Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

01-06-2017

The influence of platelet membranes on tumour cell behaviour

Authors: LA Coupland, EJ Hindmarsh, EE Gardiner, CR Parish

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

The significant role of platelets in the protection of tumour cells from immune attack and shear forces and the promotion of tumour cell extravasation from the bloodstream in the process of haematogenous metastasis have been extensively studied. The role of platelets, and in particular platelet membranes, in the promotion of a more metastatic phenotype in tumour cells is a more recent and, therefore, less well-recognised area of research. This review article summarises studies that have focused on the impact of tumour cell interactions with platelets and platelet membranes on tumour cell behaviour in vitro and in vivo. Furthermore, the gene expression changes that occur within tumour cells following contact with platelet membranes are also extensively reviewed. Overall, the interaction of platelet membranes with tumour cells results in a more invasive phenotype and the promotion of epithelial to mesenchymal transition with our own genetic studies revealing that matrix metalloproteinase-1, plasminogen activator inhibitor-1 and interleukin-8 are globally upregulated in a range of tumour cell lines.
Literature
1.
go back to reference Liotta, L. A. (1992). Cancer cell invasion and metastasis. Scientific American, 266(2), 54–59 62–53.CrossRefPubMed Liotta, L. A. (1992). Cancer cell invasion and metastasis. Scientific American, 266(2), 54–59 62–53.CrossRefPubMed
2.
go back to reference Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed
3.
go back to reference Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.CrossRefPubMed Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.CrossRefPubMed
6.
go back to reference Meikle, C. K., Kelly, C. A., Garg, P., Wuescher, L. M., Ali, R. A., & Worth, R. G. (2016). Cancer and thrombosis: the platelet perspective. Frontiers in Cell and Development Biology, 4, 147. doi:10.3389/fcell.2016.00147. Meikle, C. K., Kelly, C. A., Garg, P., Wuescher, L. M., Ali, R. A., & Worth, R. G. (2016). Cancer and thrombosis: the platelet perspective. Frontiers in Cell and Development Biology, 4, 147. doi:10.​3389/​fcell.​2016.​00147.
8.
go back to reference Baj-Krzyworzeka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30(5), 450–459.CrossRefPubMed Baj-Krzyworzeka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30(5), 450–459.CrossRefPubMed
9.
go back to reference Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M., & Ratajczak, M. Z. (2006). Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 46(7), 1199–1209.CrossRefPubMed Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M., & Ratajczak, M. Z. (2006). Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 46(7), 1199–1209.CrossRefPubMed
10.
go back to reference Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124(8), 1773–1777. doi:10.1002/ijc.24016.CrossRefPubMed Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124(8), 1773–1777. doi:10.​1002/​ijc.​24016.CrossRefPubMed
11.
go back to reference Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.CrossRefPubMedPubMedCentral Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.CrossRefPubMedPubMedCentral
13.
go back to reference Orellana, R., Kato, S., Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., et al. (2015). Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer, 15, 290. doi:10.1186/s12885-015-1304-z.CrossRefPubMedPubMedCentral Orellana, R., Kato, S., Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., et al. (2015). Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer, 15, 290. doi:10.​1186/​s12885-015-1304-z.CrossRefPubMedPubMedCentral
14.
go back to reference Pang, J. H., Coupland, L. A., Freeman, C., Chong, B. H., & Parish, C. R. (2015). Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clinical & Experimental Metastasis, 32(5), 495–505. doi:10.1007/s10585-015-9722-5.CrossRef Pang, J. H., Coupland, L. A., Freeman, C., Chong, B. H., & Parish, C. R. (2015). Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clinical & Experimental Metastasis, 32(5), 495–505. doi:10.​1007/​s10585-015-9722-5.CrossRef
15.
go back to reference Dovizio, M., Alberti, S., Sacco, A., Guillem-Llobat, P., Schiavone, S., Maier, T. J., et al. (2015). Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochemical Society Transactions, 43(4), 707–714. doi:10.1042/BST20140322.CrossRefPubMedPubMedCentral Dovizio, M., Alberti, S., Sacco, A., Guillem-Llobat, P., Schiavone, S., Maier, T. J., et al. (2015). Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochemical Society Transactions, 43(4), 707–714. doi:10.​1042/​BST20140322.CrossRefPubMedPubMedCentral
16.
go back to reference Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.CrossRefPubMedPubMedCentral Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.CrossRefPubMedPubMedCentral
17.
go back to reference Karpatkin, S., & Pearlstein, E. (1981). Role of platelets in tumor cell metastasis. [Review]. Annals of Internal Medicine, 95(5), 636–641.CrossRefPubMed Karpatkin, S., & Pearlstein, E. (1981). Role of platelets in tumor cell metastasis. [Review]. Annals of Internal Medicine, 95(5), 636–641.CrossRefPubMed
18.
go back to reference Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9325–9330.CrossRefPubMedPubMedCentral Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9325–9330.CrossRefPubMedPubMedCentral
19.
go back to reference Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1999). Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets, 10(5), 285–292. doi:10.1080/09537109975915.CrossRefPubMed Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1999). Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets, 10(5), 285–292. doi:10.​1080/​09537109975915.CrossRefPubMed
20.
go back to reference Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed
21.
go back to reference Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9024–9028.CrossRefPubMedPubMedCentral Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9024–9028.CrossRefPubMedPubMedCentral
22.
go back to reference Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61. doi:10.1111/j.1349-7006.2007.00634.x.PubMed Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61. doi:10.​1111/​j.​1349-7006.​2007.​00634.​x.PubMed
23.
go back to reference Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal of Thrombosis and Haemostasis, 7(10), 1713–1717.CrossRefPubMed Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal of Thrombosis and Haemostasis, 7(10), 1713–1717.CrossRefPubMed
24.
go back to reference Coupland, L. A., Chong, B. H., & Parish, C. R. (2012). Platelets and P-Selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Research, 72(18), 4662–4671. Coupland, L. A., Chong, B. H., & Parish, C. R. (2012). Platelets and P-Selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Research, 72(18), 4662–4671.
25.
go back to reference Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.CrossRefPubMed Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.CrossRefPubMed
26.
go back to reference Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., & Munn, L. L. (2000). Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14608–14613.CrossRefPubMedPubMedCentral Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., & Munn, L. L. (2000). Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14608–14613.CrossRefPubMedPubMedCentral
27.
go back to reference Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760.CrossRefPubMed Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760.CrossRefPubMed
28.
go back to reference Park, H. B., Yang, J. H., & Chung, K. H. (2011). Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. Korean Journal of Hematology, 46(4), 265–273. doi:10.5045/kjh.2011.46.4.265.CrossRefPubMedPubMedCentral Park, H. B., Yang, J. H., & Chung, K. H. (2011). Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. Korean Journal of Hematology, 46(4), 265–273. doi:10.​5045/​kjh.​2011.​46.​4.​265.CrossRefPubMedPubMedCentral
31.
go back to reference Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Munch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40. doi:10.1124/mol.113.084988.CrossRefPubMed Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Munch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40. doi:10.​1124/​mol.​113.​084988.CrossRefPubMed
32.
go back to reference Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.CrossRefPubMed Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.CrossRefPubMed
33.
go back to reference Martin-Villar, E., Megias, D., Castel, S., Yurrita, M. M., Vilaro, S., & Quintanilla, M. (2006). Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science, 119(Pt 21), 4541–4553. doi:10.1242/jcs.03218.CrossRefPubMed Martin-Villar, E., Megias, D., Castel, S., Yurrita, M. M., Vilaro, S., & Quintanilla, M. (2006). Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science, 119(Pt 21), 4541–4553. doi:10.​1242/​jcs.​03218.CrossRefPubMed
35.
37.
go back to reference Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., et al. (2014). Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nature Communications, 5, 5256. doi:10.1038/ncomms6256.CrossRefPubMed Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., et al. (2014). Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nature Communications, 5, 5256. doi:10.​1038/​ncomms6256.CrossRefPubMed
38.
go back to reference Zhang, G., Han, J., Welch, E. J., Ye, R. D., Voyno-Yasenetskaya, T. A., Malik, A. B., et al. (2009). Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. Journal of Immunology, 182(12), 7997–8004. doi:10.4049/jimmunol.0802884.CrossRef Zhang, G., Han, J., Welch, E. J., Ye, R. D., Voyno-Yasenetskaya, T. A., Malik, A. B., et al. (2009). Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. Journal of Immunology, 182(12), 7997–8004. doi:10.​4049/​jimmunol.​0802884.CrossRef
40.
go back to reference Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., et al. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302(5642), 103–106. doi:10.1126/science.1086652.CrossRefPubMed Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., et al. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302(5642), 103–106. doi:10.​1126/​science.​1086652.CrossRefPubMed
41.
go back to reference Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D., Monkley, S., Critchley, D., et al. (2007). Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. The Journal of Experimental Medicine, 204(13), 3113–3118. doi:10.1084/jem.20071827.CrossRefPubMedPubMedCentral Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D., Monkley, S., Critchley, D., et al. (2007). Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. The Journal of Experimental Medicine, 204(13), 3113–3118. doi:10.​1084/​jem.​20071827.CrossRefPubMedPubMedCentral
42.
go back to reference Petrich, B. G., Marchese, P., Ruggeri, Z. M., Spiess, S., Weichert, R. A., Ye, F., et al. (2007). Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. The Journal of Experimental Medicine, 204(13), 3103–3111. doi:10.1084/jem.20071800.CrossRefPubMedPubMedCentral Petrich, B. G., Marchese, P., Ruggeri, Z. M., Spiess, S., Weichert, R. A., Ye, F., et al. (2007). Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. The Journal of Experimental Medicine, 204(13), 3103–3111. doi:10.​1084/​jem.​20071800.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investigation, 114(12), 1714–1725.CrossRefPubMedPubMedCentral Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investigation, 114(12), 1714–1725.CrossRefPubMedPubMedCentral
46.
go back to reference Mannori, G., Crottet, P., Cecconi, O., Hanasaki, K., Aruffo, A., Nelson, R. M., et al. (1995). Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Research, 55(19), 4425–4431.PubMed Mannori, G., Crottet, P., Cecconi, O., Hanasaki, K., Aruffo, A., Nelson, R. M., et al. (1995). Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Research, 55(19), 4425–4431.PubMed
51.
go back to reference Sunami, E., Tsuno, N., Osada, T., Saito, S., Kitayama, J., Tomozawa, S., et al. (2000). MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. The Oncologist, 5(2), 108–114.CrossRefPubMed Sunami, E., Tsuno, N., Osada, T., Saito, S., Kitayama, J., Tomozawa, S., et al. (2000). MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. The Oncologist, 5(2), 108–114.CrossRefPubMed
54.
go back to reference Andreasen, P. A. (2007). PAI-1—a potential therapeutic target in cancer. Current Drug Targets, 8(9), 1030–1041.CrossRefPubMed Andreasen, P. A. (2007). PAI-1—a potential therapeutic target in cancer. Current Drug Targets, 8(9), 1030–1041.CrossRefPubMed
55.
56.
go back to reference David, J. M., Dominguez, C., Hamilton, D. H., & Palena, C. (2016). The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines, 4(3), 22–37. David, J. M., Dominguez, C., Hamilton, D. H., & Palena, C. (2016). The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines, 4(3), 22–37.
61.
62.
go back to reference Holting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132(2), 229–235.CrossRefPubMed Holting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132(2), 229–235.CrossRefPubMed
65.
go back to reference Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., et al. (2006). The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Reviews, 25(3), 387–408. doi:10.1007/s10555-006-9004-4.CrossRefPubMed Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., et al. (2006). The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Reviews, 25(3), 387–408. doi:10.​1007/​s10555-006-9004-4.CrossRefPubMed
67.
go back to reference Gouveia-Fernandes, S., Carvalho, T., Domingues, G., Bordeira-Carrico, R., Dias, S., & Serpa, J. (2016). Colorectal cancer aggressiveness is related to fibronectin over expression, driving the activation of SDF-1:CXCR4 axis. International Journal of Cancer and Clinical Research, 3(8), 72–81. Gouveia-Fernandes, S., Carvalho, T., Domingues, G., Bordeira-Carrico, R., Dias, S., & Serpa, J. (2016). Colorectal cancer aggressiveness is related to fibronectin over expression, driving the activation of SDF-1:CXCR4 axis. International Journal of Cancer and Clinical Research, 3(8), 72–81.
68.
go back to reference Yan, T., Lin, Z., Jiang, J., Lu, S., Chen, M., Que, H., et al. (2015). MMP14 regulates cell migration and invasion through epithelial-mesenchymal transition in nasopharyngeal carcinoma. American Journal of Translational Research, 7(5), 950–958.PubMedPubMedCentral Yan, T., Lin, Z., Jiang, J., Lu, S., Chen, M., Que, H., et al. (2015). MMP14 regulates cell migration and invasion through epithelial-mesenchymal transition in nasopharyngeal carcinoma. American Journal of Translational Research, 7(5), 950–958.PubMedPubMedCentral
69.
go back to reference Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., et al. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76(5), 622–627.CrossRefPubMedPubMedCentral Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., et al. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76(5), 622–627.CrossRefPubMedPubMedCentral
70.
go back to reference Robert, C., Bolon, I., Gazzeri, S., Veyrenc, S., Brambilla, C., & Brambilla, E. (1999). Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clinical Cancer Research, 5(8), 2094–2102.PubMed Robert, C., Bolon, I., Gazzeri, S., Veyrenc, S., Brambilla, C., & Brambilla, E. (1999). Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clinical Cancer Research, 5(8), 2094–2102.PubMed
71.
go back to reference Su, C. Y., Liu, Y. P., Yang, C. J., Lin, Y. F., Chiou, J., Chi, L. H., et al. (2015). Plasminogen activator inhibitor-2 plays a leading prognostic role among protease families in non-small cell lung cancer. PloS One, 10(7), 1–15. Su, C. Y., Liu, Y. P., Yang, C. J., Lin, Y. F., Chiou, J., Chi, L. H., et al. (2015). Plasminogen activator inhibitor-2 plays a leading prognostic role among protease families in non-small cell lung cancer. PloS One, 10(7), 1–15.
73.
go back to reference Mao, X., Gauche, C., Coughtrie, M. W., Bui, C., Gulberti, S., Merhi-Soussi, F., et al. (2016). The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer. Oncogene, 35(38), 5043–5055. doi:10.1038/onc.2016.44.CrossRefPubMed Mao, X., Gauche, C., Coughtrie, M. W., Bui, C., Gulberti, S., Merhi-Soussi, F., et al. (2016). The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer. Oncogene, 35(38), 5043–5055. doi:10.​1038/​onc.​2016.​44.CrossRefPubMed
74.
go back to reference Chen, Y., Satoh, T., Sasatomi, E., Miyazaki, K., & Tokunaga, O. (2001). Critical role of type IV collagens in the growth of bile duct carcinoma. In vivo and in vitro studies. Pathology, Research and Practice, 197(9), 585–596. doi:10.1078/0344-0338-00132.PubMed Chen, Y., Satoh, T., Sasatomi, E., Miyazaki, K., & Tokunaga, O. (2001). Critical role of type IV collagens in the growth of bile duct carcinoma. In vivo and in vitro studies. Pathology, Research and Practice, 197(9), 585–596. doi:10.​1078/​0344-0338-00132.PubMed
76.
78.
go back to reference Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., et al. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189. doi:10.1152/ajpcell.00196.2016.CrossRefPubMed Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., et al. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189. doi:10.​1152/​ajpcell.​00196.​2016.CrossRefPubMed
79.
go back to reference Savore, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., et al. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clinical & Experimental Metastasis, 22(5), 377–390. doi:10.1007/s10585-005-2339-3.CrossRef Savore, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., et al. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clinical & Experimental Metastasis, 22(5), 377–390. doi:10.​1007/​s10585-005-2339-3.CrossRef
80.
go back to reference Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A., & Sutherland, R. L. (2011). Cyclin D as a therapeutic target in cancer. Nature Reviews. Cancer, 11(8), 558–572. doi:10.1038/nrc3090.CrossRefPubMed Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A., & Sutherland, R. L. (2011). Cyclin D as a therapeutic target in cancer. Nature Reviews. Cancer, 11(8), 558–572. doi:10.​1038/​nrc3090.CrossRefPubMed
81.
82.
go back to reference Song, G., Xu, S., Zhang, H., Wang, Y., Xiao, C., Jiang, T., et al. (2016). TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. Journal of Experimental & Clinical Cancer Research, 35(1), 148. doi:10.1186/s13046-016-0427-7.CrossRef Song, G., Xu, S., Zhang, H., Wang, Y., Xiao, C., Jiang, T., et al. (2016). TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. Journal of Experimental & Clinical Cancer Research, 35(1), 148. doi:10.​1186/​s13046-016-0427-7.CrossRef
83.
go back to reference Honn, K. V., Cavanaugh, P., Evens, C., Taylor, J. D., & Sloane, B. F. (1982). Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science, 217(4559), 540–542.CrossRefPubMed Honn, K. V., Cavanaugh, P., Evens, C., Taylor, J. D., & Sloane, B. F. (1982). Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science, 217(4559), 540–542.CrossRefPubMed
85.
go back to reference Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., et al. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death & Disease, 5, e1263. doi:10.1038/cddis.2014.206.CrossRef Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., et al. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death & Disease, 5, e1263. doi:10.​1038/​cddis.​2014.​206.CrossRef
86.
go back to reference Gajulapalli, V. N., Samanthapudi, V. S., Pulaganti, M., Khumukcham, S. S., Malisetty, V. L., Guruprasad, L., et al. (2016). A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells. The Biochemical Journal, 473(8), 1047–1061. doi:10.1042/BCJ20160019.CrossRefPubMed Gajulapalli, V. N., Samanthapudi, V. S., Pulaganti, M., Khumukcham, S. S., Malisetty, V. L., Guruprasad, L., et al. (2016). A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells. The Biochemical Journal, 473(8), 1047–1061. doi:10.​1042/​BCJ20160019.CrossRefPubMed
87.
go back to reference Rizzolio, S., & Tamagnone, L. (2007). Semaphorin signals on the road to cancer invasion and metastasis. Cell Adhesion & Migration, 1(2), 62–68.CrossRef Rizzolio, S., & Tamagnone, L. (2007). Semaphorin signals on the road to cancer invasion and metastasis. Cell Adhesion & Migration, 1(2), 62–68.CrossRef
88.
go back to reference Daniel-Carmi, V., Makovitzki-Avraham, E., Reuven, E. M., Goldstein, I., Zilkha, N., Rotter, V., et al. (2009). The human 1-8D gene (IFITM2) is a novel p53 independent pro-apoptotic gene. International Journal of Cancer, 125(12), 2810–2819. doi:10.1002/ijc.24669.CrossRefPubMed Daniel-Carmi, V., Makovitzki-Avraham, E., Reuven, E. M., Goldstein, I., Zilkha, N., Rotter, V., et al. (2009). The human 1-8D gene (IFITM2) is a novel p53 independent pro-apoptotic gene. International Journal of Cancer, 125(12), 2810–2819. doi:10.​1002/​ijc.​24669.CrossRefPubMed
91.
go back to reference McIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4), doi:10.1101/cshperspect.a026716. McIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4), doi:10.1101/cshperspect.a026716.
97.
go back to reference Xie, Y., Camps, J., Awad, K. S., Wangsa, D., Yang, J., Yoo, N., et al. (2011). Abstract 135: MicroRNA repression of BIRC4/XIAP in lung cancer. Paper presented at the AACR 102nd Annual Meeting, Orlando, FL. Xie, Y., Camps, J., Awad, K. S., Wangsa, D., Yang, J., Yoo, N., et al. (2011). Abstract 135: MicroRNA repression of BIRC4/XIAP in lung cancer. Paper presented at the AACR 102nd Annual Meeting, Orlando, FL.
99.
go back to reference Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25(6), 629–642. doi:10.1007/s10585-008-9170-6.CrossRef Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25(6), 629–642. doi:10.​1007/​s10585-008-9170-6.CrossRef
100.
go back to reference Akalay, I., Janji, B., Hasmim, M., Noman, M. Z., Andre, F., De Cremoux, P., et al. (2013). Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research, 73(8), 2418–2427. doi:10.1158/0008-5472.CAN-12-2432.CrossRefPubMed Akalay, I., Janji, B., Hasmim, M., Noman, M. Z., Andre, F., De Cremoux, P., et al. (2013). Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research, 73(8), 2418–2427. doi:10.​1158/​0008-5472.​CAN-12-2432.CrossRefPubMed
101.
go back to reference Nurden, A. T., Nurden, P., Sanchez, M., Andia, I., & Anitua, E. (2008). Platelets and wound healing. Frontiers in Bioscience, 13, 3532–3548.PubMed Nurden, A. T., Nurden, P., Sanchez, M., Andia, I., & Anitua, E. (2008). Platelets and wound healing. Frontiers in Bioscience, 13, 3532–3548.PubMed
Metadata
Title
The influence of platelet membranes on tumour cell behaviour
Authors
LA Coupland
EJ Hindmarsh
EE Gardiner
CR Parish
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9671-3

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine