Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2015

Open Access 01-12-2015 | NON-THEMATIC REVIEW

Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis

Authors: Marek Z. Wojtukiewicz, Dominika Hempel, Ewa Sierko, Stephanie C. Tucker, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 4/2015

Login to get access

Abstract

Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Literature
1.
go back to reference Trousseau, A. (1865). Phlegmasia dolens. Clinique Medicale de l’Hotel-Dieu de Paris, 3, 490–515. Trousseau, A. (1865). Phlegmasia dolens. Clinique Medicale de l’Hotel-Dieu de Paris, 3, 490–515.
2.
go back to reference Zacharski, L. R., Henderson, W. G., Rickles, F. R., Forman, W. B., Cornell, C. J., Forcier, R. J., et al. (1984). Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75. Cancer, 53(10), 2046–2052.PubMedCrossRef Zacharski, L. R., Henderson, W. G., Rickles, F. R., Forman, W. B., Cornell, C. J., Forcier, R. J., et al. (1984). Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75. Cancer, 53(10), 2046–2052.PubMedCrossRef
3.
go back to reference Altinbas, M., Coskun, H., Er, O., Ozkan, M., Eser, B., Unal, A., et al. (2004). A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. Journal of Thrombosis and Haemostasis, 2, 1266–1271.PubMedCrossRef Altinbas, M., Coskun, H., Er, O., Ozkan, M., Eser, B., Unal, A., et al. (2004). A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. Journal of Thrombosis and Haemostasis, 2, 1266–1271.PubMedCrossRef
4.
go back to reference Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362.PubMedCrossRef Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362.PubMedCrossRef
5.
go back to reference Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedCentralPubMedCrossRef Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedCentralPubMedCrossRef
6.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedCentralPubMedCrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedCentralPubMedCrossRef
7.
go back to reference Rieser, P. (1967). The insulin-like action of pepsin and pepsinogen. Acta Endocrinologica, 54, 375–379.PubMed Rieser, P. (1967). The insulin-like action of pepsin and pepsinogen. Acta Endocrinologica, 54, 375–379.PubMed
8.
go back to reference Carney, D. H., & Cunningham, D. D. (1997). Initiation of chick cell division by trypsin action at the cell surface. Nature, 268(5621), 602–606.CrossRef Carney, D. H., & Cunningham, D. D. (1997). Initiation of chick cell division by trypsin action at the cell surface. Nature, 268(5621), 602–606.CrossRef
9.
go back to reference Wojtukiewicz, M. Z., Sierko, E., Zacharski, L. R., Zimnoch, L., Kudryk, B., & Kisiel, W. (2003). Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Seminars in Thrombosis and Hemostasis, 29(3), 291–300.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., Zacharski, L. R., Zimnoch, L., Kudryk, B., & Kisiel, W. (2003). Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Seminars in Thrombosis and Hemostasis, 29(3), 291–300.PubMedCrossRef
10.
go back to reference Wojtukiewicz, M. Z., Zacharski, L. R., Ruciñska, M., Zimnoch, L., Jaromin, J., Rózañska-Kudelska, M., et al. (1999). Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thrombosis and Haemostasis, 82(6), 1659–1662.PubMed Wojtukiewicz, M. Z., Zacharski, L. R., Ruciñska, M., Zimnoch, L., Jaromin, J., Rózañska-Kudelska, M., et al. (1999). Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thrombosis and Haemostasis, 82(6), 1659–1662.PubMed
11.
go back to reference Sierko, E., Wojtukiewicz, M. Z., Zimnoch, L., Thorpe, P. E., Brekken, R. A., & Kisiel, W. (2011). Co-localization of prothrombin fragment F1 + 2 and VEGF-R2-bound VEGF in human colon cancer. Anticancer Research, 31(3), 843–847.PubMed Sierko, E., Wojtukiewicz, M. Z., Zimnoch, L., Thorpe, P. E., Brekken, R. A., & Kisiel, W. (2011). Co-localization of prothrombin fragment F1 + 2 and VEGF-R2-bound VEGF in human colon cancer. Anticancer Research, 31(3), 843–847.PubMed
12.
go back to reference Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–10568.PubMedCrossRef Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–10568.PubMedCrossRef
13.
go back to reference Vu, T. K. H., Wheaton, V. I., Hung, D. T., & Coughlin, S. R. (1991). Domains specifying thrombin-receptor interaction. Nature, 353(6345), 674–677.PubMedCrossRef Vu, T. K. H., Wheaton, V. I., Hung, D. T., & Coughlin, S. R. (1991). Domains specifying thrombin-receptor interaction. Nature, 353(6345), 674–677.PubMedCrossRef
14.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed
16.
go back to reference Yang, E., Boire, A., Agarwal, A., Nguyen, N., O'Callaghan, K., Tu, P., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Research, 69(15), 6223–6231.PubMedCentralPubMedCrossRef Yang, E., Boire, A., Agarwal, A., Nguyen, N., O'Callaghan, K., Tu, P., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Research, 69(15), 6223–6231.PubMedCentralPubMedCrossRef
17.
go back to reference Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20(34), 11977–11984.PubMedCentralPubMedCrossRef Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20(34), 11977–11984.PubMedCentralPubMedCrossRef
18.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., & Yamaguchi, A. (2008). Prognostic value of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer. Anticancer Research, 28(2A), 847–854.PubMed Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., & Yamaguchi, A. (2008). Prognostic value of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer. Anticancer Research, 28(2A), 847–854.PubMed
19.
go back to reference Suen, J. Y., Barry, G. D., Lohman, R. J., Halili, M. A., Cotterell, A. J., Le, G. T., et al. (2012). Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). British Journal of Pharmacology, 165(5), 1413–1423.PubMedCentralPubMedCrossRef Suen, J. Y., Barry, G. D., Lohman, R. J., Halili, M. A., Cotterell, A. J., Le, G. T., et al. (2012). Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). British Journal of Pharmacology, 165(5), 1413–1423.PubMedCentralPubMedCrossRef
20.
go back to reference Sevigny, L. M., Zhang, P., Bohm, A., Lazarides, K., Perides, G., Covic, L., et al. (2011). Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proceedings of the National Academy of Sciences of the United State of America, 108(20), 8491–8496.CrossRef Sevigny, L. M., Zhang, P., Bohm, A., Lazarides, K., Perides, G., Covic, L., et al. (2011). Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proceedings of the National Academy of Sciences of the United State of America, 108(20), 8491–8496.CrossRef
21.
go back to reference Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedCentralPubMedCrossRef Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedCentralPubMedCrossRef
22.
go back to reference Asanuma, K., Wakabayashi, H., Hayashi, T., Okuyama, N., Seto, M., Matsumine, A., et al. (2004). Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis. Oncology, 67(2), 166–173.PubMedCrossRef Asanuma, K., Wakabayashi, H., Hayashi, T., Okuyama, N., Seto, M., Matsumine, A., et al. (2004). Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis. Oncology, 67(2), 166–173.PubMedCrossRef
23.
go back to reference Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3, 1800–1814.PubMedCrossRef Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3, 1800–1814.PubMedCrossRef
24.
go back to reference Ramachandran, R., Noorbakhsh, F., Defea, K., & Hollenberg, M. D. (2012). Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, 11(1), 69–86.PubMedCrossRef Ramachandran, R., Noorbakhsh, F., Defea, K., & Hollenberg, M. D. (2012). Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, 11(1), 69–86.PubMedCrossRef
25.
go back to reference Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pagers, G., Pavirani, A., et al. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Letters, 288(1–2), 123–128.PubMedCrossRef Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pagers, G., Pavirani, A., et al. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Letters, 288(1–2), 123–128.PubMedCrossRef
26.
go back to reference Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.PubMedCrossRef Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.PubMedCrossRef
27.
go back to reference Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential novel proteinase activated receptor. Proceedings of the National Academy of Sciences of the United State of America, 91(20), 9208–9212.CrossRef Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential novel proteinase activated receptor. Proceedings of the National Academy of Sciences of the United State of America, 91(20), 9208–9212.CrossRef
28.
go back to reference Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United State of America, 95(12), 6642–6646.CrossRef Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United State of America, 95(12), 6642–6646.CrossRef
29.
go back to reference Ossovskaya, V. S., & Bunnett, N. W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiological Reviews, 84(2), 579–621.PubMedCrossRef Ossovskaya, V. S., & Bunnett, N. W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiological Reviews, 84(2), 579–621.PubMedCrossRef
30.
go back to reference Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. (2013). Cofactoring and dimerization of proteinase-activated receptors. Pharmacological Reviews, 65(4), 1198–1213.PubMedCentralPubMedCrossRef Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. (2013). Cofactoring and dimerization of proteinase-activated receptors. Pharmacological Reviews, 65(4), 1198–1213.PubMedCentralPubMedCrossRef
31.
go back to reference Junge, C. E., Lee, C. J., Hubbard, K. B., Zhang, Z., Olson, J. J., Hepler, J. R., et al. (2004). Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Experimental Neurology, 188(1), 94–103.PubMedCrossRef Junge, C. E., Lee, C. J., Hubbard, K. B., Zhang, Z., Olson, J. J., Hepler, J. R., et al. (2004). Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Experimental Neurology, 188(1), 94–103.PubMedCrossRef
32.
go back to reference Arora, P., Ricks, T. K., & Trejo, J. (2007). Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. Journal of Cell Science, 120(6), 921–928.PubMedCrossRef Arora, P., Ricks, T. K., & Trejo, J. (2007). Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. Journal of Cell Science, 120(6), 921–928.PubMedCrossRef
33.
go back to reference Lin, H., & Trejo, J. (2013). Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signaling. Journal of Biological Chemistry, 288, 11203–11215.PubMedCentralPubMedCrossRef Lin, H., & Trejo, J. (2013). Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signaling. Journal of Biological Chemistry, 288, 11203–11215.PubMedCentralPubMedCrossRef
34.
go back to reference McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007). Protease-activated receptor3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United State of America, 104(13), 5662–5667.CrossRef McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007). Protease-activated receptor3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United State of America, 104(13), 5662–5667.CrossRef
35.
go back to reference O’Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., & Woulfe, D. S. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin cleaved PAR1. The Journal of Biology and Chemistry, 275(18), 13502–13509.CrossRef O’Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., & Woulfe, D. S. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin cleaved PAR1. The Journal of Biology and Chemistry, 275(18), 13502–13509.CrossRef
36.
go back to reference Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., et al. (2006). Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation, 113(9), 1244–1254.PubMedCrossRef Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., et al. (2006). Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation, 113(9), 1244–1254.PubMedCrossRef
37.
go back to reference Madhusudhan, T., Wang, H., Straub, B. K., Gröne, E., Zhou, Q., Shahzad, K., et al. (2012). Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood, 119(3), 874–883.PubMedCentralPubMedCrossRef Madhusudhan, T., Wang, H., Straub, B. K., Gröne, E., Zhou, Q., Shahzad, K., et al. (2012). Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood, 119(3), 874–883.PubMedCentralPubMedCrossRef
38.
go back to reference Albrektsen, T., Sorensen, B. B., Hjorto, G. M., Fleckner, J., Rao, L. V., & Petersen, L. C. (2007). Transcriptional program induced by factor VIIa tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. Journal of Thrombosis and Haemostasis, 5(8), 1588–1597.PubMedCentralPubMedCrossRef Albrektsen, T., Sorensen, B. B., Hjorto, G. M., Fleckner, J., Rao, L. V., & Petersen, L. C. (2007). Transcriptional program induced by factor VIIa tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. Journal of Thrombosis and Haemostasis, 5(8), 1588–1597.PubMedCentralPubMedCrossRef
39.
go back to reference Agarwal, A., Covic, L., Sevigny, L. M., Kaneider, N. C., Lazarides, K., Azabdaftari, G., et al. (2008). Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Molecular Cancer Therapeutics, 7, 2746–2757.PubMedCentralPubMedCrossRef Agarwal, A., Covic, L., Sevigny, L. M., Kaneider, N. C., Lazarides, K., Azabdaftari, G., et al. (2008). Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Molecular Cancer Therapeutics, 7, 2746–2757.PubMedCentralPubMedCrossRef
40.
go back to reference van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.PubMedCrossRef van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.PubMedCrossRef
41.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68(3), 233–45.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68(3), 233–45.PubMedCrossRef
42.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54(5), 793–806.CrossRef Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54(5), 793–806.CrossRef
43.
go back to reference Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed
44.
go back to reference Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45, 2287–2294.PubMed Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45, 2287–2294.PubMed
45.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2010). The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion. Biomedical Central Cancer, 10, 443–458. Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2010). The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion. Biomedical Central Cancer, 10, 443–458.
46.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2013). The activation of proteinase-activated receptor-1 (PAR1) promotes gastric cancer cell alteration of cellular morphology related to cell motility and invasion. International Journal of Oncology, 42(2), 565–573.PubMed Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2013). The activation of proteinase-activated receptor-1 (PAR1) promotes gastric cancer cell alteration of cellular morphology related to cell motility and invasion. International Journal of Oncology, 42(2), 565–573.PubMed
47.
go back to reference Arora, P., Cuevas, B. D., Russo, A., Johnson, G. L., & Trejo, J. (2008). Persistent transactivation of EGFR and ErbB2/HER2 by protease activated receptor-1 promotes breast carcinoma cell invasion. Oncogene, 27(32), 4434–4445.PubMedCentralPubMedCrossRef Arora, P., Cuevas, B. D., Russo, A., Johnson, G. L., & Trejo, J. (2008). Persistent transactivation of EGFR and ErbB2/HER2 by protease activated receptor-1 promotes breast carcinoma cell invasion. Oncogene, 27(32), 4434–4445.PubMedCentralPubMedCrossRef
48.
go back to reference Nierodzik, M. L., Chen, K., Takeshita, K., Li, J. J., Huang, Y. Q., Feng, X. S., et al. (1998). Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood, 92(10), 3694–3700.PubMed Nierodzik, M. L., Chen, K., Takeshita, K., Li, J. J., Huang, Y. Q., Feng, X. S., et al. (1998). Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood, 92(10), 3694–3700.PubMed
49.
go back to reference Chen, H. T., Tsou, H. K., Tsai, C. H., Kuo, C. C., Chiang, Y. K., Chang, C. H., et al. (2010). Thrombin enhanced migration and MMPs expression of human chondrosarcoma cells involves PAR receptor signaling pathway. Journal of Cellular Physiology, 223(3), 737–745.PubMed Chen, H. T., Tsou, H. K., Tsai, C. H., Kuo, C. C., Chiang, Y. K., Chang, C. H., et al. (2010). Thrombin enhanced migration and MMPs expression of human chondrosarcoma cells involves PAR receptor signaling pathway. Journal of Cellular Physiology, 223(3), 737–745.PubMed
50.
go back to reference Shi, X., Gangadharan, B., Brass, L. F., Ruf, W., & Mueller, B. M. (2004). Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Molecular Cancer Research, 2(7), 395–402.PubMed Shi, X., Gangadharan, B., Brass, L. F., Ruf, W., & Mueller, B. M. (2004). Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Molecular Cancer Research, 2(7), 395–402.PubMed
51.
go back to reference D'Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis, 12(11), 1838–1849.PubMedCrossRef D'Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis, 12(11), 1838–1849.PubMedCrossRef
52.
go back to reference Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120(3), 303–313.PubMedCrossRef Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120(3), 303–313.PubMedCrossRef
53.
go back to reference Xie, L., Duan, Z., Liu, C., Zheng, Y., & Zhou, J. (2015). Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells. Experimental and Therapeutic Medicine, 9(1), 239–244.PubMedCentralPubMed Xie, L., Duan, Z., Liu, C., Zheng, Y., & Zhou, J. (2015). Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells. Experimental and Therapeutic Medicine, 9(1), 239–244.PubMedCentralPubMed
54.
go back to reference Shimamoto, R., Sawada, T., Uchima, Y., Inoue, M., Kimura, K., Yamashita, Y., et al. (2004). A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. International Journal of Oncology, 24(6), 1401–1406.PubMed Shimamoto, R., Sawada, T., Uchima, Y., Inoue, M., Kimura, K., Yamashita, Y., et al. (2004). A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. International Journal of Oncology, 24(6), 1401–1406.PubMed
55.
go back to reference Kaufmann, R., Schafberg, H., & Nowak, G. (1998). Proteinase-activated receptor-2-mediated signaling and inhibition of DNA synthesis in human pancreatic cancer cells. International Journal of Pancreatology, 24(2), 97–102.PubMed Kaufmann, R., Schafberg, H., & Nowak, G. (1998). Proteinase-activated receptor-2-mediated signaling and inhibition of DNA synthesis in human pancreatic cancer cells. International Journal of Pancreatology, 24(2), 97–102.PubMed
56.
go back to reference Zhou, J., Xie, L., Li, X., Chen, X. Y., Chen, L., Zheng, Y. M., et al. (2010). Promotion of protease-activated receptor 2 agonists on cell invasion and metastasis of esophageal cancer cell EC109. Shi Jie Hua Ren Xiao Hua Za Zhi, 18(13), 1313–1319. Zhou, J., Xie, L., Li, X., Chen, X. Y., Chen, L., Zheng, Y. M., et al. (2010). Promotion of protease-activated receptor 2 agonists on cell invasion and metastasis of esophageal cancer cell EC109. Shi Jie Hua Ren Xiao Hua Za Zhi, 18(13), 1313–1319.
57.
go back to reference Xie, L., Zheng, Y., Li, X., Zhao, J., Chen, X., Chen, L., et al. (2012). Enhanced proliferation of human hepatoma cells by PAR-2 agonists via the ERK/AP-1pathway. Oncology Reports, 28(5), 1665–1672.PubMed Xie, L., Zheng, Y., Li, X., Zhao, J., Chen, X., Chen, L., et al. (2012). Enhanced proliferation of human hepatoma cells by PAR-2 agonists via the ERK/AP-1pathway. Oncology Reports, 28(5), 1665–1672.PubMed
58.
go back to reference Kaufmann, R., Oettel, C., Horn, A., Halbhuber, K. J., Eitner, A., Krieg, R., et al. (2009). Met receptor tyrosine kinase transactivation is involved in proteinase activated receptor 2 mediated hepatocellular carcinoma cell invasion. Carcinogenesis, 30(9), 1487–1496.PubMedCrossRef Kaufmann, R., Oettel, C., Horn, A., Halbhuber, K. J., Eitner, A., Krieg, R., et al. (2009). Met receptor tyrosine kinase transactivation is involved in proteinase activated receptor 2 mediated hepatocellular carcinoma cell invasion. Carcinogenesis, 30(9), 1487–1496.PubMedCrossRef
59.
go back to reference Kaufmann, R., Hascher, A., Mussbach, F., Henklein, P., Katenkamp, K., Westermann, M., et al. (2012). Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochemistry and Cell Biology, 138(6), 913–924.PubMedCrossRef Kaufmann, R., Hascher, A., Mussbach, F., Henklein, P., Katenkamp, K., Westermann, M., et al. (2012). Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochemistry and Cell Biology, 138(6), 913–924.PubMedCrossRef
60.
go back to reference Soreide, K., Janssen, E. A., Körner, H., & Baak, J. P. (2006). Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. The American Journal of Pathology, 209(2), 147–156.CrossRef Soreide, K., Janssen, E. A., Körner, H., & Baak, J. P. (2006). Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. The American Journal of Pathology, 209(2), 147–156.CrossRef
61.
go back to reference Nishibori, M., Mori, S., & Takahashi, H. K. (2005). Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2-mediated proliferation of colon cancer cell. Journal of Pharmacological Sciences, 97(1), 25–30.PubMedCrossRef Nishibori, M., Mori, S., & Takahashi, H. K. (2005). Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2-mediated proliferation of colon cancer cell. Journal of Pharmacological Sciences, 97(1), 25–30.PubMedCrossRef
62.
go back to reference Jikuhara, A., Yoshii, M., Iwagaki, H., Mori, S., Nishibori, M., & Tanaka, N. (2003). MAP kinase-mediated proliferation of DLD-1 carcinoma by the stimulation of protease-activated receptor 2. Life Science, 73(22), 2817–2829.CrossRef Jikuhara, A., Yoshii, M., Iwagaki, H., Mori, S., Nishibori, M., & Tanaka, N. (2003). MAP kinase-mediated proliferation of DLD-1 carcinoma by the stimulation of protease-activated receptor 2. Life Science, 73(22), 2817–2829.CrossRef
63.
go back to reference Sánchez-Hernández, P. E., Ramirez-Dueñas, M. G., Albarran-Somoza, B., García-Iglesias, T., del Toro-Arreola, A., Franco-Topete, R., et al. (2008). Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecologic Oncology, 108(1), 19–26.PubMedCrossRef Sánchez-Hernández, P. E., Ramirez-Dueñas, M. G., Albarran-Somoza, B., García-Iglesias, T., del Toro-Arreola, A., Franco-Topete, R., et al. (2008). Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecologic Oncology, 108(1), 19–26.PubMedCrossRef
64.
go back to reference Al-Eryani, K., Cheng, J., Abé, T., Maruyama, S., Yamazaki, M., Babkair, H., et al. (2015). Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells. Human Pathology, 46(7), 991–999.PubMedCrossRef Al-Eryani, K., Cheng, J., Abé, T., Maruyama, S., Yamazaki, M., Babkair, H., et al. (2015). Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells. Human Pathology, 46(7), 991–999.PubMedCrossRef
65.
go back to reference Kaufmann, R., Patt, S., Zieger, M., Kraft, R., & Nowak, G. (1999). Presence of the proteinase-activated receptor-2 (PAR-2) in human brain tumor cells--trypsin- and SLIGRL-induced calcium response in primary cultured meningiomas. Cancer Letters, 139(1), 109–113.PubMedCrossRef Kaufmann, R., Patt, S., Zieger, M., Kraft, R., & Nowak, G. (1999). Presence of the proteinase-activated receptor-2 (PAR-2) in human brain tumor cells--trypsin- and SLIGRL-induced calcium response in primary cultured meningiomas. Cancer Letters, 139(1), 109–113.PubMedCrossRef
66.
go back to reference Su, S., Li, Y., Luo, Y., Sheng, Y., Su, Y., Padia, R. N., et al. (2009). Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene, 28(34), 3047–3057.PubMedCentralPubMedCrossRef Su, S., Li, Y., Luo, Y., Sheng, Y., Su, Y., Padia, R. N., et al. (2009). Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene, 28(34), 3047–3057.PubMedCentralPubMedCrossRef
67.
go back to reference Jiang, X., Bailly, M. A., Panetti, T. S., Cappello, M., Konigsberg, W. H., & Bromberg, M. E. (2004). Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. Journal of Thrombosis and Haemostasis, 2(1), 93–101.PubMedCrossRef Jiang, X., Bailly, M. A., Panetti, T. S., Cappello, M., Konigsberg, W. H., & Bromberg, M. E. (2004). Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. Journal of Thrombosis and Haemostasis, 2(1), 93–101.PubMedCrossRef
68.
go back to reference Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66(1), 307–314.PubMedCrossRef Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66(1), 307–314.PubMedCrossRef
69.
go back to reference Hjortoe, G. M., Petersen, L. C., Albrektsen, T., Sorensen, B. B., Norby, P. L., Mandal, S. K., et al. (2004). Tissue factor–factor VIIa specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood, 103(8), 3029–3037.PubMedCentralPubMedCrossRef Hjortoe, G. M., Petersen, L. C., Albrektsen, T., Sorensen, B. B., Norby, P. L., Mandal, S. K., et al. (2004). Tissue factor–factor VIIa specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood, 103(8), 3029–3037.PubMedCentralPubMedCrossRef
70.
go back to reference Lin, Z. M., Zhao, J. X., Duan, X. N., Zhang, L. B., Ye, J. M., Xu, L., et al. (2014). Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion. Asian Pacific Journal of Cancer Prevention, 15(2), 643–646.PubMedCrossRef Lin, Z. M., Zhao, J. X., Duan, X. N., Zhang, L. B., Ye, J. M., Xu, L., et al. (2014). Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion. Asian Pacific Journal of Cancer Prevention, 15(2), 643–646.PubMedCrossRef
71.
go back to reference Li, X., & Tai, H. H. (2014). Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells. Molecular Carcinogenesis, 53, 650–666. Li, X., & Tai, H. H. (2014). Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells. Molecular Carcinogenesis, 53, 650–666.
72.
go back to reference Carneiro-Lobo, T. C., Lima, M. T., Mariano-Oliveira, A., Dutra-Oliveira, A., Oba-Shinjo, S. M., Marie, S. K., et al. (2014). Expression of tissue factor signaling pathway elements correlates with the production of vascular endothelial growth factor and interleukin-8 in human astrocytoma patients. Oncology Reports, 31(2), 679–686.PubMed Carneiro-Lobo, T. C., Lima, M. T., Mariano-Oliveira, A., Dutra-Oliveira, A., Oba-Shinjo, S. M., Marie, S. K., et al. (2014). Expression of tissue factor signaling pathway elements correlates with the production of vascular endothelial growth factor and interleukin-8 in human astrocytoma patients. Oncology Reports, 31(2), 679–686.PubMed
73.
go back to reference Dutra-Oliveira, A., Monteiro, R. Q., & Mariano-Oliveira, A. (2012). Protease-activated receptor-2 (PAR2) mediates VEGF production through the ERK1/2 pathway in human glioblastoma cell lines. Biochemical and Biophysical Research Communications, 421(2), 221–227.PubMedCrossRef Dutra-Oliveira, A., Monteiro, R. Q., & Mariano-Oliveira, A. (2012). Protease-activated receptor-2 (PAR2) mediates VEGF production through the ERK1/2 pathway in human glioblastoma cell lines. Biochemical and Biophysical Research Communications, 421(2), 221–227.PubMedCrossRef
74.
go back to reference D'Andrea, M. R., Derian, C. K., Santulli, R. J., & Andrade-Gordon, P. (2001). Differential expression of protease activated receptors-1 and −2 in stromal fibroblasts of normal, benign, and malignant human tissues. American Journal of Pathology, 158, 2031–2041.PubMedCentralPubMedCrossRef D'Andrea, M. R., Derian, C. K., Santulli, R. J., & Andrade-Gordon, P. (2001). Differential expression of protease activated receptors-1 and −2 in stromal fibroblasts of normal, benign, and malignant human tissues. American Journal of Pathology, 158, 2031–2041.PubMedCentralPubMedCrossRef
75.
go back to reference Bar-Shavit, R., Turm, H., Salah, Z., Maoz, M., Cohen, I., Weiss, E., et al. (2011). PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. International Union of Biochemistry and Molecular Biology Life, 63(6), 397–402.PubMedCrossRef Bar-Shavit, R., Turm, H., Salah, Z., Maoz, M., Cohen, I., Weiss, E., et al. (2011). PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. International Union of Biochemistry and Molecular Biology Life, 63(6), 397–402.PubMedCrossRef
76.
go back to reference Tellez, C. S., Davis, D. W., Prieto, V. G., Gershenwald, J. E., Johnson, M. M., McCarty, M. F., et al. (2007). Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2alpha and protease activated receptor-1 expression during melanoma progression. Journal of Investigative Dermatology, 127, 387–393.PubMedCrossRef Tellez, C. S., Davis, D. W., Prieto, V. G., Gershenwald, J. E., Johnson, M. M., McCarty, M. F., et al. (2007). Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2alpha and protease activated receptor-1 expression during melanoma progression. Journal of Investigative Dermatology, 127, 387–393.PubMedCrossRef
77.
go back to reference Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., Cohen, I., Even-Ram, S., Maoz, M., et al. (2003). Human protease-activated receptor-1 expression in malignant epithelia: a role in invasiveness. Ateriosclerosis, Thrombosis, and Vascular Biology, 23, 940–944.CrossRef Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., Cohen, I., Even-Ram, S., Maoz, M., et al. (2003). Human protease-activated receptor-1 expression in malignant epithelia: a role in invasiveness. Ateriosclerosis, Thrombosis, and Vascular Biology, 23, 940–944.CrossRef
78.
go back to reference Uzunoglu, F. G., Yavari, N., Bohn, B. A., Nentwich, M. F., Reeh, M., Pantel, K., et al. (2013). C-X-C motif receptor 2, endostatin and proteinase-activated receptor 1 polymorphisms as prognostic factors in NSCLC. Lung Cancer, 81(1), 123–129.PubMedCrossRef Uzunoglu, F. G., Yavari, N., Bohn, B. A., Nentwich, M. F., Reeh, M., Pantel, K., et al. (2013). C-X-C motif receptor 2, endostatin and proteinase-activated receptor 1 polymorphisms as prognostic factors in NSCLC. Lung Cancer, 81(1), 123–129.PubMedCrossRef
79.
go back to reference Uzunoglu, F. G., Kolbe, J., Wikman, H., Güngör, C., Bohn, B. A., Nentwich, M. F., et al. (2013). VEGFR-2, CXCR-2 and PAR-1 germline polymorphisms as predictors of survival in pancreatic carcinoma. Annals of Oncology, 24(5), 1282–1290.PubMedCrossRef Uzunoglu, F. G., Kolbe, J., Wikman, H., Güngör, C., Bohn, B. A., Nentwich, M. F., et al. (2013). VEGFR-2, CXCR-2 and PAR-1 germline polymorphisms as predictors of survival in pancreatic carcinoma. Annals of Oncology, 24(5), 1282–1290.PubMedCrossRef
80.
go back to reference Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M. D., & Kaufmann, R. (2013). Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Communication and Signaling. doi:10.1186/1478-811X-11-86.PubMedCentralPubMed Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M. D., & Kaufmann, R. (2013). Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Communication and Signaling. doi:10.​1186/​1478-811X-11-86.PubMedCentralPubMed
81.
go back to reference Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M., & Ruf, W. (2002). Activation of endothelial cell protease activated receptor-1 by the protein C pathway. Science, 296(5574), 1880–1888.PubMedCrossRef Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M., & Ruf, W. (2002). Activation of endothelial cell protease activated receptor-1 by the protein C pathway. Science, 296(5574), 1880–1888.PubMedCrossRef
82.
go back to reference Cleary, D. B., Trumbo, T. A., & Maurer, M. C. (2002). Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. Archives of Biochemistry and Biophysics, 403(2), 179–188.PubMedCrossRef Cleary, D. B., Trumbo, T. A., & Maurer, M. C. (2002). Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. Archives of Biochemistry and Biophysics, 403(2), 179–188.PubMedCrossRef
83.
go back to reference Riewald, M., & Ruf, W. (2001). Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proceedings of the National Academy of Sciences of the United State of America, 98(14), 7742–7747.CrossRef Riewald, M., & Ruf, W. (2001). Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proceedings of the National Academy of Sciences of the United State of America, 98(14), 7742–7747.CrossRef
84.
go back to reference Larsen, K. S., Ostergaard, H., Olsen, O. H., Bjelke, J. R., Ruf, W., & Petersen, L. C. (2010). Engineering of substrate selectivity for tissue factor.factor VIIa complex signaling through protease-activated receptor 2. Journal of Biological Chemistry, 285(26), 19959–19966.PubMedCentralPubMedCrossRef Larsen, K. S., Ostergaard, H., Olsen, O. H., Bjelke, J. R., Ruf, W., & Petersen, L. C. (2010). Engineering of substrate selectivity for tissue factor.factor VIIa complex signaling through protease-activated receptor 2. Journal of Biological Chemistry, 285(26), 19959–19966.PubMedCentralPubMedCrossRef
85.
go back to reference Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef
86.
go back to reference Stalheim, L., Ding, Y., Gullapalli, A., Paing, M. M., Wolfe, B. L., Morris, D. R., et al. (2005). Multiple independent functions of arrestins in regulation of protease activated receptor-2 signaling and trafficking. Molecular Pharmacology, 67(1), 1–10.CrossRef Stalheim, L., Ding, Y., Gullapalli, A., Paing, M. M., Wolfe, B. L., Morris, D. R., et al. (2005). Multiple independent functions of arrestins in regulation of protease activated receptor-2 signaling and trafficking. Molecular Pharmacology, 67(1), 1–10.CrossRef
87.
go back to reference Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O'Callaghan, K., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedCentralPubMedCrossRef Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O'Callaghan, K., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedCentralPubMedCrossRef
88.
go back to reference Stavenuiter, F., & Mosnier, L. O. (2014). Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood, 124(23), 3480–3489.PubMedPubMedCentralCrossRef Stavenuiter, F., & Mosnier, L. O. (2014). Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood, 124(23), 3480–3489.PubMedPubMedCentralCrossRef
89.
go back to reference Soh, U. J., Dores, M. R., Chen, B., & Trejo, J. (2010). Signal transduction by protease-activated receptors. British Journal of Pharmacology, 160(2), 191–203.PubMedCentralPubMedCrossRef Soh, U. J., Dores, M. R., Chen, B., & Trejo, J. (2010). Signal transduction by protease-activated receptors. British Journal of Pharmacology, 160(2), 191–203.PubMedCentralPubMedCrossRef
90.
go back to reference Gullapalli, A., Wolfe, B. L., Griffin, C. T., Magnuson, T., & Trejo, J. (2006). An essential role for SNX1 in lysosomal sorting protease-activated receptor-1: evidence for retromer, Hrs and Tsg101 independent functions of sorting nexins. Molecular Biology of the Cell, 17(3), 12228–12238. Gullapalli, A., Wolfe, B. L., Griffin, C. T., Magnuson, T., & Trejo, J. (2006). An essential role for SNX1 in lysosomal sorting protease-activated receptor-1: evidence for retromer, Hrs and Tsg101 independent functions of sorting nexins. Molecular Biology of the Cell, 17(3), 12228–12238.
91.
go back to reference Shapiro, M. J., Weiss, E. J., & Faruqi, T. R. (2000). Coughlin SR. Protease activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. Journal of Biological Chemistry, 275(33), 25216–25221.PubMedCrossRef Shapiro, M. J., Weiss, E. J., & Faruqi, T. R. (2000). Coughlin SR. Protease activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. Journal of Biological Chemistry, 275(33), 25216–25221.PubMedCrossRef
93.
go back to reference Nesi, A., & Fragai, M. (2007). Substrate specificities of matrix metalloproteinase 1 in PAR-1 exodomain proteolysis. Chembiochem, 8(12), 1367–1369.PubMedCrossRef Nesi, A., & Fragai, M. (2007). Substrate specificities of matrix metalloproteinase 1 in PAR-1 exodomain proteolysis. Chembiochem, 8(12), 1367–1369.PubMedCrossRef
94.
go back to reference Booden, M. A., Ekert, L., Der, C. J., & Trejo, J. (2004). Persistent signaling by dysregulated thrombin receptor trafficking promotes breast carcinoma cell invasion. Molecular Cell. Biology, 24(5), 1990–1999.CrossRef Booden, M. A., Ekert, L., Der, C. J., & Trejo, J. (2004). Persistent signaling by dysregulated thrombin receptor trafficking promotes breast carcinoma cell invasion. Molecular Cell. Biology, 24(5), 1990–1999.CrossRef
95.
go back to reference Sierko, E., Wojtukiewicz, M. Z., & Kisiel, W. (2007). The role of tissue factor pathway inhibitor-2 in cancer biology. Seminars in Thrombosis and Hemostasis, 33(7), 653–659.PubMedCrossRef Sierko, E., Wojtukiewicz, M. Z., & Kisiel, W. (2007). The role of tissue factor pathway inhibitor-2 in cancer biology. Seminars in Thrombosis and Hemostasis, 33(7), 653–659.PubMedCrossRef
96.
go back to reference Sierko, E., Zawadzki, R. J., & Wojtukiewicz, M. Z. (2002). Tissue factor pathway inhibitors. Polski Merkuriusz Lekarski, 13(73), 66–69.PubMed Sierko, E., Zawadzki, R. J., & Wojtukiewicz, M. Z. (2002). Tissue factor pathway inhibitors. Polski Merkuriusz Lekarski, 13(73), 66–69.PubMed
97.
go back to reference Ünlü, B., & Versteeg, H. H. (2014). Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thrombosis Research, 133(Suppl 2), S76–84.PubMedCrossRef Ünlü, B., & Versteeg, H. H. (2014). Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thrombosis Research, 133(Suppl 2), S76–84.PubMedCrossRef
98.
go back to reference Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of the hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30(1), 5–20.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of the hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30(1), 5–20.PubMedCrossRef
99.
go back to reference Schaffner, F., & Ruf, W. (2009). Tissue factor and PAR2 signaling in the tumor microenvironment. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 1999–2004.PubMedCentralPubMedCrossRef Schaffner, F., & Ruf, W. (2009). Tissue factor and PAR2 signaling in the tumor microenvironment. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 1999–2004.PubMedCentralPubMedCrossRef
100.
go back to reference Yu, J. L., May, L., Lhotak, V., et al. (2005). Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood, 105(4), 1734–1741.PubMedCrossRef Yu, J. L., May, L., Lhotak, V., et al. (2005). Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood, 105(4), 1734–1741.PubMedCrossRef
101.
go back to reference Regina, S., Valentin, J. B., Lachot, S., Lemarié, E., Rollin, J., & Gruel, Y. (2009). Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clinical Chemistry, 55(10), 1834–1842.PubMedCrossRef Regina, S., Valentin, J. B., Lachot, S., Lemarié, E., Rollin, J., & Gruel, Y. (2009). Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clinical Chemistry, 55(10), 1834–1842.PubMedCrossRef
102.
go back to reference Fan, L., Yotov, W. V., Zhu, T., Esmailzadeh, L., Joyal, J. S., Sennlaub, F., et al. (2005). Tissue factor enhances protease-activated receptor-2-mediated factor VIIa cell proliferative properties. Journal of Thrombosis and Haemostasis, 3(5), 1056–1063.PubMedCrossRef Fan, L., Yotov, W. V., Zhu, T., Esmailzadeh, L., Joyal, J. S., Sennlaub, F., et al. (2005). Tissue factor enhances protease-activated receptor-2-mediated factor VIIa cell proliferative properties. Journal of Thrombosis and Haemostasis, 3(5), 1056–1063.PubMedCrossRef
103.
go back to reference Ott, I., Weigand, B., Michl, R., Seitz, I., Sabbari-Erfani, N., Neumann, F. J., et al. (2005). Tissue factor cytoplasmic domain stimulates migration by activation of the GTPase Rac1 and the mitogen-activated protein kinase p38. Circulation, 111(3), 349–355.PubMedCrossRef Ott, I., Weigand, B., Michl, R., Seitz, I., Sabbari-Erfani, N., Neumann, F. J., et al. (2005). Tissue factor cytoplasmic domain stimulates migration by activation of the GTPase Rac1 and the mitogen-activated protein kinase p38. Circulation, 111(3), 349–355.PubMedCrossRef
104.
go back to reference van den Berg, Y. W., van den Hengel, L. G., Myers, H. R., Ayachi, O., Jordanova, E., Ruf, W., et al. (2009). Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proceedings of the National Academy of Sciences of the United State of America, 106(46), 19497–19502.CrossRef van den Berg, Y. W., van den Hengel, L. G., Myers, H. R., Ayachi, O., Jordanova, E., Ruf, W., et al. (2009). Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proceedings of the National Academy of Sciences of the United State of America, 106(46), 19497–19502.CrossRef
105.
go back to reference Hobbs, J. E., Zakarija, A., Cundiff, D. L., et al. (2007). Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thrombosis Research, 120(suppl 2), S13–S21.PubMedCrossRef Hobbs, J. E., Zakarija, A., Cundiff, D. L., et al. (2007). Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thrombosis Research, 120(suppl 2), S13–S21.PubMedCrossRef
106.
go back to reference Yokota, N., Zarpellon, A., Chakrabarty, S., Bogdanov, V. Y., Gruber, A., Castellino, F. J., et al. (2014). Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. Journal of Thrombosis and Haemostasis, 12(1), 71–81.PubMedCentralPubMedCrossRef Yokota, N., Zarpellon, A., Chakrabarty, S., Bogdanov, V. Y., Gruber, A., Castellino, F. J., et al. (2014). Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. Journal of Thrombosis and Haemostasis, 12(1), 71–81.PubMedCentralPubMedCrossRef
107.
go back to reference Mueller, B. M., Reisfeld, R. A., Edgington, T. S., & Ruf, W. (1992). Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proceedings of the National Academy of Sciences of the United State of America, 89(24), 11832–11836.CrossRef Mueller, B. M., Reisfeld, R. A., Edgington, T. S., & Ruf, W. (1992). Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proceedings of the National Academy of Sciences of the United State of America, 89(24), 11832–11836.CrossRef
108.
go back to reference Conn, E. M., Madsen, M. A., Cravatt, B. F., Ruf, W., Deryugina, E. I., & Quigley, J. P. (2008). Cell surface proteomicsidentifies molecules functionally linked to tumor cell intravasation. Journal of Biological Chemistry, 283(39), 26518–26527.PubMedCentralPubMedCrossRef Conn, E. M., Madsen, M. A., Cravatt, B. F., Ruf, W., Deryugina, E. I., & Quigley, J. P. (2008). Cell surface proteomicsidentifies molecules functionally linked to tumor cell intravasation. Journal of Biological Chemistry, 283(39), 26518–26527.PubMedCentralPubMedCrossRef
109.
go back to reference Versteeg, H. H., Schaffner, F., Kerver, M., Petersen, H. H., Ahamed, J., Felding-Habermann, B., et al. (2008). Inhibition of tissue factor signaling suppresses tumor growth. Blood, 111(1), 190–199.PubMedCentralPubMedCrossRef Versteeg, H. H., Schaffner, F., Kerver, M., Petersen, H. H., Ahamed, J., Felding-Habermann, B., et al. (2008). Inhibition of tissue factor signaling suppresses tumor growth. Blood, 111(1), 190–199.PubMedCentralPubMedCrossRef
110.
go back to reference Schaffner, F., Versteeg, H. H., Schillert, A., Yokota, N., Petersen, L. C., Mueller, B. M., et al. (2010). Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood, 116(26), 6106–6113.PubMedCentralPubMedCrossRef Schaffner, F., Versteeg, H. H., Schillert, A., Yokota, N., Petersen, L. C., Mueller, B. M., et al. (2010). Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood, 116(26), 6106–6113.PubMedCentralPubMedCrossRef
111.
go back to reference Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United State of America, 108(32), 13147–13152.CrossRef Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United State of America, 108(32), 13147–13152.CrossRef
112.
go back to reference Poole, D. P., Amadesi, S., Veldhuis, N. A., Abogadie, F. C., Lieu, T., Darby, W., et al. (2013). Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. Journal of Biology and Chemistry, 288(8), 5790–5802.CrossRef Poole, D. P., Amadesi, S., Veldhuis, N. A., Abogadie, F. C., Lieu, T., Darby, W., et al. (2013). Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. Journal of Biology and Chemistry, 288(8), 5790–5802.CrossRef
114.
go back to reference Everaerts, W., Nilius, B., & Owsianik, G. (2010). The vanilloid transient receptor potential channel TRPV4: from structure to disease. Progress in Biophycis and Molecular Biology, 103(1), 2–17.CrossRef Everaerts, W., Nilius, B., & Owsianik, G. (2010). The vanilloid transient receptor potential channel TRPV4: from structure to disease. Progress in Biophycis and Molecular Biology, 103(1), 2–17.CrossRef
115.
go back to reference Magnus, N., Garnier, D., & Rak, J. (2010). Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood, 116(5), 815–818.PubMedCrossRef Magnus, N., Garnier, D., & Rak, J. (2010). Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood, 116(5), 815–818.PubMedCrossRef
116.
go back to reference Koizume, S., Jin, M. S., Miyagi, E., Hirahara, F., Nakamura, Y., Piao, J. H., et al. (2006). Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Research, 66(19), 9453–9460.PubMedCrossRef Koizume, S., Jin, M. S., Miyagi, E., Hirahara, F., Nakamura, Y., Piao, J. H., et al. (2006). Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Research, 66(19), 9453–9460.PubMedCrossRef
117.
go back to reference Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.CrossRef Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.CrossRef
118.
go back to reference Camerer, E., Qazi, A. A., Duong, D., Cornelissen, I., Advincula, R., & Coughlin, S. R. (2004). Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef Camerer, E., Qazi, A. A., Duong, D., Cornelissen, I., Advincula, R., & Coughlin, S. R. (2004). Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 104(2), 397–401.PubMedCrossRef
119.
go back to reference Zacharski, L. R., et al. (1995). Cellular localization of enzymatically active thrombin in intact human tissues by hirudin binding. Thrombosis and Haemostasis, 73(5), 793–797.PubMed Zacharski, L. R., et al. (1995). Cellular localization of enzymatically active thrombin in intact human tissues by hirudin binding. Thrombosis and Haemostasis, 73(5), 793–797.PubMed
120.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef
121.
go back to reference Palumbo, J. S., Kombrinck, K. W., Drew, A. F., Grimes, T. S., Kiser, J. H., Degen, J. L., et al. (2000). Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood, 96(10), 3302–3309.PubMed Palumbo, J. S., Kombrinck, K. W., Drew, A. F., Grimes, T. S., Kiser, J. H., Degen, J. L., et al. (2000). Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood, 96(10), 3302–3309.PubMed
122.
go back to reference Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMedCentralPubMed Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMedCentralPubMed
123.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the Americsan Association for Cancer Research, Washington, Proceedings of AACR, 31, Abstract 476. Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the Americsan Association for Cancer Research, Washington, Proceedings of AACR, 31, Abstract 476.
124.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22 Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22
125.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91. Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91.
126.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef
127.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.CrossRef Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.CrossRef
128.
go back to reference Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed
129.
go back to reference Guo, A. M., Liu, X., Al-Wahab, Z., Maddippati, K. R., Ali-Fehmi, R., Scicli, A. G., et al. (2011). Role of 12-lipoxygenase in regulation of ovarian cancer cell proliferation and survival. Cancer Chemotherapy and Pharmacology, 68(5), 1273–1283.PubMedCrossRef Guo, A. M., Liu, X., Al-Wahab, Z., Maddippati, K. R., Ali-Fehmi, R., Scicli, A. G., et al. (2011). Role of 12-lipoxygenase in regulation of ovarian cancer cell proliferation and survival. Cancer Chemotherapy and Pharmacology, 68(5), 1273–1283.PubMedCrossRef
130.
go back to reference Mahajan, V. B., Pai, K. S., Lau, A., & Cunningham, D. D. (2000). Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proceedings of the National Academy of Science of the United State of America, 97(22), 12062–12067.CrossRef Mahajan, V. B., Pai, K. S., Lau, A., & Cunningham, D. D. (2000). Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proceedings of the National Academy of Science of the United State of America, 97(22), 12062–12067.CrossRef
131.
go back to reference Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedCentralPubMedCrossRef Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedCentralPubMedCrossRef
132.
go back to reference Hu, L., Lee, M., Campbell, W., Perez-Soler, R., & Karpatkin, S. (2004). Role of endogenous thrombin in tumor implantation, seeding and spontaneous metastasis. Blood, 104(9), 2746–2751.PubMedCrossRef Hu, L., Lee, M., Campbell, W., Perez-Soler, R., & Karpatkin, S. (2004). Role of endogenous thrombin in tumor implantation, seeding and spontaneous metastasis. Blood, 104(9), 2746–2751.PubMedCrossRef
133.
go back to reference Liu, C. Y., Nossel, H. L., & Kaplan, K. L. (1979). The binding of thrombin by fibrin. Journal of Biological Chemistry, 254(20), 10421–10425.PubMed Liu, C. Y., Nossel, H. L., & Kaplan, K. L. (1979). The binding of thrombin by fibrin. Journal of Biological Chemistry, 254(20), 10421–10425.PubMed
134.
go back to reference Queiroz, K. C., Shi, K., Duitman, J., Aberson, H. L., Wilmink, J. W., van Noesel, C. J., et al. (2014). Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. International Journal of Cancer, 135(10), 2294–2304.CrossRef Queiroz, K. C., Shi, K., Duitman, J., Aberson, H. L., Wilmink, J. W., van Noesel, C. J., et al. (2014). Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. International Journal of Cancer, 135(10), 2294–2304.CrossRef
135.
go back to reference Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef
137.
go back to reference Nie, D., Tang, K., Szekeres, K., Trikha, M., & Honn, K. V. (2000). The role of eicosanoids in tumor growth and metastasis. Ernst Schering Research Foundation Workshop Journal, 31, 201–217. Nie, D., Tang, K., Szekeres, K., Trikha, M., & Honn, K. V. (2000). The role of eicosanoids in tumor growth and metastasis. Ernst Schering Research Foundation Workshop Journal, 31, 201–217.
138.
go back to reference Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature, 407(6801), 258–264.PubMedCrossRef Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature, 407(6801), 258–264.PubMedCrossRef
139.
go back to reference Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef
140.
go back to reference Konstantoulaki, M., Kouklis, P., & Malik, A. (2003). Protein kinase C modifications of VE-cadherin, p120, and β-catenin contribute to endothelial barrier dysregulation induced by thrombin. Americal Journal of Physiology. Lung Cellular and Molecular Physiology, 285(2), 434–442.CrossRef Konstantoulaki, M., Kouklis, P., & Malik, A. (2003). Protein kinase C modifications of VE-cadherin, p120, and β-catenin contribute to endothelial barrier dysregulation induced by thrombin. Americal Journal of Physiology. Lung Cellular and Molecular Physiology, 285(2), 434–442.CrossRef
141.
go back to reference Huang, Y. Q., Li, J. J., Hu, L., Lee, M., & Karpatkin, S. (2002). Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood, 99(5), 1646–1650.PubMedCrossRef Huang, Y. Q., Li, J. J., Hu, L., Lee, M., & Karpatkin, S. (2002). Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood, 99(5), 1646–1650.PubMedCrossRef
142.
go back to reference Tang, D. G., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins, 45(3), 249–67.PubMedCrossRef Tang, D. G., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins, 45(3), 249–67.PubMedCrossRef
143.
go back to reference Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. Journal of Cell Biology, 121(3), 689–704.PubMedCrossRef Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. Journal of Cell Biology, 121(3), 689–704.PubMedCrossRef
144.
go back to reference Tang, K., Cai, Y., Joshi, S., Tovar, E., Tucker, S. C., Maddipati, K. R., et al. (2015). Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Molecular Cancer, 14, 111.PubMedCentralPubMedCrossRef Tang, K., Cai, Y., Joshi, S., Tovar, E., Tucker, S. C., Maddipati, K. R., et al. (2015). Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Molecular Cancer, 14, 111.PubMedCentralPubMedCrossRef
145.
go back to reference Rezaie, A. R. (2011). The occupancy of endothelial protein C receptor by its ligand modulates the par-1 dependent signaling specificity of coagulation proteases. International Union of Biochemistry and Molecular Biology Life, 63(6), 390–396.PubMedCentralPubMedCrossRef Rezaie, A. R. (2011). The occupancy of endothelial protein C receptor by its ligand modulates the par-1 dependent signaling specificity of coagulation proteases. International Union of Biochemistry and Molecular Biology Life, 63(6), 390–396.PubMedCentralPubMedCrossRef
146.
go back to reference Uchiba, M., Okajima, K., Oike, Y., Ito, Y., Fukudome, K., Isobe, H., et al. (2004). Activated Protein C Induces Endothelial Cell Proliferation by Mitogen-Activated Protein Kinase Activation In Vitro and Angiogenesis In Vivo. Circulation Research, 95(1), 34–41.PubMedCrossRef Uchiba, M., Okajima, K., Oike, Y., Ito, Y., Fukudome, K., Isobe, H., et al. (2004). Activated Protein C Induces Endothelial Cell Proliferation by Mitogen-Activated Protein Kinase Activation In Vitro and Angiogenesis In Vivo. Circulation Research, 95(1), 34–41.PubMedCrossRef
147.
go back to reference Gramling, M. W., Beaulieu, L. M., & Church, F. C. (2010). Activated protein C enhances cell motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular signal transduction. Experimental Cell Research, 316(3), 314–328.PubMedCentralPubMedCrossRef Gramling, M. W., Beaulieu, L. M., & Church, F. C. (2010). Activated protein C enhances cell motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular signal transduction. Experimental Cell Research, 316(3), 314–328.PubMedCentralPubMedCrossRef
148.
go back to reference Horowitz, N. A., Blevins, E. A., Miller, W. M., Perry, A. R., Talmage, K. E., Mullins, E. S., et al. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to thethrombin binding domain but not the lectin-like domain. Blood, 118(10), 2889–2895.PubMedCentralPubMedCrossRef Horowitz, N. A., Blevins, E. A., Miller, W. M., Perry, A. R., Talmage, K. E., Mullins, E. S., et al. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to thethrombin binding domain but not the lectin-like domain. Blood, 118(10), 2889–2895.PubMedCentralPubMedCrossRef
150.
go back to reference Holinstat, M., Voss, B., Bilodeau, M. L., McLaughlin, J. N., Cleator, J., & Hamm, H. E. (2006). PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation. Journal of Biological Chemistry, 281(36), 26665–26674.PubMedCentralPubMedCrossRef Holinstat, M., Voss, B., Bilodeau, M. L., McLaughlin, J. N., Cleator, J., & Hamm, H. E. (2006). PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation. Journal of Biological Chemistry, 281(36), 26665–26674.PubMedCentralPubMedCrossRef
151.
go back to reference Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef
152.
go back to reference Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed
153.
go back to reference Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., Pernow, J., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Thrombosis and Haemostasis, 13(3), 465–476.CrossRef Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., Pernow, J., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Thrombosis and Haemostasis, 13(3), 465–476.CrossRef
154.
go back to reference Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef
155.
go back to reference Borensztajn, K. S., Bijlsma, M. F., Groot, A. P., Brüggemann, L. W., Versteeg, H. H., Reitsma, P. H., et al. (2007). Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation. Experimental Cell Research, 313(12), 2622–2633.PubMedCrossRef Borensztajn, K. S., Bijlsma, M. F., Groot, A. P., Brüggemann, L. W., Versteeg, H. H., Reitsma, P. H., et al. (2007). Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation. Experimental Cell Research, 313(12), 2622–2633.PubMedCrossRef
156.
go back to reference Li, S. M., Jiang, P., Xiang, Y., Wang, W. W., Zhu, Y. C., Feng, W. Y., et al. (2015). Protease-activated receptor (PAR)1, PAR2 and PAR4 expressions in esophageal squamous cell carcinoma. Dongwuxue Yanjiu, 35(5), 420–425. Li, S. M., Jiang, P., Xiang, Y., Wang, W. W., Zhu, Y. C., Feng, W. Y., et al. (2015). Protease-activated receptor (PAR)1, PAR2 and PAR4 expressions in esophageal squamous cell carcinoma. Dongwuxue Yanjiu, 35(5), 420–425.
157.
go back to reference Liao, M., Tong, P., Zhao, J., Zhang, Y., Li, Z., Wang, J., et al. (2012). Prognostic value of matrix metalloproteinase-1/ proteinase-activated receptor-1 signaling axis in hepatocellular carcinoma. Pathology and Oncology Research, 18(2), 397–403.PubMedCrossRef Liao, M., Tong, P., Zhao, J., Zhang, Y., Li, Z., Wang, J., et al. (2012). Prognostic value of matrix metalloproteinase-1/ proteinase-activated receptor-1 signaling axis in hepatocellular carcinoma. Pathology and Oncology Research, 18(2), 397–403.PubMedCrossRef
159.
go back to reference Zain, J., Huang, Y. Q., Feng, X., Nierodzik, M. L., Li, J. J., & Karpatkin, S. (2000). Concentration-dependent dual effect of thrombin on impaired growth/ apoptosis or mitogenesis in tumor cells. Blood, 95(10), 3133–3138.PubMed Zain, J., Huang, Y. Q., Feng, X., Nierodzik, M. L., Li, J. J., & Karpatkin, S. (2000). Concentration-dependent dual effect of thrombin on impaired growth/ apoptosis or mitogenesis in tumor cells. Blood, 95(10), 3133–3138.PubMed
160.
go back to reference Trejo, J., Connolly, A. J., & Coughlin, S. R. (1996). The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. Journal of Biological Chemistry, 271(35), 21536–21541.PubMedCrossRef Trejo, J., Connolly, A. J., & Coughlin, S. R. (1996). The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. Journal of Biological Chemistry, 271(35), 21536–21541.PubMedCrossRef
161.
go back to reference Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., Cohen, I., Even-Ram, S., Maoz, M., et al. (2003). Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. Federation of American Societies for Experimental Biology Journal, 17(2), 163–174.PubMedCrossRef Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., Cohen, I., Even-Ram, S., Maoz, M., et al. (2003). Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. Federation of American Societies for Experimental Biology Journal, 17(2), 163–174.PubMedCrossRef
162.
go back to reference Mußbach, F., Henklein, P., Westermann, M., Settmacher, U., Böhmer, F. D., & Kaufmann, R. (2014). Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. Journal of Cancer Research and Clinical Oncology, 141(5), 813–825.PubMedCrossRef Mußbach, F., Henklein, P., Westermann, M., Settmacher, U., Böhmer, F. D., & Kaufmann, R. (2014). Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. Journal of Cancer Research and Clinical Oncology, 141(5), 813–825.PubMedCrossRef
163.
go back to reference Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef
164.
go back to reference Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2014). Integrin αvβ5 as a biomarker for the assessment of non-small cell lung cancer metastasis and overall survival. Clinical Respiratory Journal. doi:10.1111/crj.12163.PubMedCentral Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2014). Integrin αvβ5 as a biomarker for the assessment of non-small cell lung cancer metastasis and overall survival. Clinical Respiratory Journal. doi:10.​1111/​crj.​12163.PubMedCentral
165.
go back to reference Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y., Dome, B., et al. (2002). Role for beta3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.CrossRef Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y., Dome, B., et al. (2002). Role for beta3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.CrossRef
166.
go back to reference Rásó, E., Tóvári, J., Tóth, K., Paku, S., Trikha, M., Honn, K. V., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–1042.PubMed Rásó, E., Tóvári, J., Tóth, K., Paku, S., Trikha, M., Honn, K. V., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–1042.PubMed
167.
go back to reference Dvorak, H. F. (1986). Tumors: wounds that do not heal. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: wounds that do not heal. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef
168.
go back to reference Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Natural Medicine, 1(1), 27–31.CrossRef Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Natural Medicine, 1(1), 27–31.CrossRef
169.
go back to reference Griffin, C. T., Srinivasan, Y., Zheng, Y. W., Huang, W., & Coughlin, S. R. (2001). A role for thrombin receptor signaling in endothelial cells during embryonic development. Science, 293(5535), 1666–1670.PubMedCrossRef Griffin, C. T., Srinivasan, Y., Zheng, Y. W., Huang, W., & Coughlin, S. R. (2001). A role for thrombin receptor signaling in endothelial cells during embryonic development. Science, 293(5535), 1666–1670.PubMedCrossRef
170.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (1999). On the mechanism of thrombin-induced angiogenesis: Potentiation of vascular endothelial growth factor activity on endothelial cells by upregulation of its receptors. Journal of Biological Chemistry, 274(34), 23969–23976.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (1999). On the mechanism of thrombin-induced angiogenesis: Potentiation of vascular endothelial growth factor activity on endothelial cells by upregulation of its receptors. Journal of Biological Chemistry, 274(34), 23969–23976.PubMedCrossRef
171.
go back to reference Richard, D. E., Vouret-Craviari, V., & Pouysségur, J. (2001). Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene, 20(13), 1556–1562.PubMedCrossRef Richard, D. E., Vouret-Craviari, V., & Pouysségur, J. (2001). Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene, 20(13), 1556–1562.PubMedCrossRef
172.
go back to reference Yamahata, H., Takeshima, H., Kuratsu, J., Sarker, K. P., Tanioka, K., Wakimaru, N., et al. (2002). The role of thrombin in the neo-vascularization of malignant gliomas: an intrinsic modulator for the up-regulation of vascular endothelial growth factor. International Journal of Oncology, 20(5), 921–928.PubMed Yamahata, H., Takeshima, H., Kuratsu, J., Sarker, K. P., Tanioka, K., Wakimaru, N., et al. (2002). The role of thrombin in the neo-vascularization of malignant gliomas: an intrinsic modulator for the up-regulation of vascular endothelial growth factor. International Journal of Oncology, 20(5), 921–928.PubMed
173.
go back to reference Xie, Q., Bao, X., Chen, Z. H., Xu, Y., Keep, R. F., Muraszko, K. M., et al. (2016). Role of Protease-Activated Receptor-1 in Glioma Growth. Acta Neurochirurgica. Supplement, 121, 355–360.PubMed Xie, Q., Bao, X., Chen, Z. H., Xu, Y., Keep, R. F., Muraszko, K. M., et al. (2016). Role of Protease-Activated Receptor-1 in Glioma Growth. Acta Neurochirurgica. Supplement, 121, 355–360.PubMed
174.
go back to reference Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pagès, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedCentralPubMedCrossRef Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pagès, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedCentralPubMedCrossRef
175.
go back to reference Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A. W., & Honn, K. V. (2011). The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Reviews, 30(3–4), 397–408.PubMedCrossRef Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A. W., & Honn, K. V. (2011). The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Reviews, 30(3–4), 397–408.PubMedCrossRef
176.
go back to reference Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–114.PubMedCrossRef Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–114.PubMedCrossRef
177.
go back to reference Honn, K. V., Tang, D. G., Grossi, I. M., Renaud, C., Duniec, Z. M., Johnson, C. R., et al. (1994). Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Experimental Cell Research, 210(1), 1–9.PubMedCrossRef Honn, K. V., Tang, D. G., Grossi, I. M., Renaud, C., Duniec, Z. M., Johnson, C. R., et al. (1994). Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Experimental Cell Research, 210(1), 1–9.PubMedCrossRef
178.
go back to reference Honn, K. V., Grossi, I. M., Fitzgerald, L. A., Umbarger, L. A., Diglio, C. A., et al. (1988). Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proceedings of the Society for Experimental Biology and Medicine, 189(1), 130–135.PubMedCrossRef Honn, K. V., Grossi, I. M., Fitzgerald, L. A., Umbarger, L. A., Diglio, C. A., et al. (1988). Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proceedings of the Society for Experimental Biology and Medicine, 189(1), 130–135.PubMedCrossRef
179.
go back to reference Honn, K. V., Tang, D. G., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18(4), 392–415.PubMedCrossRef Honn, K. V., Tang, D. G., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18(4), 392–415.PubMedCrossRef
180.
go back to reference Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54, 92–101.CrossRef Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54, 92–101.CrossRef
181.
go back to reference Chen, Y. Q., Hagmann, W., & Honn, K. V. (1997). Regulation of 12(S)-HETE production in tumor cells. Advances in Experimental Medicine and Biology, 400A, 159–166.PubMedCrossRef Chen, Y. Q., Hagmann, W., & Honn, K. V. (1997). Regulation of 12(S)-HETE production in tumor cells. Advances in Experimental Medicine and Biology, 400A, 159–166.PubMedCrossRef
182.
go back to reference Krishnamoorthy, S., & Honn, K. V. (2011). Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Reviews, 30(3–4), 613–618.PubMedCrossRef Krishnamoorthy, S., & Honn, K. V. (2011). Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Reviews, 30(3–4), 613–618.PubMedCrossRef
183.
go back to reference Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524.PubMedCrossRef Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524.PubMedCrossRef
184.
go back to reference Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed
185.
go back to reference Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef
186.
go back to reference Timar, J., Bazaz, R., Tang, D. G., Kimler, V., Taylor, J. D., & Honn, K. V. (1997). Post-translational regulation of surface integrin expression in tumor cells by 12(S)-HETE. Advances in Experimental Medicine and Biology, 400B, 757–763.PubMed Timar, J., Bazaz, R., Tang, D. G., Kimler, V., Taylor, J. D., & Honn, K. V. (1997). Post-translational regulation of surface integrin expression in tumor cells by 12(S)-HETE. Advances in Experimental Medicine and Biology, 400B, 757–763.PubMed
187.
go back to reference Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M., Oates, J. A., et al. (2011). Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 435–42.PubMedCentralPubMedCrossRef Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M., Oates, J. A., et al. (2011). Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 435–42.PubMedCentralPubMedCrossRef
188.
go back to reference Thomas, C. P., Morgan, L. T., Maskrey, B. H., Murphy, R. C., Kühn, H., Hazen, S. L., et al. (2010). Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. The Journal of Biology and Chemistry, 285(10), 6891–6903.CrossRef Thomas, C. P., Morgan, L. T., Maskrey, B. H., Murphy, R. C., Kühn, H., Hazen, S. L., et al. (2010). Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. The Journal of Biology and Chemistry, 285(10), 6891–6903.CrossRef
190.
go back to reference Du, X., Wang, S., Lu, J., Cao, Y., Song, N., Yang, T., et al. (2011). Correlation between MMP1-PAR1 axis and clinical outcome of primary gallbladder carcinoma. Japanese Journal of Clinical Oncology, 41(9), 1086–1093.PubMedCrossRef Du, X., Wang, S., Lu, J., Cao, Y., Song, N., Yang, T., et al. (2011). Correlation between MMP1-PAR1 axis and clinical outcome of primary gallbladder carcinoma. Japanese Journal of Clinical Oncology, 41(9), 1086–1093.PubMedCrossRef
191.
go back to reference Malaquin, N., Vercamer, C., Bouali, F., Martien, S., Deruy, E., Wernert, N., et al. (2013). Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One, 8(5), e63607.PubMedCentralPubMedCrossRef Malaquin, N., Vercamer, C., Bouali, F., Martien, S., Deruy, E., Wernert, N., et al. (2013). Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One, 8(5), e63607.PubMedCentralPubMedCrossRef
192.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Hirose, K., & Yamaguchi, A. (2006). Expression of protease activated receptor-2 (PAR-2) in gastric cancer. Journal of Surgical Oncology, 93(2), 139–144.PubMedCrossRef Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Hirose, K., & Yamaguchi, A. (2006). Expression of protease activated receptor-2 (PAR-2) in gastric cancer. Journal of Surgical Oncology, 93(2), 139–144.PubMedCrossRef
193.
go back to reference Olejar, T., Vetvicka, D., Zadinova, M., Pouckova, P., Kukal, J., & Jezek, P. (2014). Dual role of host Par2 in a murine model of spontaneous metastatic B16 melanoma. Anticancer Research, 34(7), 3511–3515.PubMed Olejar, T., Vetvicka, D., Zadinova, M., Pouckova, P., Kukal, J., & Jezek, P. (2014). Dual role of host Par2 in a murine model of spontaneous metastatic B16 melanoma. Anticancer Research, 34(7), 3511–3515.PubMed
194.
go back to reference Shi, K., Queiroz, K. C., Roelofs, J. J., van Noesel, C. J., Richel, D. J., & Spek, C. A. (2014). Protease-activated receptor 2 suppresses lymphangiogenesis and subsequent lymph node metastasis in a murine pancreatic cancer model. The American Journal of Pathology, 234(3), 398–409.CrossRef Shi, K., Queiroz, K. C., Roelofs, J. J., van Noesel, C. J., Richel, D. J., & Spek, C. A. (2014). Protease-activated receptor 2 suppresses lymphangiogenesis and subsequent lymph node metastasis in a murine pancreatic cancer model. The American Journal of Pathology, 234(3), 398–409.CrossRef
195.
go back to reference Zheng, Y. M., Xie, L. Q., Li, X., Zhao, J. Y., Chen, X. Y., Chen, L., et al. (2009). Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists. Zhonghua Yi Xue Za Zhi, 89, 3116–3121.PubMed Zheng, Y. M., Xie, L. Q., Li, X., Zhao, J. Y., Chen, X. Y., Chen, L., et al. (2009). Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists. Zhonghua Yi Xue Za Zhi, 89, 3116–3121.PubMed
196.
197.
go back to reference Kwong, K., Nassenstein, C., de Garavilla, L., Meeker, S., & Undem, B. J. (2010). Thrombin and trypsin directly activate vagal C-fibres in mouse lung via protease-activated receptor-1. Journal of Physiology, 588(Pt 7), 1171–1177.PubMedCentralPubMedCrossRef Kwong, K., Nassenstein, C., de Garavilla, L., Meeker, S., & Undem, B. J. (2010). Thrombin and trypsin directly activate vagal C-fibres in mouse lung via protease-activated receptor-1. Journal of Physiology, 588(Pt 7), 1171–1177.PubMedCentralPubMedCrossRef
198.
go back to reference Grant, A., Amadesi, S., Bunnett, N.W. (2007). Protease-Activated Receptors: Mechanisms by Which Proteases Sensitize TRPV Channels to Induce Neurogenic Inflammation and Pain. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press; 2007. Chapter 31. Frontiers in Neuroscience. Grant, A., Amadesi, S., Bunnett, N.W. (2007). Protease-Activated Receptors: Mechanisms by Which Proteases Sensitize TRPV Channels to Induce Neurogenic Inflammation and Pain. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press; 2007. Chapter 31. Frontiers in Neuroscience.
199.
go back to reference Gregus, A. M., Doolen, S., Dumlao, D. S., Buczynski, M. W., Takasusuki, T., Fitzsimmons, B. L., et al. (2012). Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proceedings of the National Academy of Sciences of the United State of America, 109(17), 6721–6726.CrossRef Gregus, A. M., Doolen, S., Dumlao, D. S., Buczynski, M. W., Takasusuki, T., Fitzsimmons, B. L., et al. (2012). Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proceedings of the National Academy of Sciences of the United State of America, 109(17), 6721–6726.CrossRef
200.
go back to reference Amadesi, S., Cottrell, G. S., Divino, L., Chapman, K., Grady, E. F., Bautista, F., et al. (2006). Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. Journal of Physiology, 575(Pt 2), 555–571.PubMedCentralPubMedCrossRef Amadesi, S., Cottrell, G. S., Divino, L., Chapman, K., Grady, E. F., Bautista, F., et al. (2006). Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. Journal of Physiology, 575(Pt 2), 555–571.PubMedCentralPubMedCrossRef
201.
go back to reference Hoogerwerf, W. A., Zou, L., Shenoy, M., Sun, D., Micci, M. A., Lee-Hellmich, H., et al. (2001). The proteinase-activated receptor 2 is involved in nociception. Journal of Neuroscience, 21(22), 9036–9042.PubMed Hoogerwerf, W. A., Zou, L., Shenoy, M., Sun, D., Micci, M. A., Lee-Hellmich, H., et al. (2001). The proteinase-activated receptor 2 is involved in nociception. Journal of Neuroscience, 21(22), 9036–9042.PubMed
202.
go back to reference Smith, H. S. (2006). Arachidonic acid pathways in nociception. Journal of Supportive Oncology, 4(6), 277–287.PubMed Smith, H. S. (2006). Arachidonic acid pathways in nociception. Journal of Supportive Oncology, 4(6), 277–287.PubMed
203.
go back to reference Shim, W. S., Tak, M. H., Lee, M. H., Kim, M., Kim, M., Koo, J. Y., et al. (2007). TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. Journal of Neuroscience, 27(9), 2331–2337.PubMedCrossRef Shim, W. S., Tak, M. H., Lee, M. H., Kim, M., Kim, M., Koo, J. Y., et al. (2007). TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. Journal of Neuroscience, 27(9), 2331–2337.PubMedCrossRef
204.
go back to reference Vinuesa, A. G., Sancho, R., García-Limones, C., Behrens, A., ten Dijke, P., Calzado, M. A., et al. (2012). Vanilloid receptor-1 regulates neurogenic inflammation in colon and protects mice from colon cancer. Cancer Research, 72(7), 1705–1716.PubMedCrossRef Vinuesa, A. G., Sancho, R., García-Limones, C., Behrens, A., ten Dijke, P., Calzado, M. A., et al. (2012). Vanilloid receptor-1 regulates neurogenic inflammation in colon and protects mice from colon cancer. Cancer Research, 72(7), 1705–1716.PubMedCrossRef
205.
go back to reference Nie, D., Che, M., Zacharek, A., Qiao, Y., Li, L., Li, X., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. American Journal of Pathology, 164(2), 429–439.PubMedCentralPubMedCrossRef Nie, D., Che, M., Zacharek, A., Qiao, Y., Li, L., Li, X., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. American Journal of Pathology, 164(2), 429–439.PubMedCentralPubMedCrossRef
206.
go back to reference Potter, S. R., & Partin, A. W. (2000). The significance of perineural invasion found on needle biopsy of the prostate: implications for definitive therapy. Reviews in Urology, 2(2), 87–90.PubMedCentralPubMed Potter, S. R., & Partin, A. W. (2000). The significance of perineural invasion found on needle biopsy of the prostate: implications for definitive therapy. Reviews in Urology, 2(2), 87–90.PubMedCentralPubMed
207.
go back to reference Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H., & Albo, D. (2009). Perineural invasion in cancer: a review of the literature. Cancer, 115(15), 3379–3391.PubMedCrossRef Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H., & Albo, D. (2009). Perineural invasion in cancer: a review of the literature. Cancer, 115(15), 3379–3391.PubMedCrossRef
208.
go back to reference de Garavilla, L., Vergnolle, N., Young, S. H., Ennes, H., Steinhoff, M., Ossovskaya, V. S., et al. (2001). Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 133(7), 975–987.PubMedCentralPubMedCrossRef de Garavilla, L., Vergnolle, N., Young, S. H., Ennes, H., Steinhoff, M., Ossovskaya, V. S., et al. (2001). Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 133(7), 975–987.PubMedCentralPubMedCrossRef
209.
go back to reference Graziottin, A., & Murina, F. (2011). How Vulvodynia Originates: the Pathophysiology of Vulvar Pain. In Clinical Management of Vulvodynia: Tips and Tricks (pp. 39–52). Italia: Springer-Verlag. Graziottin, A., & Murina, F. (2011). How Vulvodynia Originates: the Pathophysiology of Vulvar Pain. In Clinical Management of Vulvodynia: Tips and Tricks (pp. 39–52). Italia: Springer-Verlag.
210.
go back to reference Nyirjesy, P. (2001). Chronic vulvovaginal candidiasis. American Family Physician, 63(4), 697–702.PubMed Nyirjesy, P. (2001). Chronic vulvovaginal candidiasis. American Family Physician, 63(4), 697–702.PubMed
211.
go back to reference Schouten, M., van't Veer, C., Roelofs, J. J., Levi, M., & van der Poll, T. (2012). Protease-activated receptor-1 impairs host defense in murine pneumococcal pneumonia: a controlled laboratory study. Critical Care, 16(6), R238.PubMedCentralPubMedCrossRef Schouten, M., van't Veer, C., Roelofs, J. J., Levi, M., & van der Poll, T. (2012). Protease-activated receptor-1 impairs host defense in murine pneumococcal pneumonia: a controlled laboratory study. Critical Care, 16(6), R238.PubMedCentralPubMedCrossRef
212.
go back to reference Kager, L. M., Wiersinga, W. J., Roelofs, J. J., van 't Veer, C., & van der Poll, T. (2014). Deficiency of protease-activated receptor-1 limits bacterial dissemination during severe Gram-negative sepsis (melioidosis). Microbes Infection, 16(2), 171–174.PubMedCrossRef Kager, L. M., Wiersinga, W. J., Roelofs, J. J., van 't Veer, C., & van der Poll, T. (2014). Deficiency of protease-activated receptor-1 limits bacterial dissemination during severe Gram-negative sepsis (melioidosis). Microbes Infection, 16(2), 171–174.PubMedCrossRef
213.
go back to reference Lan, R. S., Stewart, G. A., Goldie, R. G., & Henry, P. J. (2004). Altered expression and in vivo lung function of protease-activated receptors during influenza A virus infection in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(2), L388–98.PubMedCrossRef Lan, R. S., Stewart, G. A., Goldie, R. G., & Henry, P. J. (2004). Altered expression and in vivo lung function of protease-activated receptors during influenza A virus infection in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(2), L388–98.PubMedCrossRef
214.
go back to reference Antoniak, S., & Mackman, N. (2014). Coagulation, protease-activated receptors, and viral myocarditis. Journal of Cardiovascular Translational Research, 7(2), 203–211.PubMedCentralPubMedCrossRef Antoniak, S., & Mackman, N. (2014). Coagulation, protease-activated receptors, and viral myocarditis. Journal of Cardiovascular Translational Research, 7(2), 203–211.PubMedCentralPubMedCrossRef
215.
216.
go back to reference Kauffman, H. F., Tomee, J. F., van de Riet, M. A., Timmerman, A. J., & Borger, P. (2000). Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. Journal of Allergy and Clinical Immunology, 105(6 Pt 1), 1185–1193.PubMedCrossRef Kauffman, H. F., Tomee, J. F., van de Riet, M. A., Timmerman, A. J., & Borger, P. (2000). Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. Journal of Allergy and Clinical Immunology, 105(6 Pt 1), 1185–1193.PubMedCrossRef
217.
go back to reference Grab, D. J., Garcia-Garcia, J. C., Nikolskaia, O. V., Kim, Y. V., Brown, A., Pardo, C. A., et al. (2009). Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Neglected Tropical Diseases, 3(7), e479.PubMedCentralPubMedCrossRef Grab, D. J., Garcia-Garcia, J. C., Nikolskaia, O. V., Kim, Y. V., Brown, A., Pardo, C. A., et al. (2009). Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Neglected Tropical Diseases, 3(7), e479.PubMedCentralPubMedCrossRef
218.
go back to reference de Stoppelaar, S. F., Van't Veer, C., van den Boogaard, F. E., Nieuwland, R., Hoogendijk, A. J., de Boer, O. J., et al. (2013). Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thrombosis and Haemostasis, 110(3), 582–592.PubMedCrossRef de Stoppelaar, S. F., Van't Veer, C., van den Boogaard, F. E., Nieuwland, R., Hoogendijk, A. J., de Boer, O. J., et al. (2013). Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thrombosis and Haemostasis, 110(3), 582–592.PubMedCrossRef
219.
go back to reference Lourbakos, A., Potempa, J., Travis, J., D'Andrea, M. R., Andrade-Gordon, P., Santulli, R., et al. (2001). Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infection and Immunity, 69(8), 5121–5130.PubMedCentralPubMedCrossRef Lourbakos, A., Potempa, J., Travis, J., D'Andrea, M. R., Andrade-Gordon, P., Santulli, R., et al. (2001). Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infection and Immunity, 69(8), 5121–5130.PubMedCentralPubMedCrossRef
220.
go back to reference Inaba, H., Sugita, H., Kuboniwa, M., Iwai, S., Hamada, M., Noda, T., et al. (2014). Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cellular Microbiology, 16(1), 131–145.PubMedCentralPubMedCrossRef Inaba, H., Sugita, H., Kuboniwa, M., Iwai, S., Hamada, M., Noda, T., et al. (2014). Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cellular Microbiology, 16(1), 131–145.PubMedCentralPubMedCrossRef
222.
go back to reference Hoge, R., Pelzer, A., Rosenau, F., & Wilhelm, S. (2010). Weapons of a pathogen: Proteases and their role in virulence of Pseudomonas aeruginosa in Current Research. In A. Mendez Vilas (Ed.), Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Vol. 1, pp. 383–395). Badajoz: Formatex Research Center. Hoge, R., Pelzer, A., Rosenau, F., & Wilhelm, S. (2010). Weapons of a pathogen: Proteases and their role in virulence of Pseudomonas aeruginosa in Current Research. In A. Mendez Vilas (Ed.), Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Vol. 1, pp. 383–395). Badajoz: Formatex Research Center.
223.
go back to reference Frees, D., Brøndsted, L., & Ingmer, H. (2013). Bacterial proteases and virulence. Subcellular Biochemistry, 66, 161–192.PubMedCrossRef Frees, D., Brøndsted, L., & Ingmer, H. (2013). Bacterial proteases and virulence. Subcellular Biochemistry, 66, 161–192.PubMedCrossRef
224.
go back to reference Robinson, M.W., Dalton, J.P. (2011). Cysteine Proteases of Pathogenic Organisms. Landes Bioscience . Robinson, M.W., Dalton, J.P. (2011). Cysteine Proteases of Pathogenic Organisms. Landes Bioscience .
226.
go back to reference Klarström, E. K., Khalaf, H., Kälvegren, H., & Bengtsson, T. (2015). The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Molecular Oral Microbiology, 30(1), 62–73.CrossRef Klarström, E. K., Khalaf, H., Kälvegren, H., & Bengtsson, T. (2015). The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Molecular Oral Microbiology, 30(1), 62–73.CrossRef
227.
go back to reference Carroll, I. M., & Maharshak, N. (2013). Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications. World Journal of Gastroenterology, 19(43), 7531–7543.PubMedCentralPubMedCrossRef Carroll, I. M., & Maharshak, N. (2013). Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications. World Journal of Gastroenterology, 19(43), 7531–7543.PubMedCentralPubMedCrossRef
229.
go back to reference de Zoete, M. R., Bouwman, L. I., Keestra, A. M., & van Putten, J. P. (2011). Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 4968–4973.PubMedCentralPubMedCrossRef de Zoete, M. R., Bouwman, L. I., Keestra, A. M., & van Putten, J. P. (2011). Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 4968–4973.PubMedCentralPubMedCrossRef
230.
go back to reference Viaud, S., Daillère, R., Boneca, I. G., Lepage, P., Langella, P., Chamaillard, M., et al. (2015). Gut microbiome and anticancer immune response: really hot Shot! Cell Death and Differentiation, 22(2), 199–214.PubMedCrossRef Viaud, S., Daillère, R., Boneca, I. G., Lepage, P., Langella, P., Chamaillard, M., et al. (2015). Gut microbiome and anticancer immune response: really hot Shot! Cell Death and Differentiation, 22(2), 199–214.PubMedCrossRef
231.
232.
go back to reference Shapira, I., Sultan, K., Lee, A., & Taioli, E. (2013). Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. International Scholarly Research Notices Oncology, 2013, 693920. Shapira, I., Sultan, K., Lee, A., & Taioli, E. (2013). Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. International Scholarly Research Notices Oncology, 2013, 693920.
233.
go back to reference Reinhardt, C., Bergentall, M., Greiner, T. U., Schaffner, F., Ostergren-Lundén, G., Petersen, L. C., et al. (2012). Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 483(7391), 627–631.PubMedCrossRef Reinhardt, C., Bergentall, M., Greiner, T. U., Schaffner, F., Ostergren-Lundén, G., Petersen, L. C., et al. (2012). Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 483(7391), 627–631.PubMedCrossRef
234.
go back to reference Cane, K., Sharp, P. J., Eagles, H. A., Eastwood, R. F., Hollamby, G. J., Kuchel, H., et al. (2008). The effects on grain quality traits of a grain serpin protein and the VPM1 segment in southern Australian wheat breeding. Australian Journal of Agricultural Research, 59, 883–890. Cane, K., Sharp, P. J., Eagles, H. A., Eastwood, R. F., Hollamby, G. J., Kuchel, H., et al. (2008). The effects on grain quality traits of a grain serpin protein and the VPM1 segment in southern Australian wheat breeding. Australian Journal of Agricultural Research, 59, 883–890.
235.
go back to reference Graf, D., Di Cagno, R., Fåk, F., Flint, H. J., Nyman, M., Saarela, M., & Watzl, B. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26, 26164. doi:10.3402/mehd.v26.26164.PubMed Graf, D., Di Cagno, R., Fåk, F., Flint, H. J., Nyman, M., Saarela, M., & Watzl, B. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26, 26164. doi:10.​3402/​mehd.​v26.​26164.PubMed
236.
go back to reference Rose, D. J. (2014). Impact of whole grains on the gut microbiota: the next frontier for oats? British Journal of Nutrition, 112(2), S44–49.PubMedCrossRef Rose, D. J. (2014). Impact of whole grains on the gut microbiota: the next frontier for oats? British Journal of Nutrition, 112(2), S44–49.PubMedCrossRef
237.
go back to reference White, B. A., Lamed, R., Bayer, E. A., & Flint, H. J. (2014). Biomass utilization by gut microbiomes. Annual Review of Microbiology, 68, 279–296.PubMedCrossRef White, B. A., Lamed, R., Bayer, E. A., & Flint, H. J. (2014). Biomass utilization by gut microbiomes. Annual Review of Microbiology, 68, 279–296.PubMedCrossRef
238.
go back to reference Cooper, D. N., Martin, R. J., & Keim, N. L. (2015). Does Whole Grain Consumption Alter Gut Microbiotaand Satiety? Healthcare, 3, 364–392.CrossRef Cooper, D. N., Martin, R. J., & Keim, N. L. (2015). Does Whole Grain Consumption Alter Gut Microbiotaand Satiety? Healthcare, 3, 364–392.CrossRef
240.
go back to reference Esumi, N., Fan, D., & Fidler, I. J. (1991). Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Research, 51(17), 4549–4556.PubMed Esumi, N., Fan, D., & Fidler, I. J. (1991). Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Research, 51(17), 4549–4556.PubMed
241.
go back to reference Macaulay, T. E., Allen, C., & Ziada, K. M. (2010). Thrombin receptor antagonism -the potential of antiplatelet medication SCH 530348. Expert Opinion on Pharmacotherapy, 11(6), 1015–1022.PubMedCrossRef Macaulay, T. E., Allen, C., & Ziada, K. M. (2010). Thrombin receptor antagonism -the potential of antiplatelet medication SCH 530348. Expert Opinion on Pharmacotherapy, 11(6), 1015–1022.PubMedCrossRef
242.
go back to reference Walz, D.A., Fenton, J.W. (1994–1995). The role of thrombin in tumor cell metastasis. Invasion Metastasis, 14(1–6), 303–308. Walz, D.A., Fenton, J.W. (1994–1995). The role of thrombin in tumor cell metastasis. Invasion Metastasis, 14(1–6), 303–308.
243.
go back to reference Wang, J., Boerma, M., Kulkarni, A., Hollenberg, M. D., & Hauer-Jensen, M. (2010). Activation of protease activated receptor 2 by exogenous agonist exacerbates early radiation injury in rat intestine. International Journal of Radiation Oncology Biology Physics, 77(4), 1206–1212.CrossRef Wang, J., Boerma, M., Kulkarni, A., Hollenberg, M. D., & Hauer-Jensen, M. (2010). Activation of protease activated receptor 2 by exogenous agonist exacerbates early radiation injury in rat intestine. International Journal of Radiation Oncology Biology Physics, 77(4), 1206–1212.CrossRef
244.
go back to reference Wang, J., Kulkarni, A., Chintala, M., Fink, L. M., & Hauer-Jensen, M. (2013). Inhibition of protease-activated receptor 1 ameliorates intestinal radiation mucositis in a preclinical rat model. International Journal of Radiation Oncology Biology Physics, 85(1), 208–214.CrossRef Wang, J., Kulkarni, A., Chintala, M., Fink, L. M., & Hauer-Jensen, M. (2013). Inhibition of protease-activated receptor 1 ameliorates intestinal radiation mucositis in a preclinical rat model. International Journal of Radiation Oncology Biology Physics, 85(1), 208–214.CrossRef
245.
go back to reference Wang, J., Zheng, H., Ou, X., Albertson, C. M., Fink, L. M., Herbert, J. M., et al. (2004). Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. Thrombosis and Haemostasis, 2, 2027–2035.CrossRef Wang, J., Zheng, H., Ou, X., Albertson, C. M., Fink, L. M., Herbert, J. M., et al. (2004). Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. Thrombosis and Haemostasis, 2, 2027–2035.CrossRef
246.
go back to reference Bao, Y., Hou, W., Yang, L., Kong, X., Du, M., Zheng, H., et al. (2015). Protease-Activated Receptor 2 Antagonist Potentiates Analgesic Effects of Systemic Morphine in a Rat Model of Bone Cancer Pain. Regional Anesthesia and Pain Medicine, 40(2), 158–165.PubMedCrossRef Bao, Y., Hou, W., Yang, L., Kong, X., Du, M., Zheng, H., et al. (2015). Protease-Activated Receptor 2 Antagonist Potentiates Analgesic Effects of Systemic Morphine in a Rat Model of Bone Cancer Pain. Regional Anesthesia and Pain Medicine, 40(2), 158–165.PubMedCrossRef
248.
go back to reference Jaber, M., Maoz, M., Kancharla, A., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2014). Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences, 71(13), 2517–2533.PubMedCrossRef Jaber, M., Maoz, M., Kancharla, A., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2014). Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences, 71(13), 2517–2533.PubMedCrossRef
249.
go back to reference Blackburn, J. S., Liu, I., Coon, C. I., & Brinckerhoff, C. E. (2009). A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene, 28(48), 4237–4248.PubMedCentralPubMedCrossRef Blackburn, J. S., Liu, I., Coon, C. I., & Brinckerhoff, C. E. (2009). A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene, 28(48), 4237–4248.PubMedCentralPubMedCrossRef
250.
go back to reference Massi, D., Naldini, A., Ardinghi, C., Carraro, F., Franchi, A., Paglierani, M., et al. (2005). Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Human Pathology, 36(6), 676–685.PubMedCrossRef Massi, D., Naldini, A., Ardinghi, C., Carraro, F., Franchi, A., Paglierani, M., et al. (2005). Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Human Pathology, 36(6), 676–685.PubMedCrossRef
251.
go back to reference Melnikova, V. O., Balasubramanian, K., Villares, G. J., Dobroff, A. S., Zigler, M., Wang, H., et al. (2009). Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanomacell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. Journal of Biological Chemistry, 284(42), 28845–28855.PubMedCentralPubMedCrossRef Melnikova, V. O., Balasubramanian, K., Villares, G. J., Dobroff, A. S., Zigler, M., Wang, H., et al. (2009). Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanomacell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. Journal of Biological Chemistry, 284(42), 28845–28855.PubMedCentralPubMedCrossRef
252.
go back to reference Silini, A., Ghilardi, C., Ardinghi, C., Bernasconi, S., Oliva, P., Carraro, F., et al. (2010). Protease-activated receptor-1 (PAR-1) promotes the motility of human melanomas and is associated to their metastatic phenotype. Clinical and Experimental Metastasis, 27(1), 43–53.PubMedCrossRef Silini, A., Ghilardi, C., Ardinghi, C., Bernasconi, S., Oliva, P., Carraro, F., et al. (2010). Protease-activated receptor-1 (PAR-1) promotes the motility of human melanomas and is associated to their metastatic phenotype. Clinical and Experimental Metastasis, 27(1), 43–53.PubMedCrossRef
253.
go back to reference Villares, G., Zigler, M., & Bar-Eli, M. (2011). The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis—a possible therapetic target. Oncotarget, 2(1–2), 8–17.PubMedCentralPubMedCrossRef Villares, G., Zigler, M., & Bar-Eli, M. (2011). The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis—a possible therapetic target. Oncotarget, 2(1–2), 8–17.PubMedCentralPubMedCrossRef
254.
go back to reference Denk, A. E., Bettstetter, M., Wild, P. J., Hoek, K., Bataille, F., Dietmaier, W., et al. (2007). Loss of maspin expression contributes to a more invasive potential in malignant melanoma. Pigment Cell Research, 20(2), 112–119.PubMedCrossRef Denk, A. E., Bettstetter, M., Wild, P. J., Hoek, K., Bataille, F., Dietmaier, W., et al. (2007). Loss of maspin expression contributes to a more invasive potential in malignant melanoma. Pigment Cell Research, 20(2), 112–119.PubMedCrossRef
Metadata
Title
Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis
Authors
Marek Z. Wojtukiewicz
Dominika Hempel
Ewa Sierko
Stephanie C. Tucker
Kenneth V. Honn
Publication date
01-12-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9599-4

Other articles of this Issue 4/2015

Cancer and Metastasis Reviews 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine