). Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation. Current Pharmaceutical Biotechnology, 16(5), 451–461.PubMedCrossRef
247.
go back to reference Jayakumar, T., Chiu, C. C., Wang, S. H., Chou, D. S., Huang, Y. K., & Sheu, J. R. (2014). Anti-cancer effects of CME-1, a novel polysaccharide, purified from the mycelia of Cordyceps sinensis against B16-F10 melanoma cells. Journal of Cancer Research Therapy, 10(1), 43–49.CrossRef Jayakumar, T., Chiu, C. C., Wang, S. H., Chou, D. S., Huang, Y. K., & Sheu, J. R. (2014). Anti-cancer effects of CME-1, a novel polysaccharide, purified from the mycelia of Cordyceps sinensis against B16-F10 melanoma cells. Journal of Cancer Research Therapy, 10(1), 43–49.CrossRef
248.
go back to reference Lin, K. H., Kuo, J. R., Lu, W. J., Chung, C. L., Chou, D. S., Huang, S. Y., Lee, H. C., et al. (2013). Hinokitiol inhibits platelet activation ex vivo and thrombus formation in vivo. Biochemical Pharmacology, 85(10), 1478–1485.PubMedCrossRef Lin, K. H., Kuo, J. R., Lu, W. J., Chung, C. L., Chou, D. S., Huang, S. Y., Lee, H. C., et al. (2013). Hinokitiol inhibits platelet activation ex vivo and thrombus formation in vivo. Biochemical Pharmacology, 85(10), 1478–1485.PubMedCrossRef
249.
go back to reference Lu, W. J., Wu, M. P., Lin, K. H., Lin, Y. C., Chou, H. C., & Sheu, J. R. (2014). Hinokitiol is a novel glycoprotein VI antagonist on human platelets. Platelets, 25(8), 595–602.PubMedCrossRef Lu, W. J., Wu, M. P., Lin, K. H., Lin, Y. C., Chou, H. C., & Sheu, J. R. (2014). Hinokitiol is a novel glycoprotein VI antagonist on human platelets. Platelets, 25(8), 595–602.PubMedCrossRef
250.
go back to reference Chen, X., Li, Q., Kan, X. X., Wang, Y. J., Li, Y. J., Yang, Q., et al. (2016). Extract of Caulis Spatholobi, a novel blocker targeting tumor cell induced platelet aggregation, inhibits breast cancer metastasis. Oncology Reports, 36(6), 3215–3224.PubMed Chen, X., Li, Q., Kan, X. X., Wang, Y. J., Li, Y. J., Yang, Q., et al. (2016). Extract of Caulis Spatholobi, a novel blocker targeting tumor cell induced platelet aggregation, inhibits breast cancer metastasis. Oncology Reports, 36(6), 3215–3224.PubMed
251.
go back to reference Sabrkhany, S., Griffioen, A. W., Pineda, S., Sanders, L., Mattheij, N., van Geffen, J. P., Aarts, M. J., et al. (2016). Sunitinib uptake inhibits platelet function in cancer patients. European Journal of Cancer, 66, 47–54.PubMedCrossRef Sabrkhany, S., Griffioen, A. W., Pineda, S., Sanders, L., Mattheij, N., van Geffen, J. P., Aarts, M. J., et al. (2016). Sunitinib uptake inhibits platelet function in cancer patients. European Journal of Cancer, 66, 47–54.PubMedCrossRef
252.
go back to reference Alonso-Escolano, D., Medina, C., Cieslik, K., Radomski, A., Jurasz, P., Santos-Martínez, M. J., et al. (2006). Protein kinase C delta mediates platelet-induced breast cancer cell invasion. Journal of Pharmacology and Experimental Therapeutics, 318(1), 373–380.PubMedCrossRef Alonso-Escolano, D., Medina, C., Cieslik, K., Radomski, A., Jurasz, P., Santos-Martínez, M. J., et al. (2006). Protein kinase C delta mediates platelet-induced breast cancer cell invasion. Journal of Pharmacology and Experimental Therapeutics, 318(1), 373–380.PubMedCrossRef
253.
go back to reference Zhao, L., Lu, G., Zhao, Q., Zhang, M., Chen, M., Zhang, J., & Dai, K. (2015). Staurosporine induces platelet apoptosis through p38 mitogen-activated protein kinase signaling pathway. Clinical Laboratory, 61(7), 717–726.PubMed Zhao, L., Lu, G., Zhao, Q., Zhang, M., Chen, M., Zhang, J., & Dai, K. (2015). Staurosporine induces platelet apoptosis through p38 mitogen-activated protein kinase signaling pathway. Clinical Laboratory, 61(7), 717–726.PubMed
254.
go back to reference Lesyk, G., Fong, T., Ruvolo, P. P., & Jurasz, P. (2015). The potential of enzastaurin to enhance platelet aggregation and growth factor secretion: implications for cancer cell survival. Journal of Thrombosis and Haemostasis, 13(8), 1514–1520.PubMedCrossRef Lesyk, G., Fong, T., Ruvolo, P. P., & Jurasz, P. (2015). The potential of enzastaurin to enhance platelet aggregation and growth factor secretion: implications for cancer cell survival. Journal of Thrombosis and Haemostasis, 13(8), 1514–1520.PubMedCrossRef
255.
go back to reference Fuentes, E., Rojas, A., & Palomo, I. (2016). NF-κB signaling pathway as target for antiplatelet activity. Blood Review, 30(4), 309–315.CrossRef Fuentes, E., Rojas, A., & Palomo, I. (2016). NF-κB signaling pathway as target for antiplatelet activity. Blood Review, 30(4), 309–315.CrossRef
256.
go back to reference Chang, C. C., Lu, W. J., Ong, E. T., Chiang, C. W., Lin, S. C., Huang, S. Y., & Sheu, J. R. (2011). A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation. Journal of Biomedical Science, 18, 93.PubMedPubMedCentralCrossRef Chang, C. C., Lu, W. J., Ong, E. T., Chiang, C. W., Lin, S. C., Huang, S. Y., & Sheu, J. R. (2011). A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation. Journal of Biomedical Science, 18, 93.PubMedPubMedCentralCrossRef
257.
go back to reference Mehta, P., Kimura, A., & Lawson, D. (1990). Effects of calcium channel-blocking agents on platelet-osteogenic sarcoma interaction: platelet aggregation and electron microscopic findings. Journal of Orthopeadic Research, 8(5), 629–634.CrossRef Mehta, P., Kimura, A., & Lawson, D. (1990). Effects of calcium channel-blocking agents on platelet-osteogenic sarcoma interaction: platelet aggregation and electron microscopic findings. Journal of Orthopeadic Research, 8(5), 629–634.CrossRef
258.
go back to reference Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Münch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40.PubMedCrossRef Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Münch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40.PubMedCrossRef
259.
go back to reference Lou, X. L., Sun, J., Gong, S. Q., Yu, X. F., Gong, R., & Deng, H. (2015). Interaction between circulating cancer cells and platelets: clinical implication. Chinese Journal of Cancer Research, 27(5), 450–460.PubMedPubMedCentral Lou, X. L., Sun, J., Gong, S. Q., Yu, X. F., Gong, R., & Deng, H. (2015). Interaction between circulating cancer cells and platelets: clinical implication. Chinese Journal of Cancer Research, 27(5), 450–460.PubMedPubMedCentral
260.
go back to reference Almiron Bonnin, D. A., Ran, C., Havrda, M. C., Liu, H., Hitoshi, Y., Zhang, Z., et al. (2017). Insulin-mediated signaling facilitates resistance to in proneural hPDGFB-driven gliomas. Molecular Cancer Therapeutics. doi:10.1158/1535-7163.MCT-16-0616. Almiron Bonnin, D. A., Ran, C., Havrda, M. C., Liu, H., Hitoshi, Y., Zhang, Z., et al. (2017). Insulin-mediated signaling facilitates resistance to in proneural hPDGFB-driven gliomas. Molecular Cancer Therapeutics. doi:10.​1158/​1535-7163.​MCT-16-0616.
261.
go back to reference Heske, C. M., Yeung, C., Mendoza, A., Baumgart, J. T., Edessa, L. D., Wan, X., & Helman, L. J. (2016). The role of PDGFR-β activation in acquired resistance to IGF-1R blockade in preclinical models of rhabdomyosarcoma. Translational Oncology, 9(6), 540–547.PubMedPubMedCentralCrossRef Heske, C. M., Yeung, C., Mendoza, A., Baumgart, J. T., Edessa, L. D., Wan, X., & Helman, L. J. (2016). The role of PDGFR-β activation in acquired resistance to IGF-1R blockade in preclinical models of rhabdomyosarcoma. Translational Oncology, 9(6), 540–547.PubMedPubMedCentralCrossRef
262.
go back to reference Kwon, H. J., Kim, G. E., Lee, Y. T., Jeong, M. S., Kang, I., Yang, D., & Yeo, E. J. (2013). Inhibition of platelet-derived growth factor receptor tyrosine kinase and downstream signaling pathways by Compound C. Cellular Signalling, 25(4), 883–897.PubMedCrossRef Kwon, H. J., Kim, G. E., Lee, Y. T., Jeong, M. S., Kang, I., Yang, D., & Yeo, E. J. (2013). Inhibition of platelet-derived growth factor receptor tyrosine kinase and downstream signaling pathways by Compound C. Cellular Signalling, 25(4), 883–897.PubMedCrossRef
263.
go back to reference Johnson, K. E., Forward, J. A., Tippy, M. D., Ceglowski, J. R., El-Husayni, S., Kulenthirarajan, R., Machlus, K. R., et al. (2017). Tamoxifen directly inhibits platelet Angiogenic potential and platelet-mediated metastasis. Arteriosclerosis, Thrombosis, and Vascular Biology. doi:10.1161/ATVBAHA.116.308791. Johnson, K. E., Forward, J. A., Tippy, M. D., Ceglowski, J. R., El-Husayni, S., Kulenthirarajan, R., Machlus, K. R., et al. (2017). Tamoxifen directly inhibits platelet Angiogenic potential and platelet-mediated metastasis. Arteriosclerosis, Thrombosis, and Vascular Biology. doi:10.​1161/​ATVBAHA.​116.​308791.
Metadata
Title
Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?
Authors
Marek Z. Wojtukiewicz
Dominika Hempel
Ewa Sierko
Stephanie C. Tucker
Kenneth V. Honn
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9683-z

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine