Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

Open Access 01-06-2017

Platelets and cancer angiogenesis nexus

Authors: Marek Z. Wojtukiewicz, Ewa Sierko, Dominika Hempel, Stephanie C. Tucker, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

There has been remarkable insight into the importance of platelets in a wide range of pathophysiologic events, including inflammation and cancer progression. Thrombocytosis in cancer patients is a common finding. Tumor cells induce platelet activation and subsequent aggregation through direct and indirect mechanisms. Platelets are recognized to contribute to metastatic dissemination. There is plenty of evidence that components of the hemostatic system contribute to the process of angiogenesis. Furthermore, there are accumulated data on the substantial influence of blood platelets in the process of blood vessel formation during malignancy. Platelets appear to be the main physiologic transporters of proangiogenic and antiangiogenic factors. Moreover, they influence the process of angiogenesis through platelet-derived microparticles, microRNA, lipids, and variety of surface receptors. Platelets contribute to early and late stages of angiogenesis. Available data support the overall stimulatory effect of platelets on tumor angiogenesis. It raises the possibility that interfering with platelet function may be an effective antineoplastic treatment strategy.
Literature
1.
go back to reference Bizzozero, J. (1882). Űber einen neunen formbestandteil des blutes und dessen rolle bei der thrombose und blutgerinnung. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 90, 262–332. Bizzozero, J. (1882). Űber einen neunen formbestandteil des blutes und dessen rolle bei der thrombose und blutgerinnung. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 90, 262–332.
2.
go back to reference Geatano, G. (2001). Historical overview of the role of platelets in hemostasis and thrombosis. Heamatologica, 86, 349–356. Geatano, G. (2001). Historical overview of the role of platelets in hemostasis and thrombosis. Heamatologica, 86, 349–356.
3.
go back to reference Billroth, T. (1878). Lectures on surgical pathology and therapeutics: a new handbook for students and practitioners (p. 355). London: The New Sydenham Society. Billroth, T. (1878). Lectures on surgical pathology and therapeutics: a new handbook for students and practitioners (p. 355). London: The New Sydenham Society.
4.
go back to reference Mac Kay, W. (1930). The blood platelet: its clinical significance. Quartely Journal of Medicine, 24, 285–293. Mac Kay, W. (1930). The blood platelet: its clinical significance. Quartely Journal of Medicine, 24, 285–293.
5.
go back to reference Zacharski, L. R., Wojtukiewicz, M. Z., Costantini, V., Ornstein, D. L., & Memoli, V. A. (1992). Pathways of coagulation/fibrinolysis activation in malignancy. Seminars in Thrombosis and Hemostasis, 18, 104–116.PubMedCrossRef Zacharski, L. R., Wojtukiewicz, M. Z., Costantini, V., Ornstein, D. L., & Memoli, V. A. (1992). Pathways of coagulation/fibrinolysis activation in malignancy. Seminars in Thrombosis and Hemostasis, 18, 104–116.PubMedCrossRef
6.
go back to reference Miller, S. P., Sanchez-Avalos, J., Stefanski, T., & Zuckerman, L. (1967). Coagulation disorders in cancer I. Clinical and laboratory studies. Cancer, 20, 1452–1465.PubMedCrossRef Miller, S. P., Sanchez-Avalos, J., Stefanski, T., & Zuckerman, L. (1967). Coagulation disorders in cancer I. Clinical and laboratory studies. Cancer, 20, 1452–1465.PubMedCrossRef
7.
go back to reference Edwards, R. L., Rickles, F. R., Moritz, T. E., Henderson, W. G., Zacharski, L. R., Forman, W. B., et al. (1987). Abnormalities of blood coagulation tests in patients with cancer. American Journal of Clinical Pathology, 88, 596–602.PubMedCrossRef Edwards, R. L., Rickles, F. R., Moritz, T. E., Henderson, W. G., Zacharski, L. R., Forman, W. B., et al. (1987). Abnormalities of blood coagulation tests in patients with cancer. American Journal of Clinical Pathology, 88, 596–602.PubMedCrossRef
8.
go back to reference Rickles, F. R., Levine, M., & Edwards, R. L. (1992). Hemostatic alterations in cancer patients. Cancer Metastasis Review, 11, 237–248.CrossRef Rickles, F. R., Levine, M., & Edwards, R. L. (1992). Hemostatic alterations in cancer patients. Cancer Metastasis Review, 11, 237–248.CrossRef
9.
go back to reference Francis, J. L., Biggerstaff, J., & Amirkhosravi, A. (1998). Hemostasis and malignancy. Seminars in Thrombosis and Hemostasis, 24, 93–109.PubMedCrossRef Francis, J. L., Biggerstaff, J., & Amirkhosravi, A. (1998). Hemostasis and malignancy. Seminars in Thrombosis and Hemostasis, 24, 93–109.PubMedCrossRef
10.
go back to reference Wojtukiewicz, M. Z., Sierko, E., & Kisiel, W. (2007). The role of hemostatic system inhibitors in malignancy. Seminars in Thrombosis and Hemostasis, 33, 621–641.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., & Kisiel, W. (2007). The role of hemostatic system inhibitors in malignancy. Seminars in Thrombosis and Hemostasis, 33, 621–641.PubMedCrossRef
11.
go back to reference Costantini, V., Zacharski, L. R., Moritz, T. E., & Edwards, R. L. (1990). The platelet count in carcinoma of the lung and colon. Thrombosis and Haemostasis, 64, 501–505.PubMed Costantini, V., Zacharski, L. R., Moritz, T. E., & Edwards, R. L. (1990). The platelet count in carcinoma of the lung and colon. Thrombosis and Haemostasis, 64, 501–505.PubMed
12.
go back to reference Moller-Pedresen, L., & Milman, N. (1996). Prognostic significance of thrombocytosis in patients with primary lung cancer. European Respiratory Journal, 9, 1826–1830.CrossRef Moller-Pedresen, L., & Milman, N. (1996). Prognostic significance of thrombocytosis in patients with primary lung cancer. European Respiratory Journal, 9, 1826–1830.CrossRef
13.
go back to reference Ikeda, M., Furukawa, H., Imamura, H., Shimizu, J., Ishida, H., Masutani, S., et al. (2002). Poor prognosis associated with thrombocytosis in patients with gastric cancer. Annals of Surgical Oncology, 9, 287–291.PubMedCrossRef Ikeda, M., Furukawa, H., Imamura, H., Shimizu, J., Ishida, H., Masutani, S., et al. (2002). Poor prognosis associated with thrombocytosis in patients with gastric cancer. Annals of Surgical Oncology, 9, 287–291.PubMedCrossRef
14.
go back to reference Symbas, N. P., Townsend, M. F., El, G. R., Keane, T. E., Graham, S. D., & Petros, J. A. (2000). Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. BJU International, 86, 203–207.PubMedCrossRef Symbas, N. P., Townsend, M. F., El, G. R., Keane, T. E., Graham, S. D., & Petros, J. A. (2000). Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. BJU International, 86, 203–207.PubMedCrossRef
15.
go back to reference Ribeiro, M., Ruff, P., & Falkson, G. (1997). Low serum testosterone and a younger age predict for a poor outcome in metastatic prostate cancer. American Journal of Clinical Oncology, 20, 605–608.PubMedCrossRef Ribeiro, M., Ruff, P., & Falkson, G. (1997). Low serum testosterone and a younger age predict for a poor outcome in metastatic prostate cancer. American Journal of Clinical Oncology, 20, 605–608.PubMedCrossRef
16.
go back to reference Lopez, A., Daras, V., Cross, P. A., Robertson, G., Beynon, G., & Monaghan, J. M. (1994). Thrombocytosis as a prognostic factor in women with cervical cancer. Cancer, 74, 90–92.CrossRef Lopez, A., Daras, V., Cross, P. A., Robertson, G., Beynon, G., & Monaghan, J. M. (1994). Thrombocytosis as a prognostic factor in women with cervical cancer. Cancer, 74, 90–92.CrossRef
17.
go back to reference Gücer, F., Moser, F., Tamussino, K., Reich, O., Haas, J., Arikan, G., et al. (1998). Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecologic Oncology, 70, 210–214.PubMedCrossRef Gücer, F., Moser, F., Tamussino, K., Reich, O., Haas, J., Arikan, G., et al. (1998). Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecologic Oncology, 70, 210–214.PubMedCrossRef
18.
go back to reference Zeimet, A. G., Marth, C., Muller Holzner, E., Daxenbichler, G., & Dapunt, O. (1994). Significance of thrombocytosis in patients with epithelial ovarian cancer. American Journal Obstetrics & Gynecology, 170, 549–554.CrossRef Zeimet, A. G., Marth, C., Muller Holzner, E., Daxenbichler, G., & Dapunt, O. (1994). Significance of thrombocytosis in patients with epithelial ovarian cancer. American Journal Obstetrics & Gynecology, 170, 549–554.CrossRef
19.
go back to reference Nakano, T., Fujii, J., Tamura, S., Hada, T., & Higashino, K. (1986). Thrombocytosis in patients with malignant mesothelioma. Cancer, 58, 1699–1701.PubMedCrossRef Nakano, T., Fujii, J., Tamura, S., Hada, T., & Higashino, K. (1986). Thrombocytosis in patients with malignant mesothelioma. Cancer, 58, 1699–1701.PubMedCrossRef
20.
go back to reference Gao, L., Zhang, H., Zhang, B., Zhang, L., & Wang, C. (2017). Prognostic value of combination of preoperative platelet count and mean platelet volume in patients with resectable non-small cell lung cancer. Oncotarget. doi:10.18632/oncotarget.14921. Gao, L., Zhang, H., Zhang, B., Zhang, L., & Wang, C. (2017). Prognostic value of combination of preoperative platelet count and mean platelet volume in patients with resectable non-small cell lung cancer. Oncotarget. doi:10.​18632/​oncotarget.​14921.
21.
go back to reference Wang, Y. H., Deng, S. J., Yang, Y. D., Yao, N., Zhao, J. M., Min, G. T., et al. (2017). The pretreatment thrombocytosis may predict prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Biomarkers in Medicine, 11(2), 195–210.PubMedCrossRef Wang, Y. H., Deng, S. J., Yang, Y. D., Yao, N., Zhao, J. M., Min, G. T., et al. (2017). The pretreatment thrombocytosis may predict prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Biomarkers in Medicine, 11(2), 195–210.PubMedCrossRef
22.
go back to reference Schwartz, R. E. (1999). Platelet counts and prognosis of pancreatic cancer. Lancet, 353, 2158–2159.CrossRef Schwartz, R. E. (1999). Platelet counts and prognosis of pancreatic cancer. Lancet, 353, 2158–2159.CrossRef
23.
go back to reference Slichter, S. J., & Harker, L. A. (1974). Hemostasis in malignancy. Annals of the New York Academy of Sciences, 230, 252–262.PubMedCrossRef Slichter, S. J., & Harker, L. A. (1974). Hemostasis in malignancy. Annals of the New York Academy of Sciences, 230, 252–262.PubMedCrossRef
24.
go back to reference Tang, D. G., & Honn, K. V. (1994-1995). Adhesion molecules and tumor metastasis: an update. Invasion & Metastasis, 14, 109–122. Tang, D. G., & Honn, K. V. (1994-1995). Adhesion molecules and tumor metastasis: an update. Invasion & Metastasis, 14, 109–122.
25.
go back to reference Honn, K. V., Tang, G. T., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18, 392–415.PubMedCrossRef Honn, K. V., Tang, G. T., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18, 392–415.PubMedCrossRef
26.
go back to reference Gasic, G. J., Gasic, T. B., & Steward, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences USA, 61, 46–52.CrossRef Gasic, G. J., Gasic, T. B., & Steward, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences USA, 61, 46–52.CrossRef
27.
go back to reference Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74, 282–290.PubMed Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74, 282–290.PubMed
28.
go back to reference Dvorak, H. F. (1986). Tumors: wounds that do not heal. New England Journal of Medicine, 315, 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: wounds that do not heal. New England Journal of Medicine, 315, 1650–1659.PubMedCrossRef
29.
go back to reference Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal Medicine, 285, 1182–1186.CrossRef Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal Medicine, 285, 1182–1186.CrossRef
30.
go back to reference Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Medicine, 1, 27–31.PubMedCrossRef Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Medicine, 1, 27–31.PubMedCrossRef
31.
32.
go back to reference Zacharski, L. R., Constantini, V., Wojtukiewicz, M. Z., Memoli, V. A., & Kudryk, B. J. (1990). Anticoagulants as cancer therapy. Seminars in Oncology, 17, 217–227.PubMed Zacharski, L. R., Constantini, V., Wojtukiewicz, M. Z., Memoli, V. A., & Kudryk, B. J. (1990). Anticoagulants as cancer therapy. Seminars in Oncology, 17, 217–227.PubMed
33.
go back to reference Sierko, E., & Wojtukiewicz, M. Z. (2004). Platelets and angiogenesis in malignancy. Seminars in Thrombosis and Hemostasis, 30, 95–108.PubMedCrossRef Sierko, E., & Wojtukiewicz, M. Z. (2004). Platelets and angiogenesis in malignancy. Seminars in Thrombosis and Hemostasis, 30, 95–108.PubMedCrossRef
34.
go back to reference Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30, 5–20.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30, 5–20.PubMedCrossRef
35.
go back to reference Sierko, E., Wojtukiewicz, M. Z., Zimnoch, L., Brekken, R., Thorpe, P., & Kisiel, W. (2011). Co-localization of prothrombin fragment F1+2 and VEGFR-2 bound VEGF in human colon cancer. Anticancer Research, 31, 843–847.PubMed Sierko, E., Wojtukiewicz, M. Z., Zimnoch, L., Brekken, R., Thorpe, P., & Kisiel, W. (2011). Co-localization of prothrombin fragment F1+2 and VEGFR-2 bound VEGF in human colon cancer. Anticancer Research, 31, 843–847.PubMed
36.
go back to reference D’Asti, E., Huang, A., Kool, M., Meehan, B., Chan, J. A., Jabado, N., et al. (2016). Tissue factor regulation by miR-520g in primitive neuronal brain tumor cells: a possible link between oncomirs and the vascular tumor microenvironment. American Journal of Pathology, 186(2), 446–459.PubMedCrossRef D’Asti, E., Huang, A., Kool, M., Meehan, B., Chan, J. A., Jabado, N., et al. (2016). Tissue factor regulation by miR-520g in primitive neuronal brain tumor cells: a possible link between oncomirs and the vascular tumor microenvironment. American Journal of Pathology, 186(2), 446–459.PubMedCrossRef
37.
go back to reference D’Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis., 2(11), 1838–1849.CrossRef D’Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis., 2(11), 1838–1849.CrossRef
38.
go back to reference Verheul, H. M. W., Hoekman, K., Luykx-de Bakkerr, E., Eekm, C. A., Folman, C. C., Broxterman, H. J., & Pinedo, H. M. (1997). Platelet transporter of vascular endothelial growth factor. Clinical Cancer Research, 3, 2187–2190.PubMed Verheul, H. M. W., Hoekman, K., Luykx-de Bakkerr, E., Eekm, C. A., Folman, C. C., Broxterman, H. J., & Pinedo, H. M. (1997). Platelet transporter of vascular endothelial growth factor. Clinical Cancer Research, 3, 2187–2190.PubMed
39.
go back to reference Wartiovaara, U., Salven, P., & Mikkola Heta, I. (1998). Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thrombosis Haemostasis, 80, 171–175.PubMed Wartiovaara, U., Salven, P., & Mikkola Heta, I. (1998). Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thrombosis Haemostasis, 80, 171–175.PubMed
40.
go back to reference Verheul, H. M. W., Hoekman, K., Lupu, F., Broxterman, H. J., van der Valk, P., Kakkar, A. K., & Pinedo, H. M. (2000). Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clinical Cancer Research, 6, 166–171.PubMed Verheul, H. M. W., Hoekman, K., Lupu, F., Broxterman, H. J., van der Valk, P., Kakkar, A. K., & Pinedo, H. M. (2000). Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clinical Cancer Research, 6, 166–171.PubMed
41.
go back to reference Möhle, R., Green, D., Moore, R. L., Nachman, R. L., & Raffi, S. (1997). Constitutive production of thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences USA, 94, 663–669.CrossRef Möhle, R., Green, D., Moore, R. L., Nachman, R. L., & Raffi, S. (1997). Constitutive production of thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences USA, 94, 663–669.CrossRef
42.
go back to reference Pipli-Synestos, E., Papadimitriou, E., & Maragoudakis, M. E. (1998). Evidence that platelets promote tube formation by endothelial cells on Matrigel. British Journal of Pharmacology, 125, 1252–1257.CrossRef Pipli-Synestos, E., Papadimitriou, E., & Maragoudakis, M. E. (1998). Evidence that platelets promote tube formation by endothelial cells on Matrigel. British Journal of Pharmacology, 125, 1252–1257.CrossRef
43.
go back to reference Kisucka, J., Butterfield, C.E., Duda, D.G., Eichenberger, S.C., Saffaripour, S., & Ware, J. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences USA, 103, 855-860. Kisucka, J., Butterfield, C.E., Duda, D.G., Eichenberger, S.C., Saffaripour, S., & Ware, J. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences USA, 103, 855-860.
44.
go back to reference Andrews, R. K., Shen, Y., Gardiner, E. E., & Berndt, M. C. (2001). Platelet adhesion receptors and (patho)physiological thrombus formation. Histology and Histopathology, 16, 969–980.PubMed Andrews, R. K., Shen, Y., Gardiner, E. E., & Berndt, M. C. (2001). Platelet adhesion receptors and (patho)physiological thrombus formation. Histology and Histopathology, 16, 969–980.PubMed
45.
go back to reference Chen, H., Locke, D., Liu, Y., & Kahn, M. L. (2002). The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. The Journal of Biological Chemistry, 277, 3011–3019.PubMedCrossRef Chen, H., Locke, D., Liu, Y., & Kahn, M. L. (2002). The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. The Journal of Biological Chemistry, 277, 3011–3019.PubMedCrossRef
46.
go back to reference Kamata, T., & Takada, Y. (2001). Platelet integrin alphaIIbbeta3-ligand interactions: what we learn from the structure? International Journal of Hematology, 74, 382–389.PubMedCrossRef Kamata, T., & Takada, Y. (2001). Platelet integrin alphaIIbbeta3-ligand interactions: what we learn from the structure? International Journal of Hematology, 74, 382–389.PubMedCrossRef
47.
go back to reference Coughlin, S. R. (1999). Protease-activated receptors and platelet function. Thrombosis and Haemostasis, 82, 353–356.PubMed Coughlin, S. R. (1999). Protease-activated receptors and platelet function. Thrombosis and Haemostasis, 82, 353–356.PubMed
48.
go back to reference Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J. M., Morelli, A., et al. (2001). Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 97, 587–600.PubMedCrossRef Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J. M., Morelli, A., et al. (2001). Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 97, 587–600.PubMedCrossRef
49.
go back to reference Ruggeri, Z. M., & Mendolicchio, G. L. (2007). Adhesion mechanisms in platelet function. Circulation Research, 100(12), 1673–1685.PubMedCrossRef Ruggeri, Z. M., & Mendolicchio, G. L. (2007). Adhesion mechanisms in platelet function. Circulation Research, 100(12), 1673–1685.PubMedCrossRef
50.
go back to reference Farndale, R. W. (2006). Collagen-induced platelet activation. Blood Cells, Molecules and Diseases, 36, 162–165.PubMedCrossRef Farndale, R. W. (2006). Collagen-induced platelet activation. Blood Cells, Molecules and Diseases, 36, 162–165.PubMedCrossRef
51.
go back to reference Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92, 449–461. Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92, 449–461.
52.
go back to reference Heemskerk, J. W. M., Bevers, E. M., & Lindhout, T. (2002). Platelet activation and blood coagulation. Thrombosis and Heamostasis, 88, 186–193. Heemskerk, J. W. M., Bevers, E. M., & Lindhout, T. (2002). Platelet activation and blood coagulation. Thrombosis and Heamostasis, 88, 186–193.
53.
go back to reference Hartwig, J. M., & DeSisto, M. (1991). The cytoskeleton of the resting human blood platelets: structure of the membrane skeleton and its attachment to actin filaments. The Journal of Cell Biology, 112, 407–425.PubMedCrossRef Hartwig, J. M., & DeSisto, M. (1991). The cytoskeleton of the resting human blood platelets: structure of the membrane skeleton and its attachment to actin filaments. The Journal of Cell Biology, 112, 407–425.PubMedCrossRef
54.
go back to reference Serrano, K., & Devine, D. V. (2002). Intracellular factor XIII crosslinks platelet cytoskeletal elements upon platelet activation. Thrombosis and Haemostasis, 88, 315–320.PubMed Serrano, K., & Devine, D. V. (2002). Intracellular factor XIII crosslinks platelet cytoskeletal elements upon platelet activation. Thrombosis and Haemostasis, 88, 315–320.PubMed
55.
go back to reference Thon, J. N., & Italiano, J. E. (2012). Platelets: production, morphology and ultrastructure. Handbook of Experimental Pharmacology, 210, 3–22.CrossRef Thon, J. N., & Italiano, J. E. (2012). Platelets: production, morphology and ultrastructure. Handbook of Experimental Pharmacology, 210, 3–22.CrossRef
56.
go back to reference Rendu, F., & Brohard-Bohn, B. (2001). The platelet release reaction: granules’ constituents, secretion and functions. Platelets, 12, 261–273.PubMedCrossRef Rendu, F., & Brohard-Bohn, B. (2001). The platelet release reaction: granules’ constituents, secretion and functions. Platelets, 12, 261–273.PubMedCrossRef
57.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Review, 33(1), 231–269.CrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Review, 33(1), 231–269.CrossRef
58.
go back to reference Kato, N., Yasukawa, K., Onozuka, T., & Kimura, K. (1999). Paraneoplastic syndromes of leukocytosis, thrombocytosis, and hypercalcemia associated with squamous cell carcinoma. Journal of Dermatology, 26, 352–358.PubMedCrossRef Kato, N., Yasukawa, K., Onozuka, T., & Kimura, K. (1999). Paraneoplastic syndromes of leukocytosis, thrombocytosis, and hypercalcemia associated with squamous cell carcinoma. Journal of Dermatology, 26, 352–358.PubMedCrossRef
59.
go back to reference Estrov, A., Talpaz, M., Mavlight, G., Pazdur, R., Harris, D., Greenberg, S. M., et al. (1995). Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. American Journal of Medicine, 98, 551–558.PubMedCrossRef Estrov, A., Talpaz, M., Mavlight, G., Pazdur, R., Harris, D., Greenberg, S. M., et al. (1995). Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. American Journal of Medicine, 98, 551–558.PubMedCrossRef
60.
go back to reference Gastl, G., Plante, M., Finstad, C. L., Wong, G. Y., Federici, M. G., Bander, N. H., et al. (1993). High IL-6 levels in ascitic fluid correlate with reactive thrombocytosis in patients with epithelial ovarian cancer. British Journal of Haematology, 83, 433–441.PubMedCrossRef Gastl, G., Plante, M., Finstad, C. L., Wong, G. Y., Federici, M. G., Bander, N. H., et al. (1993). High IL-6 levels in ascitic fluid correlate with reactive thrombocytosis in patients with epithelial ovarian cancer. British Journal of Haematology, 83, 433–441.PubMedCrossRef
61.
go back to reference Suzuki, A., Takahashi, T., Nakamura, K., Tsuyuoka, R., Okuno, Y., Enomoto, T., et al. (1992). Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood, 80, 2052–2059.PubMed Suzuki, A., Takahashi, T., Nakamura, K., Tsuyuoka, R., Okuno, Y., Enomoto, T., et al. (1992). Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood, 80, 2052–2059.PubMed
62.
go back to reference Rafi, S., Shapiro, F., Pettengeli, R., Ferris, B., Nachman, R. L., Moore, M. A., et al. (1995). Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood, 86, 3353–3363. Rafi, S., Shapiro, F., Pettengeli, R., Ferris, B., Nachman, R. L., Moore, M. A., et al. (1995). Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood, 86, 3353–3363.
63.
go back to reference Higashihara, M., Sunaga, S., Tange, T., Oohashi, H., & Kurokawa, K. (1992). Increased secretion of interleukin-6 in malignant mesothelioma cells from a patient with marked thrombosis. Cancer, 70, 2105–2108.PubMedCrossRef Higashihara, M., Sunaga, S., Tange, T., Oohashi, H., & Kurokawa, K. (1992). Increased secretion of interleukin-6 in malignant mesothelioma cells from a patient with marked thrombosis. Cancer, 70, 2105–2108.PubMedCrossRef
64.
go back to reference Uppenkamp, M., Makarove, E., Petrasch, S., & Brittinger, G. (1998). Thrombopoietin serum concentration in patients with reactive and myeloproliferative thrombocytosis. Annals of Hematology, 77, 217–223.PubMedCrossRef Uppenkamp, M., Makarove, E., Petrasch, S., & Brittinger, G. (1998). Thrombopoietin serum concentration in patients with reactive and myeloproliferative thrombocytosis. Annals of Hematology, 77, 217–223.PubMedCrossRef
65.
go back to reference Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Dong, H. H., Bottsford-Miller, J., et al. (2013). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366, 610–618.CrossRef Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Dong, H. H., Bottsford-Miller, J., et al. (2013). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366, 610–618.CrossRef
66.
go back to reference Sasaki, Y., Takahashi, T., Miyazaki, H., Matsumoto, A., Kato, T., Nakamura, K., et al. (1999). Production of thrombopoietin by human carcinomas and its novel isoforms. Blood, 94, 1952–1960.PubMed Sasaki, Y., Takahashi, T., Miyazaki, H., Matsumoto, A., Kato, T., Nakamura, K., et al. (1999). Production of thrombopoietin by human carcinomas and its novel isoforms. Blood, 94, 1952–1960.PubMed
67.
go back to reference Baj-Krzyworzecka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30, 450–459.CrossRef Baj-Krzyworzecka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30, 450–459.CrossRef
68.
go back to reference Rafi, S., Mohle, R., Shapiro, F., Frey, B. M., & Moore, M. A. (1997). Regulation of hematopoiesis by microvascular endothelium. Leukemia & Lymphoma, 27, 375–386.CrossRef Rafi, S., Mohle, R., Shapiro, F., Frey, B. M., & Moore, M. A. (1997). Regulation of hematopoiesis by microvascular endothelium. Leukemia & Lymphoma, 27, 375–386.CrossRef
69.
go back to reference Wickenhauser, C., Lorenzen, J., Thiele, J., Hillienhof, A., Jungheim, K., Schmitz, B., et al. (1995). Secretion of cytokines (interleukines-1 alpha, -3, and granulocyte-macrophage colony stimulating factor) by normal human bone marrow megakaryocytes. Blood, 85, 685–691.PubMed Wickenhauser, C., Lorenzen, J., Thiele, J., Hillienhof, A., Jungheim, K., Schmitz, B., et al. (1995). Secretion of cytokines (interleukines-1 alpha, -3, and granulocyte-macrophage colony stimulating factor) by normal human bone marrow megakaryocytes. Blood, 85, 685–691.PubMed
70.
go back to reference Jones, C. L., Witte, D. P., Feller, M. J., Fugman, D. A., Dorn, G. W., Liebermann, M., & A. (1992). Response of human megakaryocytic cell line to thrombin: Increase in intracellular free calcium and mitogen release. Biochimica et Biophysica Acta, 1136, 272–282.PubMedCrossRef Jones, C. L., Witte, D. P., Feller, M. J., Fugman, D. A., Dorn, G. W., Liebermann, M., & A. (1992). Response of human megakaryocytic cell line to thrombin: Increase in intracellular free calcium and mitogen release. Biochimica et Biophysica Acta, 1136, 272–282.PubMedCrossRef
71.
go back to reference Avraham, H., Banu, N., Scadden, D. T., Abraham, J., & Groopman, J. E. (1994). Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood, 83, 2126–2132.PubMed Avraham, H., Banu, N., Scadden, D. T., Abraham, J., & Groopman, J. E. (1994). Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood, 83, 2126–2132.PubMed
72.
go back to reference Broxmeyer, H. E., Cooper, S., Li, Z. H., Lu, L., Song, H. Y., Kwon, B. S., et al. (1995). Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. International Journal of Hematology, 62, 203–215.PubMedCrossRef Broxmeyer, H. E., Cooper, S., Li, Z. H., Lu, L., Song, H. Y., Kwon, B. S., et al. (1995). Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. International Journal of Hematology, 62, 203–215.PubMedCrossRef
73.
go back to reference Tavasolli, M., & Aoki, M. (1989). Localization of megakaryocytes in the bone marrow. Blood Cells, 15, 3–14. Tavasolli, M., & Aoki, M. (1989). Localization of megakaryocytes in the bone marrow. Blood Cells, 15, 3–14.
74.
go back to reference Feng, W., Madajka, M., Kerr, B. A., Mahabeleshwar, G. H., Whiteheart, S. W., & Byzova, T. V. (2011). A novel role for platelet secretion in angiogenesis: mediating bone marrow–derived cell mobilization and homing. Blood, 117(14), 3893–3902.PubMedPubMedCentralCrossRef Feng, W., Madajka, M., Kerr, B. A., Mahabeleshwar, G. H., Whiteheart, S. W., & Byzova, T. V. (2011). A novel role for platelet secretion in angiogenesis: mediating bone marrow–derived cell mobilization and homing. Blood, 117(14), 3893–3902.PubMedPubMedCentralCrossRef
75.
go back to reference Salgado, R., Vermeulen, P. B., Benoy, I., Weytjens, R., Huget, P., Van Marck, E., & Dirix, L. Y. (1999). Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. British Journal of Cancer, 80, 892–897.PubMedPubMedCentralCrossRef Salgado, R., Vermeulen, P. B., Benoy, I., Weytjens, R., Huget, P., Van Marck, E., & Dirix, L. Y. (1999). Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. British Journal of Cancer, 80, 892–897.PubMedPubMedCentralCrossRef
76.
go back to reference Yang, M., Li, K., Ng, M. H., Yuen, P. M., Fok, T. F., Li, C. K., et al. (2003). Thrombospondin-1 inhibits in vitro megakaryocytopoiesis via CD36. Thrombosis Research, 109, 47–54.PubMedCrossRef Yang, M., Li, K., Ng, M. H., Yuen, P. M., Fok, T. F., Li, C. K., et al. (2003). Thrombospondin-1 inhibits in vitro megakaryocytopoiesis via CD36. Thrombosis Research, 109, 47–54.PubMedCrossRef
77.
go back to reference Bikfalvi, A., & Han, Z. C. (1994). Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia, 8, 523–529.PubMed Bikfalvi, A., & Han, Z. C. (1994). Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia, 8, 523–529.PubMed
78.
go back to reference Falanga, A., & Rickles, F. R. (1999). Pathophysiology of the thrombophilic state in the cancer patient. Seminars in Thrombosis and Hemostasis, 25, 173–182.PubMedCrossRef Falanga, A., & Rickles, F. R. (1999). Pathophysiology of the thrombophilic state in the cancer patient. Seminars in Thrombosis and Hemostasis, 25, 173–182.PubMedCrossRef
79.
go back to reference Kitagawa, H., Yamamoto, N., Yamamoto, K., Tanoue, K., Kosaki, G., & Yamazaki, H. (1989). Involvement of platelet membrane glycoprotein Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and –independent platelet aggregations induced by tumor cells. Cancer Research, 49, 537–541.PubMed Kitagawa, H., Yamamoto, N., Yamamoto, K., Tanoue, K., Kosaki, G., & Yamazaki, H. (1989). Involvement of platelet membrane glycoprotein Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and –independent platelet aggregations induced by tumor cells. Cancer Research, 49, 537–541.PubMed
80.
go back to reference Wehmeier, A., Tschope, D., Esser, J., Menzel, C., Nieuwenhuis, H. K., & Schneider, W. (1991). Circulating activated platelets in myeloproliferative disorders. Thrombosis Research, 61(3), 271–278.PubMedCrossRef Wehmeier, A., Tschope, D., Esser, J., Menzel, C., Nieuwenhuis, H. K., & Schneider, W. (1991). Circulating activated platelets in myeloproliferative disorders. Thrombosis Research, 61(3), 271–278.PubMedCrossRef
81.
go back to reference Blann, A. D., Gurney, M., Wadley, D., Bareford, D., Stonelake, P., & Lip, G. Y. (2001). Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagulation and Fibrinolysis, 12(1), 43–50.PubMedCrossRef Blann, A. D., Gurney, M., Wadley, D., Bareford, D., Stonelake, P., & Lip, G. Y. (2001). Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagulation and Fibrinolysis, 12(1), 43–50.PubMedCrossRef
82.
go back to reference Caine, G. J., Lip, G. Y., & Blann, A. D. (2004). Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Annals of Medicine, 36(4), 273–277.PubMedCrossRef Caine, G. J., Lip, G. Y., & Blann, A. D. (2004). Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Annals of Medicine, 36(4), 273–277.PubMedCrossRef
83.
go back to reference Wu, L. Q., Zhang, W. J., Niu, J. X., Ye, L. X., Yang, Z. H., Grau, G. E., & Lou, J. N. (2008). Phenotypic and functional differences between human liver cancer endothelial cells and liver sinusoidal endothelial cells. Journal of Vascular Research, 45, 78–86.PubMedCrossRef Wu, L. Q., Zhang, W. J., Niu, J. X., Ye, L. X., Yang, Z. H., Grau, G. E., & Lou, J. N. (2008). Phenotypic and functional differences between human liver cancer endothelial cells and liver sinusoidal endothelial cells. Journal of Vascular Research, 45, 78–86.PubMedCrossRef
85.
go back to reference Jurasz, P., Alonso-Escolano, D., & Radomski, M. W. (2004). Platelet-cancer interactions: mechanisms and pharmacology of tumor-cell-induced platelet aggregation. British Journal of Pharmacology, 143, 819–826.PubMedPubMedCentralCrossRef Jurasz, P., Alonso-Escolano, D., & Radomski, M. W. (2004). Platelet-cancer interactions: mechanisms and pharmacology of tumor-cell-induced platelet aggregation. British Journal of Pharmacology, 143, 819–826.PubMedPubMedCentralCrossRef
86.
go back to reference Bastida, E., Ordinas, A., Giardina, S., & Jamieson, G. A. (1982). Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Research, 42(11), 4348–4352.PubMed Bastida, E., Ordinas, A., Giardina, S., & Jamieson, G. A. (1982). Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Research, 42(11), 4348–4352.PubMed
87.
go back to reference Raica, M., Cimpean, A. M., & Ribatti, D. (2008). The role of podoplanin in tumor progression and metastasis. Anticancer Research, 28, 2997–3006.PubMed Raica, M., Cimpean, A. M., & Ribatti, D. (2008). The role of podoplanin in tumor progression and metastasis. Anticancer Research, 28, 2997–3006.PubMed
88.
go back to reference Dang, Q., Liu, J., Li, J., & Sun, Y. (2014). Podoplanin: a novel regulator of tumor invasion and metastasis. Medical Oncology, 31(9), 24–29.PubMedCrossRef Dang, Q., Liu, J., Li, J., & Sun, Y. (2014). Podoplanin: a novel regulator of tumor invasion and metastasis. Medical Oncology, 31(9), 24–29.PubMedCrossRef
89.
go back to reference Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(suppl 1), S30–S37.PubMedCrossRef Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(suppl 1), S30–S37.PubMedCrossRef
91.
go back to reference Demers, M., Krause, D. S., Schatzberg, D., Martinod, K., Voorhees, J. R., Fuchs, T. A., et al. (2012). Cancer predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences USA, 109, 13076-13081. Demers, M., Krause, D. S., Schatzberg, D., Martinod, K., Voorhees, J. R., Fuchs, T. A., et al. (2012). Cancer predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences USA, 109, 13076-13081.
92.
go back to reference Karpatkin, S., Nierodzik, M. L., & Klepfish, A. (1996). A role of platelets, thrombin in cancer. Vessels, 2, 17–23. Karpatkin, S., Nierodzik, M. L., & Klepfish, A. (1996). A role of platelets, thrombin in cancer. Vessels, 2, 17–23.
93.
go back to reference Pinedo, H. M., Verhaul, H. M. W., D’Amato, R. J., & Folkman, J. (1998). Involvement of platelets in tumor angiogenesis? Lancet, 352(9142), 1775–1777.PubMedCrossRef Pinedo, H. M., Verhaul, H. M. W., D’Amato, R. J., & Folkman, J. (1998). Involvement of platelets in tumor angiogenesis? Lancet, 352(9142), 1775–1777.PubMedCrossRef
94.
go back to reference Verheul, H. M. W., Jorna, A. S., Hoekman, K., Broxterman, H. J., Gebbink, M. F., & Pinedo, H. M. (2000). Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood, 96(13), 4216–4221.PubMed Verheul, H. M. W., Jorna, A. S., Hoekman, K., Broxterman, H. J., Gebbink, M. F., & Pinedo, H. M. (2000). Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood, 96(13), 4216–4221.PubMed
95.
go back to reference Slupsky, J. R., Kalbas, M., Willuwelt, A., Henn, V., Kroczek, R. A., & Müller-Berghaus, G. (1998). Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thrombosis and Haemostasis, 80(6), 1008–1014.PubMed Slupsky, J. R., Kalbas, M., Willuwelt, A., Henn, V., Kroczek, R. A., & Müller-Berghaus, G. (1998). Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thrombosis and Haemostasis, 80(6), 1008–1014.PubMed
96.
go back to reference Karmann, K., Min, W., Fanslow, W.C., & Pober, J. S. (1996), Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1. Journal of Experimental Medicine,184(1), 173-182. Karmann, K., Min, W., Fanslow, W.C., & Pober, J. S. (1996), Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1. Journal of Experimental Medicine,184(1), 173-182.
97.
go back to reference Rafii, D. C., Psaila, B., Butler, J., Jin, D. K., & Lyden, D. (2008). Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow–derived cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 217–222.PubMedCrossRef Rafii, D. C., Psaila, B., Butler, J., Jin, D. K., & Lyden, D. (2008). Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow–derived cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 217–222.PubMedCrossRef
98.
go back to reference Klement, G. L., Yip, T. T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V., et al. (2009). Platelets actively sequester angiogenesis regulators. Blood, 113, 2835–2842.PubMedCrossRef Klement, G. L., Yip, T. T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V., et al. (2009). Platelets actively sequester angiogenesis regulators. Blood, 113, 2835–2842.PubMedCrossRef
99.
go back to reference Kuznetsov, H. S., Marsh, T., Markens, B. A., Castaño, Z., Greene-Colozzi, A., Hay, S. A., et al. (2012). Identification of luminal breast cancers that establish a tumor-supportive microenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discovery, 2, 1150–1165.PubMedPubMedCentralCrossRef Kuznetsov, H. S., Marsh, T., Markens, B. A., Castaño, Z., Greene-Colozzi, A., Hay, S. A., et al. (2012). Identification of luminal breast cancers that establish a tumor-supportive microenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discovery, 2, 1150–1165.PubMedPubMedCentralCrossRef
100.
go back to reference Best, M. G., Sol, N., Kooi, I., Tannous, B. A., Wesseling, P., & Wurdinger, T. (2015). RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 28, 666–676.PubMedPubMedCentralCrossRef Best, M. G., Sol, N., Kooi, I., Tannous, B. A., Wesseling, P., & Wurdinger, T. (2015). RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 28, 666–676.PubMedPubMedCentralCrossRef
101.
go back to reference Banks, R. E., Forbes, M. A., Kinsey, S. E., Stanley, A., Ingham, E., Walters, C., et al. (1998). Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. British Journal of Cancer, 77, 956–964.PubMedPubMedCentralCrossRef Banks, R. E., Forbes, M. A., Kinsey, S. E., Stanley, A., Ingham, E., Walters, C., et al. (1998). Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. British Journal of Cancer, 77, 956–964.PubMedPubMedCentralCrossRef
102.
go back to reference Caine, G. J., Lip, G. Y., Stonelake, P. S., Ryan, P., & Blann, A. D. (2004). Platelet activation, coagulation and angiogenesis in breast and prostate carcinoma. Thrombosis and Haemostasis, 92, 185–190.PubMed Caine, G. J., Lip, G. Y., Stonelake, P. S., Ryan, P., & Blann, A. D. (2004). Platelet activation, coagulation and angiogenesis in breast and prostate carcinoma. Thrombosis and Haemostasis, 92, 185–190.PubMed
103.
go back to reference McDowell, G., Temple, I., Li, C., Kirwan, C. C., Bundred, N. J., McCollum, C. N., et al. (2005). Alteration in platelet function in patients with early breast cancer. Anticancer Research, 25, 3963–3966.PubMed McDowell, G., Temple, I., Li, C., Kirwan, C. C., Bundred, N. J., McCollum, C. N., et al. (2005). Alteration in platelet function in patients with early breast cancer. Anticancer Research, 25, 3963–3966.PubMed
104.
go back to reference Werther, K., Christensen, I. J., & Nielsen, H. J. (2002). Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of various leukocytes and platelets. Scandinavian Journal of Clinical and Laboratory Investigation, 62, 343–350.PubMedCrossRef Werther, K., Christensen, I. J., & Nielsen, H. J. (2002). Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of various leukocytes and platelets. Scandinavian Journal of Clinical and Laboratory Investigation, 62, 343–350.PubMedCrossRef
105.
go back to reference Jelkman, W. (2001). Pitfalls in the measurement of circulating vascular endothelial growth factor. Clinical Chemistry, 47, 617–623. Jelkman, W. (2001). Pitfalls in the measurement of circulating vascular endothelial growth factor. Clinical Chemistry, 47, 617–623.
106.
go back to reference Kim, S. J., Choi, I. K., Park, K. H., Yoon, S. Y., Oh, S. C., Seo, J. H., et al. (2004). Serum vascular endothelial growth factor per platelet count in hepatocellular carcinoma: correlations with clinical parameters and survival. Journal of Clinical Oncology, 34, 184–190. Kim, S. J., Choi, I. K., Park, K. H., Yoon, S. Y., Oh, S. C., Seo, J. H., et al. (2004). Serum vascular endothelial growth factor per platelet count in hepatocellular carcinoma: correlations with clinical parameters and survival. Journal of Clinical Oncology, 34, 184–190.
107.
go back to reference Brekken, R. A., Huang, X., King, S. W., & Thorpe, P. E. (1998). Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Research, 58, 1952–1959.PubMed Brekken, R. A., Huang, X., King, S. W., & Thorpe, P. E. (1998). Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Research, 58, 1952–1959.PubMed
108.
go back to reference Chen, F. H., Crist, S. A., Zhang, G. J., Iwamoto, Y., & See, W. A. (2002). Interleukin-6 production by human bladder tumor cell lines is up-regulated by bacillus Calmatte-Guerin through nuclear factor-kappaB and Ap-1 via an early pathway. Journal of Urology, 168, 786–797.PubMedCrossRef Chen, F. H., Crist, S. A., Zhang, G. J., Iwamoto, Y., & See, W. A. (2002). Interleukin-6 production by human bladder tumor cell lines is up-regulated by bacillus Calmatte-Guerin through nuclear factor-kappaB and Ap-1 via an early pathway. Journal of Urology, 168, 786–797.PubMedCrossRef
109.
go back to reference Brock, T. A., Dvorak, H. F., & Senger, D. R. (1991). Tumor secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human cells. American Journal of Pathology, 138, 213–221.PubMedPubMedCentral Brock, T. A., Dvorak, H. F., & Senger, D. R. (1991). Tumor secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human cells. American Journal of Pathology, 138, 213–221.PubMedPubMedCentral
110.
go back to reference Thurston, G., Rudge, J. S., Ioffe, E., Zhou, H., Ross, L., Croll, S. D., et al. (2000). Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Medicine, 6, 460–463.PubMedCrossRef Thurston, G., Rudge, J. S., Ioffe, E., Zhou, H., Ross, L., Croll, S. D., et al. (2000). Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Medicine, 6, 460–463.PubMedCrossRef
111.
go back to reference Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Review, 35(2), 213–233.CrossRef Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Review, 35(2), 213–233.CrossRef
112.
go back to reference Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Review, 34(4), 775–796.CrossRef Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Review, 34(4), 775–796.CrossRef
113.
go back to reference Clauss, M., Gerlach, M., Gerlach, H., Brett, J., Wang, F., Familletti, P. C., et al. (1990). Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. The Journal of Experimental Medicine, 172(6), 1535–1545.PubMedCrossRef Clauss, M., Gerlach, M., Gerlach, H., Brett, J., Wang, F., Familletti, P. C., et al. (1990). Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. The Journal of Experimental Medicine, 172(6), 1535–1545.PubMedCrossRef
114.
go back to reference Ma, L., Perini, R., McKnight, W., Klein, A., Hollenberg, M.D., & Wallace, J.L. (2005). Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proceedings of the National Academy of Sciences USA, 102, 216-220. Ma, L., Perini, R., McKnight, W., Klein, A., Hollenberg, M.D., & Wallace, J.L. (2005). Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proceedings of the National Academy of Sciences USA, 102, 216-220.
115.
go back to reference Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., et al. (2002). Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circulation Research, 91(1), 25–31.PubMedCrossRef Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., et al. (2002). Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circulation Research, 91(1), 25–31.PubMedCrossRef
116.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.PubMedCrossRef Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.PubMedCrossRef
117.
go back to reference Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.CrossRef Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.CrossRef
118.
go back to reference McMahon, G. A., Petitclerc, E., Stefansson, S., Smith, E., Wong, M. K., Westrick, R. J., et al. (2001). Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. The Journal of Biological Chemistry, 276(36), 33964–33968.PubMedCrossRef McMahon, G. A., Petitclerc, E., Stefansson, S., Smith, E., Wong, M. K., Westrick, R. J., et al. (2001). Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. The Journal of Biological Chemistry, 276(36), 33964–33968.PubMedCrossRef
119.
go back to reference Bajou, K., Noel, A., Gerard, R. D., Masson, V., Brunner, N., Holst-Hansen, C., et al. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Medicine, 4(8), 923–928.PubMedCrossRef Bajou, K., Noel, A., Gerard, R. D., Masson, V., Brunner, N., Holst-Hansen, C., et al. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Medicine, 4(8), 923–928.PubMedCrossRef
120.
go back to reference Peterson, J. E., Zurakowski, D., Italiano Jr., J. E., Michel, L. V., Connors, S., Oenick, M., D’Amato, R. J., et al. (2012). VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis, 15(2), 265–273.PubMedCrossRef Peterson, J. E., Zurakowski, D., Italiano Jr., J. E., Michel, L. V., Connors, S., Oenick, M., D’Amato, R. J., et al. (2012). VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis, 15(2), 265–273.PubMedCrossRef
121.
go back to reference Browder, T., Folkman, J., & Pirie-Shepherd, S. (2000). The hemostatic system as a regulator of angiogenesis. The Journal of Biological Chemistry, 275(3), 1521–1524.PubMedCrossRef Browder, T., Folkman, J., & Pirie-Shepherd, S. (2000). The hemostatic system as a regulator of angiogenesis. The Journal of Biological Chemistry, 275(3), 1521–1524.PubMedCrossRef
122.
go back to reference Jurasz, P., Alonso, D., Castro-Blanco, S., Murad, F., & Radomski, M. W. (2003). Generation and role of angiostatin in human platelets. Blood, 102(9), 3217–3223.PubMedCrossRef Jurasz, P., Alonso, D., Castro-Blanco, S., Murad, F., & Radomski, M. W. (2003). Generation and role of angiostatin in human platelets. Blood, 102(9), 3217–3223.PubMedCrossRef
123.
go back to reference Jurasz, P., Santos-Martinez, M. J., Radomska, A., & Radomski, M. W. (2006). Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects on angiogenesis. Journal of Thrombosis and Haemostasis, 4(5), 1095–1106.PubMedCrossRef Jurasz, P., Santos-Martinez, M. J., Radomska, A., & Radomski, M. W. (2006). Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects on angiogenesis. Journal of Thrombosis and Haemostasis, 4(5), 1095–1106.PubMedCrossRef
124.
go back to reference McEver, R. P. (2001). Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thrombosis and Haemostasis, 86(3), 746–756.PubMed McEver, R. P. (2001). Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thrombosis and Haemostasis, 86(3), 746–756.PubMed
125.
go back to reference Mast, A. E., Stadanlick, J. E., Lockett, M., Dietzen, D. J., Hasty, K. A., & Hall, C. L. (2000). Tissue factor pathway inhibitor binds to platelet thrombospondin-1. The Journal of Biological Chemistry., 275(41), 31715–31721.PubMedCrossRef Mast, A. E., Stadanlick, J. E., Lockett, M., Dietzen, D. J., Hasty, K. A., & Hall, C. L. (2000). Tissue factor pathway inhibitor binds to platelet thrombospondin-1. The Journal of Biological Chemistry., 275(41), 31715–31721.PubMedCrossRef
126.
go back to reference Selheim, F., Fukami, M. H., Holmsen, H., & Vessbotn, F. S. (2000). Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation. Biochemical Journal, 350, 469–475.PubMedPubMedCentralCrossRef Selheim, F., Fukami, M. H., Holmsen, H., & Vessbotn, F. S. (2000). Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation. Biochemical Journal, 350, 469–475.PubMedPubMedCentralCrossRef
127.
go back to reference Chui, C. M., Li, K., Yang, M., Chuen, C. K., Fok, T. F., Li, C. K., et al. (2003). Platelet-derived growth factor up-regulates the expression of transcription factors NF-E2, GATA-1 and c-Fos in megakaryocytic cell lines. Cytokine, 21(2), 51–64.PubMedCrossRef Chui, C. M., Li, K., Yang, M., Chuen, C. K., Fok, T. F., Li, C. K., et al. (2003). Platelet-derived growth factor up-regulates the expression of transcription factors NF-E2, GATA-1 and c-Fos in megakaryocytic cell lines. Cytokine, 21(2), 51–64.PubMedCrossRef
128.
go back to reference Teuscher, E., & Weidlich, V. (1985). Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomedica Biochimica Acta, 44, 493–495.PubMed Teuscher, E., & Weidlich, V. (1985). Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomedica Biochimica Acta, 44, 493–495.PubMed
129.
go back to reference English, D., Welch, Z., Kovala, A. T., Harvey, K., Volpert, O. V., Brindley, D. N., et al. (2000). Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB Journal, 14, 2255–2265.PubMedCrossRef English, D., Welch, Z., Kovala, A. T., Harvey, K., Volpert, O. V., Brindley, D. N., et al. (2000). Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB Journal, 14, 2255–2265.PubMedCrossRef
130.
go back to reference Freyssinet, J. M. (2003). Cellular microparticles: what are they bad or good for? Journal of Thrombosis and Haemostasis, 1, 1655–1662.PubMedCrossRef Freyssinet, J. M. (2003). Cellular microparticles: what are they bad or good for? Journal of Thrombosis and Haemostasis, 1, 1655–1662.PubMedCrossRef
131.
go back to reference Rhee, J. S., Black, M., Schubert, U., Fischer, S., Morgenstern, E., Hames, H. P., & Preissner, K. T. (2004). The functional role of blood platelet components in angiogenesis. Thrombosis and Hemostasis, 92, 394–402. Rhee, J. S., Black, M., Schubert, U., Fischer, S., Morgenstern, E., Hames, H. P., & Preissner, K. T. (2004). The functional role of blood platelet components in angiogenesis. Thrombosis and Hemostasis, 92, 394–402.
132.
go back to reference Italiano, J. E., Mairuhu, A. T. A., & Fleumen Haft, R. (2010). Clinical relevance of microparticles from platelets and megakaryocytes. Current Opinion in Hematology, 17, 578–584.PubMedPubMedCentralCrossRef Italiano, J. E., Mairuhu, A. T. A., & Fleumen Haft, R. (2010). Clinical relevance of microparticles from platelets and megakaryocytes. Current Opinion in Hematology, 17, 578–584.PubMedPubMedCentralCrossRef
133.
134.
go back to reference Flumenhaft, R. (2006). Formation and fate of platelet microparticles. Blood Cells, Molecules and Diseases, 36, 182–187.CrossRef Flumenhaft, R. (2006). Formation and fate of platelet microparticles. Blood Cells, Molecules and Diseases, 36, 182–187.CrossRef
135.
go back to reference Kim, H. K., Sonfg, K. S., Park, Y. S., Kang, Y. H., Lee, Y. J., Lee, K. R., et al. (2003). Elevated levels of circulating platelet microparticles, VEGF, IL-6, and RANTES in patients with gastric cancer: possible role of a metastasis predictor. European Journal of Cancer, 39, 184–191.PubMedCrossRef Kim, H. K., Sonfg, K. S., Park, Y. S., Kang, Y. H., Lee, Y. J., Lee, K. R., et al. (2003). Elevated levels of circulating platelet microparticles, VEGF, IL-6, and RANTES in patients with gastric cancer: possible role of a metastasis predictor. European Journal of Cancer, 39, 184–191.PubMedCrossRef
136.
go back to reference Ratajczak, J., Wysoczyński-Hajek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495.PubMedCrossRef Ratajczak, J., Wysoczyński-Hajek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495.PubMedCrossRef
137.
go back to reference Tan, K. T., & Lip, G. Y. (2005). The potential role of platelet microparticles in atherosclerosis. Thrombosis and Haemostasis, 94, 488–492.PubMed Tan, K. T., & Lip, G. Y. (2005). The potential role of platelet microparticles in atherosclerosis. Thrombosis and Haemostasis, 94, 488–492.PubMed
138.
go back to reference Kim, H. K., Song, K. S., Chung, J. H., Lee, K. R., & Lee, S. N. (2004). Platelet microparticles induce angiogenesis in vitro. British Journal of Haematology, 124, 374–384. Kim, H. K., Song, K. S., Chung, J. H., Lee, K. R., & Lee, S. N. (2004). Platelet microparticles induce angiogenesis in vitro. British Journal of Haematology, 124, 374–384.
139.
go back to reference Brill, A., Dashevsky, O., Rivo, J., Gozal, Y., & Varon, D. (2005). Platelet-derived microparticles induce angiogenesis and stimulate post-ischaemic revascularization. Cardiovascular Research, 67, 30–38.PubMedCrossRef Brill, A., Dashevsky, O., Rivo, J., Gozal, Y., & Varon, D. (2005). Platelet-derived microparticles induce angiogenesis and stimulate post-ischaemic revascularization. Cardiovascular Research, 67, 30–38.PubMedCrossRef
140.
go back to reference Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Crtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113, 752–760.PubMedCrossRef Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Crtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113, 752–760.PubMedCrossRef
141.
go back to reference Cloutier, N., Pare, A., Farndale, R. W., Schumacher, H. R., Nigrovic, P. A., Lacroix, S., et al. (2012). Platelets can enhance vascular permeability. Blood, 120, 1334–1343.PubMedCrossRef Cloutier, N., Pare, A., Farndale, R. W., Schumacher, H. R., Nigrovic, P. A., Lacroix, S., et al. (2012). Platelets can enhance vascular permeability. Blood, 120, 1334–1343.PubMedCrossRef
142.
go back to reference Prokopi, M., Pula, G., Mayr, U., Devue, C., Gallagher, J., Xiao, Q., et al. (2009). Proteome analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 114, 723–732.PubMedCrossRef Prokopi, M., Pula, G., Mayr, U., Devue, C., Gallagher, J., Xiao, Q., et al. (2009). Proteome analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 114, 723–732.PubMedCrossRef
143.
go back to reference Li, X., & Cong, H. (2009). Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Texas Heart Institute Journal, 36, 134–139.PubMed Li, X., & Cong, H. (2009). Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Texas Heart Institute Journal, 36, 134–139.PubMed
144.
go back to reference Martinez, M. C., & Andriantsitohaina, R. (2011). Microparticles in angiogenesis: therapeutic potential. Circulation Research, 109, 110–119.PubMedCrossRef Martinez, M. C., & Andriantsitohaina, R. (2011). Microparticles in angiogenesis: therapeutic potential. Circulation Research, 109, 110–119.PubMedCrossRef
145.
go back to reference Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124, 1773–1777.PubMedCrossRef Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124, 1773–1777.PubMedCrossRef
146.
go back to reference Seiki, M. (2003). Membrane-type 1 metalloproteinase: a key enzyme for tumor invasion. Cancer Letters, 194, 1–11.PubMedCrossRef Seiki, M. (2003). Membrane-type 1 metalloproteinase: a key enzyme for tumor invasion. Cancer Letters, 194, 1–11.PubMedCrossRef
147.
go back to reference Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in Cell Biology., 19(2), 43–51.PubMedCrossRef Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in Cell Biology., 19(2), 43–51.PubMedCrossRef
148.
go back to reference Risitano, A., Beaulieu, L. M., Vitseva, O., & Freedman, J. E. (2012). Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 119(26), 6288–6295.PubMedPubMedCentralCrossRef Risitano, A., Beaulieu, L. M., Vitseva, O., & Freedman, J. E. (2012). Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 119(26), 6288–6295.PubMedPubMedCentralCrossRef
149.
go back to reference Diehl, P., Fricke, A., Sander, L., Stamm, J., Bassler, N., Htun, N., et al. (2012). Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular Research, 93(4), 633–644.PubMedPubMedCentralCrossRef Diehl, P., Fricke, A., Sander, L., Stamm, J., Bassler, N., Htun, N., et al. (2012). Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular Research, 93(4), 633–644.PubMedPubMedCentralCrossRef
150.
go back to reference Herranz, H., & Cohen, S. M. (2010). MicroRNAs and gene regulatory networks: managing the impact of noise in biological system. Genes & Development, 24, 1339–1344.CrossRef Herranz, H., & Cohen, S. M. (2010). MicroRNAs and gene regulatory networks: managing the impact of noise in biological system. Genes & Development, 24, 1339–1344.CrossRef
151.
go back to reference Czech, B., & Hannon, G. J. (2011). Small RNA sorting: matchmaking for argonuates. Nature Reviews Genetics, 12, 19–31.PubMedCrossRef Czech, B., & Hannon, G. J. (2011). Small RNA sorting: matchmaking for argonuates. Nature Reviews Genetics, 12, 19–31.PubMedCrossRef
152.
go back to reference Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNA by the microprocessor complex. Nature, 432, 231–235.PubMedCrossRef Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNA by the microprocessor complex. Nature, 432, 231–235.PubMedCrossRef
153.
go back to reference Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.PubMedCrossRef Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.PubMedCrossRef
154.
go back to reference Diederiche, S., & Haber, D. A. (2007). Dual role for argonuates in microRNA processing and posttranscriptional regulation of micro-RNA expression. Cell, 131, 1097–1108.CrossRef Diederiche, S., & Haber, D. A. (2007). Dual role for argonuates in microRNA processing and posttranscriptional regulation of micro-RNA expression. Cell, 131, 1097–1108.CrossRef
155.
go back to reference Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., & Zamore, P. D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA, 16, 43–56.PubMedPubMedCentralCrossRef Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., & Zamore, P. D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA, 16, 43–56.PubMedPubMedCentralCrossRef
156.
go back to reference Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G., & Provost, P. (2009). Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16(9), 961–966.CrossRef Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G., & Provost, P. (2009). Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16(9), 961–966.CrossRef
157.
go back to reference Ple’, H., Landry, P., Benham, A., Coarfa, C., Gunaratne, P. H., & Provost, P. (2012). The repertoire and features of human platelet microRNAs. PloS One. doi:10.1371/journal.pone.0050746 Accessed 25 December 2012. Ple’, H., Landry, P., Benham, A., Coarfa, C., Gunaratne, P. H., & Provost, P. (2012). The repertoire and features of human platelet microRNAs. PloS One. doi:10.​1371/​journal.​pone.​0050746 Accessed 25 December 2012.
158.
go back to reference Kondkar, A. A., Bray, M. S., Leal, S. M., Nagalla, S., Liu, D. J., & Jin, Y. (2010). VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. Journal of Thrombosis and Haemostasis, 8(2), 369–378.PubMedCrossRef Kondkar, A. A., Bray, M. S., Leal, S. M., Nagalla, S., Liu, D. J., & Jin, Y. (2010). VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. Journal of Thrombosis and Haemostasis, 8(2), 369–378.PubMedCrossRef
159.
go back to reference Nagalla, S., Shaw, C., Kong, X., Kondkar, A. A., Edelstein, L. C., Ma, L., et al. (2011). Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 117(19), 5189–5197.PubMedPubMedCentralCrossRef Nagalla, S., Shaw, C., Kong, X., Kondkar, A. A., Edelstein, L. C., Ma, L., et al. (2011). Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 117(19), 5189–5197.PubMedPubMedCentralCrossRef
160.
go back to reference Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences USA, 108(12), 5003–5008.CrossRef Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences USA, 108(12), 5003–5008.CrossRef
161.
go back to reference Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4), 423–433.PubMedPubMedCentralCrossRef Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4), 423–433.PubMedPubMedCentralCrossRef
162.
go back to reference Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.PubMedCrossRef Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.PubMedCrossRef
163.
164.
go back to reference Boilard, E., Nigrovic, P. A., Larabee, K., Watts, G. F., Coblyn, J. S., Weinblatt, M. E., et al. (2010). Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science, 327, 580–583.PubMedPubMedCentralCrossRef Boilard, E., Nigrovic, P. A., Larabee, K., Watts, G. F., Coblyn, J. S., Weinblatt, M. E., et al. (2010). Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science, 327, 580–583.PubMedPubMedCentralCrossRef
165.
go back to reference Gidlöf, O., van der Brug, M., Ohman, J., Gilje, P., Olde, P., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121, 3908–3917.PubMedCrossRef Gidlöf, O., van der Brug, M., Ohman, J., Gilje, P., Olde, P., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121, 3908–3917.PubMedCrossRef
166.
go back to reference Laffont, B., Corduan, A., Plé, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef Laffont, B., Corduan, A., Plé, H., Duchez, A. C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261.PubMedCrossRef
167.
go back to reference Yi, P., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C.-Y., & Zen, K. (2014). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor1 receptor. Journal of Immunology, 192, 437–446.CrossRef Yi, P., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C.-Y., & Zen, K. (2014). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor1 receptor. Journal of Immunology, 192, 437–446.CrossRef
168.
go back to reference Nicoli, S., Standley, C., Walker, P., Hurlstone, A., Fogarty, K. E., & Lawson, N. D. (2010). MicroRNA-mediated integration of haemodynamics and Vegf signaling during angiogenesis. Nature, 464, 1196–1200.PubMedPubMedCentralCrossRef Nicoli, S., Standley, C., Walker, P., Hurlstone, A., Fogarty, K. E., & Lawson, N. D. (2010). MicroRNA-mediated integration of haemodynamics and Vegf signaling during angiogenesis. Nature, 464, 1196–1200.PubMedPubMedCentralCrossRef
169.
go back to reference Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15, 272–284.PubMedPubMedCentralCrossRef Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15, 272–284.PubMedPubMedCentralCrossRef
170.
go back to reference Nicolas, F. E., Pais, H., Schwach, F., Lindow, M., Kauppinen, S., Moulton, V., & Dalmay, T. (2008). Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA, 14, 2513–2520.PubMedPubMedCentralCrossRef Nicolas, F. E., Pais, H., Schwach, F., Lindow, M., Kauppinen, S., Moulton, V., & Dalmay, T. (2008). Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA, 14, 2513–2520.PubMedPubMedCentralCrossRef
171.
go back to reference Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.PubMedCrossRef Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.PubMedCrossRef
172.
go back to reference le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., et al. (2007). Regulation of the p27/(Kip1) tumor suppressor by miR-221 and niR-222 promotes cancer cell proliferation. EMBO Journal, 26, 3699–3708.PubMedPubMedCentralCrossRef le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., et al. (2007). Regulation of the p27/(Kip1) tumor suppressor by miR-221 and niR-222 promotes cancer cell proliferation. EMBO Journal, 26, 3699–3708.PubMedPubMedCentralCrossRef
173.
go back to reference Italiano Jr., J. E., Richardson, J. L., Patel-Hett, S., Battinelli, E., Zaslavsky, A., Short, S., et al. (2008). Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood, 111(3), 1227–1233.PubMedPubMedCentralCrossRef Italiano Jr., J. E., Richardson, J. L., Patel-Hett, S., Battinelli, E., Zaslavsky, A., Short, S., et al. (2008). Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood, 111(3), 1227–1233.PubMedPubMedCentralCrossRef
175.
go back to reference Batinelli, E. M., Markens, B. A., & Italiano Jr., J. E. (2011). Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood, 118, 1359–1369.CrossRef Batinelli, E. M., Markens, B. A., & Italiano Jr., J. E. (2011). Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood, 118, 1359–1369.CrossRef
176.
go back to reference Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21, 85–93.PubMedCrossRef Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21, 85–93.PubMedCrossRef
177.
go back to reference Kamykowski, J., Carlton, P., Sehgal, S., & Storie, B. (2011). Quantitative immunofluorescecnce mapping reveales little functional coclustering of proteins within platelets alpha-granules. Blood, 118, 1370–1378.PubMedCrossRef Kamykowski, J., Carlton, P., Sehgal, S., & Storie, B. (2011). Quantitative immunofluorescecnce mapping reveales little functional coclustering of proteins within platelets alpha-granules. Blood, 118, 1370–1378.PubMedCrossRef
178.
go back to reference Jonnalagadda, D., Izu, L. T., & Whiteheart, S. W. (2012). Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood, 120, 5209–5216.PubMedPubMedCentralCrossRef Jonnalagadda, D., Izu, L. T., & Whiteheart, S. W. (2012). Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood, 120, 5209–5216.PubMedPubMedCentralCrossRef
179.
go back to reference Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control. Seminars in Thrombosis and Hemostasis, 33, 712–721.PubMedCrossRef Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control. Seminars in Thrombosis and Hemostasis, 33, 712–721.PubMedCrossRef
180.
go back to reference Wojtukiewicz, M. Z., Sierko, E., & Zacharski, L. R. (2004). Interfering with hemostatic system components: possible new approaches to antiangiogenic therapy. Seminars in Thrombosis and Hemostasis, 30, 145–156.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., & Zacharski, L. R. (2004). Interfering with hemostatic system components: possible new approaches to antiangiogenic therapy. Seminars in Thrombosis and Hemostasis, 30, 145–156.PubMedCrossRef
Metadata
Title
Platelets and cancer angiogenesis nexus
Authors
Marek Z. Wojtukiewicz
Ewa Sierko
Dominika Hempel
Stephanie C. Tucker
Kenneth V. Honn
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9673-1

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue

ReviewPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine