Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

Open Access 01-06-2017

Platelet-activating factor podoplanin: from discovery to drug development

Authors: Ai Takemoto, Kenichi Miyata, Naoya Fujita

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

Tumor cell-induced platelet aggregation facilitates hematogenous metastasis by promoting tumor embolization, preventing immunological assaults and shear stress, and the platelet-releasing growth factors support tumor growth and invasion. Podoplanin, also known as Aggrus, is a type I transmembrane mucin-like glycoprotein and is expressed on wide range of tumor cells. Podoplanin has a role in platelet aggregation and metastasis formation through the binding to its platelet receptor, C-type lectin-like receptor 2 (CLEC-2). The podoplanin research was originally started from the cloning of highly metastatic NL-17 subclone from mouse colon 26 cancer cell line and from the establishment of 8F11 monoclonal antibody (mAb) that could neutralize NL-17-induced platelet aggregation and hematogenous metastasis. Later on, podoplanin was identified as the antigen of 8F11 mAb, and its ectopic expression brought to cells the platelet-aggregating abilities and hematogenous metastasis phenotypes. From the 8F11 mAb recognition epitopes, podoplanin is found to contain tandemly repeated, highly conserved motifs, designated platelet aggregation-stimulating (PLAG) domains. Series of analyses using the cells expressing the mutants and the established neutralizing anti-podoplanin mAbs uncovered that both PLAG3 and PLAG4 domains are associated with the CLEC-2 binding. The neutralizing mAbs targeting PLAG3 or PLAG4 could suppress podoplanin-induced platelet aggregation and hematogenous metastasis through inhibiting the podoplanin–CLEC-2 binding. Therefore, these domains are certainly functional in podoplanin-mediated metastasis through its platelet-aggregating activity. This review summarizes the platelet functions in metastasis formation, the role of platelet aggregation-inducing factor podoplanin in pathological and physiological situations, and the possibility to develop podoplanin-targeting drugs in the future.
Literature
2.
go back to reference Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews: Cancer, 11(2), 123–134. doi:10.1038/nrc3004.PubMed Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews: Cancer, 11(2), 123–134. doi:10.​1038/​nrc3004.PubMed
3.
go back to reference Key, N. S., Khorana, A. A., Mackman, N., McCarty, O. J., White, G. C., Francis, C. W., et al. (2016). Thrombosis in cancer: research priorities identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Research, 76(13), 3671–3675. doi:10.1158/0008-5472.CAN-15-3100.CrossRefPubMed Key, N. S., Khorana, A. A., Mackman, N., McCarty, O. J., White, G. C., Francis, C. W., et al. (2016). Thrombosis in cancer: research priorities identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Research, 76(13), 3671–3675. doi:10.​1158/​0008-5472.​CAN-15-3100.CrossRefPubMed
4.
go back to reference Mehta, P. (1984). Potential role of platelets in the pathogenesis of tumor metastasis. Blood, 63(1), 55–63.PubMed Mehta, P. (1984). Potential role of platelets in the pathogenesis of tumor metastasis. Blood, 63(1), 55–63.PubMed
5.
go back to reference Tsuruo, T., Iida, H., Makishima, F., Yamori, T., Kawabata, H., Tsukagoshi, S., et al. (1985). Inhibition of spontaneous and experimental tumor metastasis by the calcium antagonist verapamil. Cancer Chemotherapy and Pharmacology, 14(1), 30–33.CrossRefPubMed Tsuruo, T., Iida, H., Makishima, F., Yamori, T., Kawabata, H., Tsukagoshi, S., et al. (1985). Inhibition of spontaneous and experimental tumor metastasis by the calcium antagonist verapamil. Cancer Chemotherapy and Pharmacology, 14(1), 30–33.CrossRefPubMed
6.
go back to reference Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527. doi:10.1016/S1470-2045(12)70112-2.CrossRefPubMed Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527. doi:10.​1016/​S1470-2045(12)70112-2.CrossRefPubMed
7.
go back to reference Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41. doi:10.1016/S0140-6736(10)62110-1.CrossRefPubMed Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41. doi:10.​1016/​S0140-6736(10)62110-1.CrossRefPubMed
8.
go back to reference Tsuruo, T., Yamori, T., Naganuma, K., Tsukagoshi, S., & Sakurai, Y. (1983). Characterization of metastatic clones derived from a metastatic variant of mouse colon adenocarcinoma 26. Cancer Research, 43(11), 5437–5442.PubMed Tsuruo, T., Yamori, T., Naganuma, K., Tsukagoshi, S., & Sakurai, Y. (1983). Characterization of metastatic clones derived from a metastatic variant of mouse colon adenocarcinoma 26. Cancer Research, 43(11), 5437–5442.PubMed
9.
go back to reference Mahalingam, M., Ugen, K. E., Kao, K. J., & Klein, P. A. (1988). Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants. Cancer Research, 48(6), 1460–1464.PubMed Mahalingam, M., Ugen, K. E., Kao, K. J., & Klein, P. A. (1988). Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants. Cancer Research, 48(6), 1460–1464.PubMed
10.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews: Cancer, 3(6), 453–458. doi:10.1038/nrc1098.PubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews: Cancer, 3(6), 453–458. doi:10.​1038/​nrc1098.PubMed
11.
go back to reference Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed
12.
13.
go back to reference Placke, T., Orgel, M., Schaller, M., Jung, G., Rammensee, H. G., Kopp, H. G., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448. doi:10.1158/0008-5472.CAN-11-1872.CrossRefPubMed Placke, T., Orgel, M., Schaller, M., Jung, G., Rammensee, H. G., Kopp, H. G., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448. doi:10.​1158/​0008-5472.​CAN-11-1872.CrossRefPubMed
14.
go back to reference Gersuk, G. M., Westermark, B., Mohabeer, A. J., Challita, P. M., Pattamakom, S., & Pattengale, P. K. (1991). Inhibition of human natural killer cell activity by platelet-derived growth factor (PDGF)III. Membrane binding studies and differential biological effect of recombinant PDGF isoforms. Scandinavian Journal of Immunology, 33(5), 521–532.CrossRefPubMed Gersuk, G. M., Westermark, B., Mohabeer, A. J., Challita, P. M., Pattamakom, S., & Pattengale, P. K. (1991). Inhibition of human natural killer cell activity by platelet-derived growth factor (PDGF)III. Membrane binding studies and differential biological effect of recombinant PDGF isoforms. Scandinavian Journal of Immunology, 33(5), 521–532.CrossRefPubMed
15.
16.
19.
20.
go back to reference Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 114(12), 1714–1725. doi:10.1172/JCI22123.CrossRefPubMedPubMedCentral Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 114(12), 1714–1725. doi:10.​1172/​JCI22123.CrossRefPubMedPubMedCentral
21.
go back to reference Watanabe, M., Okochi, E., Sugimoto, Y., & Tsuruo, T. (1988). Identification of a platelet-aggregating factor of murine colon adenocarcinoma 26: Mr 44,000 membrane protein as determined by monoclonal antibodies. Cancer Research, 48(22), 6411–6416.PubMed Watanabe, M., Okochi, E., Sugimoto, Y., & Tsuruo, T. (1988). Identification of a platelet-aggregating factor of murine colon adenocarcinoma 26: Mr 44,000 membrane protein as determined by monoclonal antibodies. Cancer Research, 48(22), 6411–6416.PubMed
22.
go back to reference Watanabe, M., Sugimoto, Y., & Tsuruo, T. (1990). Expression of a Mr 41,000 glycoprotein associated with thrombin-independent platelet aggregation in high metastatic variants of murine B16 melanoma. Cancer Research, 50(20), 6657–6662.PubMed Watanabe, M., Sugimoto, Y., & Tsuruo, T. (1990). Expression of a Mr 41,000 glycoprotein associated with thrombin-independent platelet aggregation in high metastatic variants of murine B16 melanoma. Cancer Research, 50(20), 6657–6662.PubMed
23.
go back to reference Sugimoto, Y., Watanabe, M., Oh-hara, T., Sato, S., Isoe, T., & Tsuruo, T. (1991). Suppression of experimental lung colonization of a metastatic variant of murine colon adenocarcinoma 26 by a monoclonal antibody 8F11 inhibiting tumor cell-induced platelet aggregation. Cancer Research, 51(3), 921–925.PubMed Sugimoto, Y., Watanabe, M., Oh-hara, T., Sato, S., Isoe, T., & Tsuruo, T. (1991). Suppression of experimental lung colonization of a metastatic variant of murine colon adenocarcinoma 26 by a monoclonal antibody 8F11 inhibiting tumor cell-induced platelet aggregation. Cancer Research, 51(3), 921–925.PubMed
24.
go back to reference Toyoshima, M., Nakajima, M., Yamori, T., & Tsuruo, T. (1995). Purification and characterization of the platelet-aggregating sialoglycoprotein gp44 expressed by highly metastatic variant cells of mouse colon adenocarcinoma 26. Cancer Research, 55(4), 767–773.PubMed Toyoshima, M., Nakajima, M., Yamori, T., & Tsuruo, T. (1995). Purification and characterization of the platelet-aggregating sialoglycoprotein gp44 expressed by highly metastatic variant cells of mouse colon adenocarcinoma 26. Cancer Research, 55(4), 767–773.PubMed
25.
go back to reference Kato, Y., Fujita, N., Kunita, A., Sato, S., Kaneko, M., Osawa, M., et al. (2003). Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. Journal of Biological Chemistry, 278(51), 51599–51605. doi:10.1074/jbc.M309935200.CrossRefPubMed Kato, Y., Fujita, N., Kunita, A., Sato, S., Kaneko, M., Osawa, M., et al. (2003). Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. Journal of Biological Chemistry, 278(51), 51599–51605. doi:10.​1074/​jbc.​M309935200.CrossRefPubMed
27.
go back to reference Ma, T., Yang, B., Matthay, M. A., & Verkman, A. S. (1998). Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels. American Journal of Respiratory Cell and Molecular Biology, 19(1), 143–149. doi:10.1165/ajrcmb.19.1.2953.CrossRefPubMed Ma, T., Yang, B., Matthay, M. A., & Verkman, A. S. (1998). Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels. American Journal of Respiratory Cell and Molecular Biology, 19(1), 143–149. doi:10.​1165/​ajrcmb.​19.​1.​2953.CrossRefPubMed
28.
go back to reference Zimmer, G., Lottspeich, F., Maisner, A., Klenk, H. D., & Herrler, G. (1997). Molecular characterization of gp40, a mucin-type glycoprotein from the apical plasma membrane of Madin-Darby canine kidney cells (type I). Biochemical Journal, 326(Pt 1), 99–108.CrossRefPubMedPubMedCentral Zimmer, G., Lottspeich, F., Maisner, A., Klenk, H. D., & Herrler, G. (1997). Molecular characterization of gp40, a mucin-type glycoprotein from the apical plasma membrane of Madin-Darby canine kidney cells (type I). Biochemical Journal, 326(Pt 1), 99–108.CrossRefPubMedPubMedCentral
29.
go back to reference Zimmer, G., Oeffner, F., Von Messling, V., Tschernig, T., Groness, H. J., Klenk, H. D., et al. (1999). Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochemical Journal, 341(Pt 2), 277–284.CrossRefPubMedPubMedCentral Zimmer, G., Oeffner, F., Von Messling, V., Tschernig, T., Groness, H. J., Klenk, H. D., et al. (1999). Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochemical Journal, 341(Pt 2), 277–284.CrossRefPubMedPubMedCentral
30.
go back to reference Nose, K., Saito, H., & Kuroki, T. (1990). Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth and Differentiation, 1(11), 511–518.PubMed Nose, K., Saito, H., & Kuroki, T. (1990). Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth and Differentiation, 1(11), 511–518.PubMed
31.
go back to reference Farr, A. G., Berry, M. L., Kim, A., Nelson, A. J., Welch, M. P., & Aruffo, A. (1992). Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. Journal of Experimental Medicine, 176(5), 1477–1482.CrossRefPubMed Farr, A. G., Berry, M. L., Kim, A., Nelson, A. J., Welch, M. P., & Aruffo, A. (1992). Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. Journal of Experimental Medicine, 176(5), 1477–1482.CrossRefPubMed
32.
go back to reference Schacht, V., Dadras, S. S., Johnson, L. A., Jackson, D. G., Hong, Y. K., & Detmar, M. (2005). Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. American Journal of Pathology, 166(3), 913–921. doi:10.1016/S0002-9440(10)62311-5.CrossRefPubMedPubMedCentral Schacht, V., Dadras, S. S., Johnson, L. A., Jackson, D. G., Hong, Y. K., & Detmar, M. (2005). Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. American Journal of Pathology, 166(3), 913–921. doi:10.​1016/​S0002-9440(10)62311-5.CrossRefPubMedPubMedCentral
33.
go back to reference Gandarillas, A., Scholl, F. G., Benito, N., Gamallo, C., & Quintanilla, M. (1997). Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. Molecular Carcinogenesis, 20(1), 10–18.CrossRefPubMed Gandarillas, A., Scholl, F. G., Benito, N., Gamallo, C., & Quintanilla, M. (1997). Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. Molecular Carcinogenesis, 20(1), 10–18.CrossRefPubMed
34.
go back to reference Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., et al. (1999). Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. American Journal of Pathology, 154(2), 385–394. doi:10.1016/S0002-9440(10)65285-6.CrossRefPubMedPubMedCentral Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., et al. (1999). Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. American Journal of Pathology, 154(2), 385–394. doi:10.​1016/​S0002-9440(10)65285-6.CrossRefPubMedPubMedCentral
35.
go back to reference Rishi, A. K., Joyce-Brady, M., Fisher, J., Dobbs, L. G., Floros, J., VanderSpek, J., et al. (1995). Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives. Developmental Biology, 167(1), 294–306.CrossRefPubMed Rishi, A. K., Joyce-Brady, M., Fisher, J., Dobbs, L. G., Floros, J., VanderSpek, J., et al. (1995). Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives. Developmental Biology, 167(1), 294–306.CrossRefPubMed
36.
go back to reference Breiteneder-Geleff, S., Matsui, K., Soleiman, A., Meraner, P., Poczewski, H., Kalt, R., et al. (1997). Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. American Journal of Pathology, 151(4), 1141–1152.PubMedPubMedCentral Breiteneder-Geleff, S., Matsui, K., Soleiman, A., Meraner, P., Poczewski, H., Kalt, R., et al. (1997). Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. American Journal of Pathology, 151(4), 1141–1152.PubMedPubMedCentral
37.
go back to reference Malhotra, D., Fletcher, A. L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S. F., et al. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 13(5), 499–510. doi:10.1038/ni.2262.CrossRefPubMedPubMedCentral Malhotra, D., Fletcher, A. L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S. F., et al. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 13(5), 499–510. doi:10.​1038/​ni.​2262.CrossRefPubMedPubMedCentral
39.
go back to reference Mahtab, E. A., Wijffels, M. C., Van Den Akker, N. M., Hahurij, N. D., Lie-Venema, H., Wisse, L. J., et al. (2008). Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Developmental Dynamics, 237(3), 847–857. doi:10.1002/dvdy.21463.CrossRefPubMed Mahtab, E. A., Wijffels, M. C., Van Den Akker, N. M., Hahurij, N. D., Lie-Venema, H., Wisse, L. J., et al. (2008). Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Developmental Dynamics, 237(3), 847–857. doi:10.​1002/​dvdy.​21463.CrossRefPubMed
40.
go back to reference Ramirez, M. I., Millien, G., Hinds, A., Cao, Y., Seldin, D. C., & Williams, M. C. (2003). T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Developmental Biology, 256(1), 61–72.CrossRefPubMed Ramirez, M. I., Millien, G., Hinds, A., Cao, Y., Seldin, D. C., & Williams, M. C. (2003). T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Developmental Biology, 256(1), 61–72.CrossRefPubMed
42.
go back to reference Uhrin, P., Zaujec, J., Breuss, J. M., Olcaydu, D., Chrenek, P., Stockinger, H., et al. (2010). Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood, 115(19), 3997–4005. doi:10.1182/blood-2009-04-216069.CrossRefPubMed Uhrin, P., Zaujec, J., Breuss, J. M., Olcaydu, D., Chrenek, P., Stockinger, H., et al. (2010). Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood, 115(19), 3997–4005. doi:10.​1182/​blood-2009-04-216069.CrossRefPubMed
43.
go back to reference Hess, P. R., Rawnsley, D. R., Jakus, Z., Yang, Y., Sweet, D. T., Fu, J., et al. (2014). Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. Journal of Clinical Investigation, 124(1), 273–284. doi:10.1172/JCI70422.CrossRefPubMed Hess, P. R., Rawnsley, D. R., Jakus, Z., Yang, Y., Sweet, D. T., Fu, J., et al. (2014). Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. Journal of Clinical Investigation, 124(1), 273–284. doi:10.​1172/​JCI70422.CrossRefPubMed
45.
46.
go back to reference Tamura, S., Suzuki-Inoue, K., Tsukiji, N., Shirai, T., Sasaki, T., Osada, M., et al. (2016). Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood, 127(13), 1701–1710. doi:10.1182/blood-2015-08-663708.CrossRefPubMed Tamura, S., Suzuki-Inoue, K., Tsukiji, N., Shirai, T., Sasaki, T., Osada, M., et al. (2016). Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood, 127(13), 1701–1710. doi:10.​1182/​blood-2015-08-663708.CrossRefPubMed
49.
go back to reference Peterziel, H., Muller, J., Danner, A., Barbus, S., Liu, H. K., Radlwimmer, B., et al. (2012). Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-Oncology, 14(4), 426–439. doi:10.1093/neuonc/nos055.CrossRefPubMedPubMedCentral Peterziel, H., Muller, J., Danner, A., Barbus, S., Liu, H. K., Radlwimmer, B., et al. (2012). Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-Oncology, 14(4), 426–439. doi:10.​1093/​neuonc/​nos055.CrossRefPubMedPubMedCentral
51.
go back to reference Takagi, S., Oh-hara, T., Sato, S., Gong, B., Takami, M., & Fujita, N. (2014). Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. International Journal of Cancer, 134(11), 2605–2614. doi:10.1002/ijc.28602.CrossRefPubMed Takagi, S., Oh-hara, T., Sato, S., Gong, B., Takami, M., & Fujita, N. (2014). Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. International Journal of Cancer, 134(11), 2605–2614. doi:10.​1002/​ijc.​28602.CrossRefPubMed
53.
go back to reference Kato, Y., Sasagawa, I., Kaneko, M., Osawa, M., Fujita, N., & Tsuruo, T. (2004). Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene, 23(52), 8552–8556. doi:10.1038/sj.onc.1207869.CrossRefPubMed Kato, Y., Sasagawa, I., Kaneko, M., Osawa, M., Fujita, N., & Tsuruo, T. (2004). Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene, 23(52), 8552–8556. doi:10.​1038/​sj.​onc.​1207869.CrossRefPubMed
54.
go back to reference Hisakane, K., Saruwatari, K., Fujii, S., Kirita, K., Umemura, S., Matsumoto, S., et al. (2016). Unique intravascular tumor microenvironment predicting recurrence of lung squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 142(3), 593–600. doi:10.1007/s00432-015-2068-1.CrossRefPubMed Hisakane, K., Saruwatari, K., Fujii, S., Kirita, K., Umemura, S., Matsumoto, S., et al. (2016). Unique intravascular tumor microenvironment predicting recurrence of lung squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 142(3), 593–600. doi:10.​1007/​s00432-015-2068-1.CrossRefPubMed
55.
go back to reference Mishima, K., Kato, Y., Kaneko, M. K., Nishikawa, R., Hirose, T., & Matsutani, M. (2006). Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathologica, 111(5), 483–488. doi:10.1007/s00401-006-0063-y.CrossRefPubMed Mishima, K., Kato, Y., Kaneko, M. K., Nishikawa, R., Hirose, T., & Matsutani, M. (2006). Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathologica, 111(5), 483–488. doi:10.​1007/​s00401-006-0063-y.CrossRefPubMed
56.
go back to reference Mishima, K., Kato, Y., Kaneko, M. K., Nakazawa, Y., Kunita, A., Fujita, N., et al. (2006). Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathologica, 111(6), 563–568. doi:10.1007/s00401-006-0033-4.CrossRefPubMed Mishima, K., Kato, Y., Kaneko, M. K., Nakazawa, Y., Kunita, A., Fujita, N., et al. (2006). Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathologica, 111(6), 563–568. doi:10.​1007/​s00401-006-0033-4.CrossRefPubMed
57.
go back to reference Yuan, P., Temam, S., El-Naggar, A., Zhou, X., Liu, D. D., Lee, J. J., et al. (2006). Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer, 107(3), 563–569. doi:10.1002/cncr.22061.CrossRefPubMed Yuan, P., Temam, S., El-Naggar, A., Zhou, X., Liu, D. D., Lee, J. J., et al. (2006). Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer, 107(3), 563–569. doi:10.​1002/​cncr.​22061.CrossRefPubMed
58.
go back to reference Kawase, A., Ishii, G., Nagai, K., Ito, T., Nagano, T., Murata, Y., et al. (2008). Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. International Journal of Cancer, 123(5), 1053–1059. doi:10.1002/ijc.23611.CrossRefPubMed Kawase, A., Ishii, G., Nagai, K., Ito, T., Nagano, T., Murata, Y., et al. (2008). Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. International Journal of Cancer, 123(5), 1053–1059. doi:10.​1002/​ijc.​23611.CrossRefPubMed
59.
go back to reference Hoshino, A., Ishii, G., Ito, T., Aoyagi, K., Ohtaki, Y., Nagai, K., et al. (2011). Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression. Cancer Research, 71(14), 4769–4779. doi:10.1158/0008-5472.CAN-10-3228.CrossRefPubMed Hoshino, A., Ishii, G., Ito, T., Aoyagi, K., Ohtaki, Y., Nagai, K., et al. (2011). Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression. Cancer Research, 71(14), 4769–4779. doi:10.​1158/​0008-5472.​CAN-10-3228.CrossRefPubMed
60.
61.
go back to reference Yurugi, Y., Wakahara, M., Matsuoka, Y., Sakabe, T., Kubouchi, Y., Haruki, T., et al. (2017). Podoplanin expression in cancer-associated fibroblasts predicts poor prognosis in patients with squamous cell carcinoma of the lung. Anticancer Research, 37(1), 207–213. doi:10.21873/anticanres.11308.CrossRefPubMed Yurugi, Y., Wakahara, M., Matsuoka, Y., Sakabe, T., Kubouchi, Y., Haruki, T., et al. (2017). Podoplanin expression in cancer-associated fibroblasts predicts poor prognosis in patients with squamous cell carcinoma of the lung. Anticancer Research, 37(1), 207–213. doi:10.​21873/​anticanres.​11308.CrossRefPubMed
62.
go back to reference Yoshida, T., Ishii, G., Goto, K., Neri, S., Hashimoto, H., Yoh, K., et al. (2015). Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clinical Cancer Research, 21(3), 642–651. doi:10.1158/1078-0432.CCR-14-0846.CrossRefPubMed Yoshida, T., Ishii, G., Goto, K., Neri, S., Hashimoto, H., Yoh, K., et al. (2015). Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clinical Cancer Research, 21(3), 642–651. doi:10.​1158/​1078-0432.​CCR-14-0846.CrossRefPubMed
63.
go back to reference Hatzioannou, A., Nayar, S., Gaitanis, A., Barone, F., Anagnostopoulos, C., & Verginis, P. (2016). Intratumoral accumulation of podoplanin-expressing lymph node stromal cells promote tumor growth through elimination of CD4+ tumor-infiltrating lymphocytes. Oncoimmunology, 5(9), e1216289. doi:10.1080/2162402X.2016.1216289.CrossRefPubMedPubMedCentral Hatzioannou, A., Nayar, S., Gaitanis, A., Barone, F., Anagnostopoulos, C., & Verginis, P. (2016). Intratumoral accumulation of podoplanin-expressing lymph node stromal cells promote tumor growth through elimination of CD4+ tumor-infiltrating lymphocytes. Oncoimmunology, 5(9), e1216289. doi:10.​1080/​2162402X.​2016.​1216289.CrossRefPubMedPubMedCentral
64.
go back to reference Suzuki, H., Onimaru, M., Koga, T., Takeshita, M., Yano, T., Maehara, Y., et al. (2011). High podoplanin expression in cancer cells predicts lower incidence of nodal metastasis in patients with lung squamous cell carcinoma. Pathology, Research and Practice, 207(2), 111–115. doi:10.1016/j.prp.2010.11.006.CrossRefPubMed Suzuki, H., Onimaru, M., Koga, T., Takeshita, M., Yano, T., Maehara, Y., et al. (2011). High podoplanin expression in cancer cells predicts lower incidence of nodal metastasis in patients with lung squamous cell carcinoma. Pathology, Research and Practice, 207(2), 111–115. doi:10.​1016/​j.​prp.​2010.​11.​006.CrossRefPubMed
65.
go back to reference Ito, T., Ishii, G., Nagai, K., Nagano, T., Kojika, M., Murata, Y., et al. (2009). Low podoplanin expression of tumor cells predicts poor prognosis in pathological stage IB squamous cell carcinoma of the lung, tissue microarray analysis of 136 patients using 24 antibodies. Lung Cancer, 63(3), 418–424. doi:10.1016/j.lungcan.2008.06.008.CrossRefPubMed Ito, T., Ishii, G., Nagai, K., Nagano, T., Kojika, M., Murata, Y., et al. (2009). Low podoplanin expression of tumor cells predicts poor prognosis in pathological stage IB squamous cell carcinoma of the lung, tissue microarray analysis of 136 patients using 24 antibodies. Lung Cancer, 63(3), 418–424. doi:10.​1016/​j.​lungcan.​2008.​06.​008.CrossRefPubMed
66.
go back to reference Ikoma, Y., Kijima, H., Masuda, R., Tanaka, M., Inokuchi, S., & Iwazaki, M. (2015). Podoplanin expression is correlated with the prognosis of lung squamous cell carcinoma. Biomedical Research (Tokyo, Japan), 36(6), 393–402. doi:10.2220/biomedres.36.393.CrossRef Ikoma, Y., Kijima, H., Masuda, R., Tanaka, M., Inokuchi, S., & Iwazaki, M. (2015). Podoplanin expression is correlated with the prognosis of lung squamous cell carcinoma. Biomedical Research (Tokyo, Japan), 36(6), 393–402. doi:10.​2220/​biomedres.​36.​393.CrossRef
68.
go back to reference Takagi, S., Takemoto, A., Takami, M., Oh-Hara, T., & Fujita, N. (2014). Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Science, 105(8), 983–988. doi:10.1111/cas.12464.CrossRefPubMedPubMedCentral Takagi, S., Takemoto, A., Takami, M., Oh-Hara, T., & Fujita, N. (2014). Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Science, 105(8), 983–988. doi:10.​1111/​cas.​12464.CrossRefPubMedPubMedCentral
69.
go back to reference Miyata, K., Takemoto, A., Okumura, S., Nishio, M., & Fujita, N. (2017) Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation. Scientific Reports, 7, 4059. doi:10.1038/s41598-017-04324-1. Miyata, K., Takemoto, A., Okumura, S., Nishio, M., & Fujita, N. (2017) Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation. Scientific Reports, 7, 4059. doi:10.​1038/​s41598-017-04324-1.
70.
go back to reference Wicki, A., Lehembre, F., Wick, N., Hantusch, B., Kerjaschki, D., & Christofori, G. (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 9(4), 261–272. doi:10.1016/j.ccr.2006.03.010.CrossRefPubMed Wicki, A., Lehembre, F., Wick, N., Hantusch, B., Kerjaschki, D., & Christofori, G. (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 9(4), 261–272. doi:10.​1016/​j.​ccr.​2006.​03.​010.CrossRefPubMed
71.
go back to reference Kaneko, M., Kato, Y., Kunita, A., Fujita, N., Tsuruo, T., & Osawa, M. (2004). Functional sialylated O-glycan to platelet aggregation on Aggrus (T1alpha/Podoplanin) molecules expressed in Chinese hamster ovary cells. Journal of Biological Chemistry, 279(37), 38838–38843. doi:10.1074/jbc.M407210200.CrossRefPubMed Kaneko, M., Kato, Y., Kunita, A., Fujita, N., Tsuruo, T., & Osawa, M. (2004). Functional sialylated O-glycan to platelet aggregation on Aggrus (T1alpha/Podoplanin) molecules expressed in Chinese hamster ovary cells. Journal of Biological Chemistry, 279(37), 38838–38843. doi:10.​1074/​jbc.​M407210200.CrossRefPubMed
73.
74.
go back to reference Nagae, M., Morita-Matsumoto, K., Kato, M., Kaneko, M. K., Kato, Y., & Yamaguchi, Y. (2014). A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure, 22(12), 1711–1721. doi:10.1016/j.str.2014.09.009.CrossRefPubMed Nagae, M., Morita-Matsumoto, K., Kato, M., Kaneko, M. K., Kato, Y., & Yamaguchi, Y. (2014). A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure, 22(12), 1711–1721. doi:10.​1016/​j.​str.​2014.​09.​009.CrossRefPubMed
75.
go back to reference Sekiguchi, T., Takemoto, A., Takagi, S., Takatori, K., Sato, S., Takami, M., et al. (2016). Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 7(4), 3934–3946. doi:10.18632/oncotarget.6598.CrossRefPubMed Sekiguchi, T., Takemoto, A., Takagi, S., Takatori, K., Sato, S., Takami, M., et al. (2016). Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 7(4), 3934–3946. doi:10.​18632/​oncotarget.​6598.CrossRefPubMed
76.
go back to reference Huang, T. F., Liu, C. Z., & Yang, S. H. (1995). Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochemical Journal, 309(Pt 3), 1021–1027.CrossRefPubMedPubMedCentral Huang, T. F., Liu, C. Z., & Yang, S. H. (1995). Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochemical Journal, 309(Pt 3), 1021–1027.CrossRefPubMedPubMedCentral
77.
go back to reference Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549. doi:10.1182/blood-2005-05-1994.CrossRefPubMed Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549. doi:10.​1182/​blood-2005-05-1994.CrossRefPubMed
78.
go back to reference Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. Journal of Biological Chemistry, 282(36), 25993–26001. doi:10.1074/jbc.M702327200.CrossRefPubMed Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. Journal of Biological Chemistry, 282(36), 25993–26001. doi:10.​1074/​jbc.​M702327200.CrossRefPubMed
79.
80.
go back to reference Fuller, G. L., Williams, J. A., Tomlinson, M. G., Eble, J. A., Hanna, S. L., Pohlmann, S., et al. (2007). The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. Journal of Biological Chemistry, 282(17), 12397–12409. doi:10.1074/jbc.M609558200.CrossRefPubMedPubMedCentral Fuller, G. L., Williams, J. A., Tomlinson, M. G., Eble, J. A., Hanna, S. L., Pohlmann, S., et al. (2007). The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. Journal of Biological Chemistry, 282(17), 12397–12409. doi:10.​1074/​jbc.​M609558200.CrossRefPubMedPubMedCentral
81.
go back to reference Kerrigan, A. M., Dennehy, K. M., Mourao-Sa, D., Faro-Trindade, I., Willment, J. A., Taylor, P. R., et al. (2009). CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. Journal of Immunology, 182(7), 4150–4157. doi:10.4049/jimmunol.0802808.CrossRef Kerrigan, A. M., Dennehy, K. M., Mourao-Sa, D., Faro-Trindade, I., Willment, J. A., Taylor, P. R., et al. (2009). CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. Journal of Immunology, 182(7), 4150–4157. doi:10.​4049/​jimmunol.​0802808.CrossRef
83.
go back to reference Chang, C. H., Chung, C. H., Hsu, C. C., Huang, T. Y., & Huang, T. F. (2010). A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation. Journal of Thrombosis and Haemostasis, 8(11), 2563–2570. doi:10.1111/j.1538-7836.2010.04045.x.CrossRefPubMed Chang, C. H., Chung, C. H., Hsu, C. C., Huang, T. Y., & Huang, T. F. (2010). A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation. Journal of Thrombosis and Haemostasis, 8(11), 2563–2570. doi:10.​1111/​j.​1538-7836.​2010.​04045.​x.CrossRefPubMed
84.
go back to reference Mourao-Sa, D., Robinson, M. J., Zelenay, S., Sancho, D., Chakravarty, P., Larsen, R., et al. (2011). CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 41(10), 3040–3053. doi:10.1002/eji.201141641.CrossRefPubMed Mourao-Sa, D., Robinson, M. J., Zelenay, S., Sancho, D., Chakravarty, P., Larsen, R., et al. (2011). CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 41(10), 3040–3053. doi:10.​1002/​eji.​201141641.CrossRefPubMed
86.
go back to reference Suzuki-Inoue, K., Inoue, O., Ding, G., Nishimura, S., Hokamura, K., Eto, K., et al. (2010). Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. Journal of Biological Chemistry, 285(32), 24494–24507. doi:10.1074/jbc.M110.130575.CrossRefPubMedPubMedCentral Suzuki-Inoue, K., Inoue, O., Ding, G., Nishimura, S., Hokamura, K., Eto, K., et al. (2010). Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. Journal of Biological Chemistry, 285(32), 24494–24507. doi:10.​1074/​jbc.​M110.​130575.CrossRefPubMedPubMedCentral
87.
go back to reference Osada, M., Inoue, O., Ding, G., Shirai, T., Ichise, H., Hirayama, K., et al. (2012). Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. Journal of Biological Chemistry, 287(26), 22241–22252. doi:10.1074/jbc.M111.329987.CrossRefPubMedPubMedCentral Osada, M., Inoue, O., Ding, G., Shirai, T., Ichise, H., Hirayama, K., et al. (2012). Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. Journal of Biological Chemistry, 287(26), 22241–22252. doi:10.​1074/​jbc.​M111.​329987.CrossRefPubMedPubMedCentral
88.
go back to reference Kato, Y., Kaneko, M. K., Kuno, A., Uchiyama, N., Amano, K., Chiba, Y., et al. (2006). Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochemical and Biophysical Research Communications, 349(4), 1301–1307. doi:10.1016/j.bbrc.2006.08.171.CrossRefPubMed Kato, Y., Kaneko, M. K., Kuno, A., Uchiyama, N., Amano, K., Chiba, Y., et al. (2006). Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochemical and Biophysical Research Communications, 349(4), 1301–1307. doi:10.​1016/​j.​bbrc.​2006.​08.​171.CrossRefPubMed
89.
go back to reference Miyata, K., Takagi, S., Sato, S., Morioka, H., Shiba, K., Minamisawa, T., et al. (2014). Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment. Cancer Medicine, 3(6), 1595–1604. doi:10.1002/cam4.320.CrossRefPubMedPubMedCentral Miyata, K., Takagi, S., Sato, S., Morioka, H., Shiba, K., Minamisawa, T., et al. (2014). Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment. Cancer Medicine, 3(6), 1595–1604. doi:10.​1002/​cam4.​320.CrossRefPubMedPubMedCentral
92.
go back to reference Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61. doi:10.1111/j.1349-7006.2007.00634.x.PubMed Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61. doi:10.​1111/​j.​1349-7006.​2007.​00634.​x.PubMed
93.
go back to reference Kato, Y., Kaneko, M., Sata, M., Fujita, N., Tsuruo, T., & Osawa, M. (2005). Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biology, 26(4), 195–200. doi:10.1159/000086952.CrossRefPubMed Kato, Y., Kaneko, M., Sata, M., Fujita, N., Tsuruo, T., & Osawa, M. (2005). Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biology, 26(4), 195–200. doi:10.​1159/​000086952.CrossRefPubMed
94.
go back to reference Kato, Y., Kunita, A., Abe, S., Ogasawara, S., Fujii, Y., Oki, H., et al. (2015). The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity. Oncotarget, 6(34), 36003–36018. doi:10.18632/oncotarget.5339.PubMedPubMedCentral Kato, Y., Kunita, A., Abe, S., Ogasawara, S., Fujii, Y., Oki, H., et al. (2015). The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity. Oncotarget, 6(34), 36003–36018. doi:10.​18632/​oncotarget.​5339.PubMedPubMedCentral
95.
go back to reference Kato, Y., Kunita, A., Fukayama, M., Abe, S., Nishioka, Y., Uchida, H., et al. (2017). Antiglycopeptide mouse monoclonal antibody LpMab-21 exerts antitumor activity against human podoplanin through antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Monoclon Antib Immunodiagn Immunother, 36(1), 20–24. doi:10.1089/mab.2016.0045.PubMed Kato, Y., Kunita, A., Fukayama, M., Abe, S., Nishioka, Y., Uchida, H., et al. (2017). Antiglycopeptide mouse monoclonal antibody LpMab-21 exerts antitumor activity against human podoplanin through antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Monoclon Antib Immunodiagn Immunother, 36(1), 20–24. doi:10.​1089/​mab.​2016.​0045.PubMed
97.
go back to reference Kaneko, M. K., Oki, H., Ogasawara, S., Takagi, M., & Kato, Y. (2015). Anti-podoplanin monoclonal antibody LpMab-7 detects metastatic lesions of osteosarcoma. Monoclon Antib Immunodiagn Immunother, 34(3), 154–161. doi:10.1089/mab.2014.0091.PubMed Kaneko, M. K., Oki, H., Ogasawara, S., Takagi, M., & Kato, Y. (2015). Anti-podoplanin monoclonal antibody LpMab-7 detects metastatic lesions of osteosarcoma. Monoclon Antib Immunodiagn Immunother, 34(3), 154–161. doi:10.​1089/​mab.​2014.​0091.PubMed
98.
go back to reference Chang, Y. W., Hsieh, P. W., Chang, Y. T., Lu, M. H., Huang, T. F., Chong, K. Y., et al. (2015). Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget, 6(40), 42733–42748. doi:10.18632/oncotarget.5811.CrossRefPubMedPubMedCentral Chang, Y. W., Hsieh, P. W., Chang, Y. T., Lu, M. H., Huang, T. F., Chong, K. Y., et al. (2015). Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget, 6(40), 42733–42748. doi:10.​18632/​oncotarget.​5811.CrossRefPubMedPubMedCentral
99.
go back to reference Shirai, T., Inoue, O., Tamura, S., Tsukiji, N., Sasaki, T., Endo, H., et al. (2017). C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. Journal of Thrombosis and Haemostasis, 15(3), 513–525. doi:10.1111/jth.13604.CrossRefPubMed Shirai, T., Inoue, O., Tamura, S., Tsukiji, N., Sasaki, T., Endo, H., et al. (2017). C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. Journal of Thrombosis and Haemostasis, 15(3), 513–525. doi:10.​1111/​jth.​13604.CrossRefPubMed
Metadata
Title
Platelet-activating factor podoplanin: from discovery to drug development
Authors
Ai Takemoto
Kenichi Miyata
Naoya Fujita
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9672-2

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue

ReviewPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine