Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2016

01-06-2016 | NON-THEMATIC REVIEW

Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis

Authors: Marek Z. Wojtukiewicz, Dominika Hempel, Ewa Sierko, Stephanie C. Tucker, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 2/2016

Login to get access

Abstract

The association between blood coagulation and cancer development is well recognized. Thrombin, the pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis, may also trigger cellular events through protease-activated receptors, PAR-1 and PAR-4, leading to cancer progression. Our pioneering findings provided evidence that thrombin contributes to cancer metastasis by increasing adhesive potential of malignant cells. However, there is evidence that thrombin regulates every step of cancer dissemination: (1) cancer cell invasion, detachment from primary tumor, migration; (2) entering the blood vessel; (3) surviving in vasculature; (4) extravasation; (5) implantation in host organs. Recent studies have provided new molecular data about thrombin generation in cancer patients and the mechanisms by which thrombin contributes to transendothelial migration, platelet/tumor cell interactions, angiogenesis, and other processes. Though a great deal is known regarding the role of thrombin in cancer dissemination, there are new data for multiple thrombin-mediated events that justify devoting focus to this topic with a comprehensive approach.
Literature
1.
go back to reference Konstantopoulos, K., & Thomas, S. N. (2009). Cancer cells in transit: the vascular interactions of tumor cells. Annual Review of Biomedical Engineering, 11, 177–202.PubMedCrossRef Konstantopoulos, K., & Thomas, S. N. (2009). Cancer cells in transit: the vascular interactions of tumor cells. Annual Review of Biomedical Engineering, 11, 177–202.PubMedCrossRef
2.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (2009). Thrombin’s central role in angiogenesis and pathophysiological processes. European Cytokine Network, 20(4), 171–179.PubMed Tsopanoglou, N. E., & Maragoudakis, M. E. (2009). Thrombin’s central role in angiogenesis and pathophysiological processes. European Cytokine Network, 20(4), 171–179.PubMed
3.
go back to reference Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis. Cancer and Metastasis Reviews, 34(4), 775–796.PubMedPubMedCentralCrossRef Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2015). Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis. Cancer and Metastasis Reviews, 34(4), 775–796.PubMedPubMedCentralCrossRef
4.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the American Association for Cancer Research, Washington, Proceedings of AACR, 31:Abstract 476. Wojtukiewicz, M.Z., Ciarelli, J.J., Walz, D.A., Honn, K.V. (1990). Thrombin enhances cancer cell expression of an integrin receptor and increases adhesion. 81st Annual Meeting of the American Association for Cancer Research, Washington, Proceedings of AACR, 31:Abstract 476.
5.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22. Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D.A., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Increased tumor cell adhesiveness and experimental metastasis following exposure to alpha-thrombin, its precursor and analogues. American Cancer Society Michigan Division Inc., 1990 Cancer Research Conference, Ypsilanti, MI, USA, Poster 22.
6.
go back to reference Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91. Wojtukiewicz, M.Z., Ciarelli, J.J., Snyder, D., Nelson, K.K., Walz, D.A., Honn, K.V. (1990). Thrombin increases tumor cell adhesiveness via a non-proteolytic pathway. First Regional Meeting of the American Society for Cell Biology, Chicago, IL, USA, 1990, Abstract 91.
7.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68, 233–245.PubMedCrossRef
8.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., Nelson, K. K., Walz, D. A., Diglio, C. A., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54, 793–806.PubMedCrossRef
10.
go back to reference Zhang, T., Ma, Z., Wang, R., Wang, Y., Wang, S., Cheng, Z., et al. (2010). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunology, Immunotherapy, 59(7), 1097–1108.PubMedCrossRef Zhang, T., Ma, Z., Wang, R., Wang, Y., Wang, S., Cheng, Z., et al. (2010). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunology, Immunotherapy, 59(7), 1097–1108.PubMedCrossRef
11.
go back to reference Zhang, P., Feng, S., Liu, G., Wang, H., Zhu, H., Ren, Q., et al. (2016). Mutant B-Raf (V600E) promotes melanoma paracellular transmigration by inducing thrombin-mediated endothelial junction breakdown. Journal of Biological Chemistry, 291(5), 2087–2106.PubMedCrossRef Zhang, P., Feng, S., Liu, G., Wang, H., Zhu, H., Ren, Q., et al. (2016). Mutant B-Raf (V600E) promotes melanoma paracellular transmigration by inducing thrombin-mediated endothelial junction breakdown. Journal of Biological Chemistry, 291(5), 2087–2106.PubMedCrossRef
12.
go back to reference Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52, 3267–3272.PubMed Nierodzik, M. L., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Research, 52, 3267–3272.PubMed
13.
go back to reference Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10, 355–362.PubMedCrossRef Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10, 355–362.PubMedCrossRef
14.
go back to reference Nierodzik, M. L., Chen, K., Takeshita, K., Li, J. J., Huang, Y. Q., Feng, X. S., et al. (1998). Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood, 92, 3694–3700.PubMed Nierodzik, M. L., Chen, K., Takeshita, K., Li, J. J., Huang, Y. Q., Feng, X. S., et al. (1998). Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood, 92, 3694–3700.PubMed
15.
go back to reference Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. The Journal of Clinical Investment, 87, 229–236.CrossRef Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. The Journal of Clinical Investment, 87, 229–236.CrossRef
16.
go back to reference Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedPubMedCentralCrossRef Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedPubMedCentralCrossRef
17.
go back to reference Reitter, E. M., Kaider, A., Ay, C., Quehenberger, P., Marosi, C., Zielinski, C., et al. (2015). Longitudinal analysis of hemostasis biomarkers in cancer patients during the anti-tumor treatment. Journal of Thrombosis and Haemostasis. doi:10.1111/jth.13218.PubMed Reitter, E. M., Kaider, A., Ay, C., Quehenberger, P., Marosi, C., Zielinski, C., et al. (2015). Longitudinal analysis of hemostasis biomarkers in cancer patients during the anti-tumor treatment. Journal of Thrombosis and Haemostasis. doi:10.​1111/​jth.​13218.PubMed
18.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef
19.
go back to reference Hu, L., Lee, M., Campbell, W., Perez-Soler, R., & Karpatkin, S. (2004). Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood, 104(9), 2746–2751.PubMedCrossRef Hu, L., Lee, M., Campbell, W., Perez-Soler, R., & Karpatkin, S. (2004). Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood, 104(9), 2746–2751.PubMedCrossRef
20.
go back to reference Guo, R. R., Liu, Y., Lu, W. L., Zhao, J. H., Wang, X. Q., Zhang, H., et al. (2008). A recombinant peptide, hirudin, potentiates the inhibitory effects of stealthy liposomal vinblastine on the growth and metastasis of melanoma. Biological and Pharmaceutical Bulletin, 31(4), 696–702.PubMedCrossRef Guo, R. R., Liu, Y., Lu, W. L., Zhao, J. H., Wang, X. Q., Zhang, H., et al. (2008). A recombinant peptide, hirudin, potentiates the inhibitory effects of stealthy liposomal vinblastine on the growth and metastasis of melanoma. Biological and Pharmaceutical Bulletin, 31(4), 696–702.PubMedCrossRef
21.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed
22.
go back to reference Queiroz, K. C., Shi, K., Duitman, J., Aberson, H. L., Wilmink, J. W., van Noesel, C. J., et al. (2014). Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. International Journal of Cancer, 135(10), 2294–2304.PubMedCrossRef Queiroz, K. C., Shi, K., Duitman, J., Aberson, H. L., Wilmink, J. W., van Noesel, C. J., et al. (2014). Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. International Journal of Cancer, 135(10), 2294–2304.PubMedCrossRef
23.
go back to reference Yoon, H., Radulovic, M., Drucker, K. L., Wu, J., & Scarisbrick, I. A. (2015). The thrombin receptor is a critical extracellular switch controlling myelination. Glia, 63(5), 846–859.PubMedPubMedCentralCrossRef Yoon, H., Radulovic, M., Drucker, K. L., Wu, J., & Scarisbrick, I. A. (2015). The thrombin receptor is a critical extracellular switch controlling myelination. Glia, 63(5), 846–859.PubMedPubMedCentralCrossRef
24.
go back to reference Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural invasion and associated pain in pancreatic cancer. Nature Reviews Cancer, 11(10), 695–707.PubMedCrossRef Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural invasion and associated pain in pancreatic cancer. Nature Reviews Cancer, 11(10), 695–707.PubMedCrossRef
25.
go back to reference Alexander, E. T., Minton, A. R., Hayes, C. S., Goss, A., Van Ryn, J., & Gilmour, S. K. (2015). Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biology and Therapy, 16(12), 1802–1811.PubMedCrossRef Alexander, E. T., Minton, A. R., Hayes, C. S., Goss, A., Van Ryn, J., & Gilmour, S. K. (2015). Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biology and Therapy, 16(12), 1802–1811.PubMedCrossRef
26.
go back to reference Horowitz, N. A., Blevins, E. A., Miller, W. M., Perry, A. R., Talmage, K. E., Mullins, E. S., et al. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood, 118(10), 2889–2895.PubMedPubMedCentralCrossRef Horowitz, N. A., Blevins, E. A., Miller, W. M., Perry, A. R., Talmage, K. E., Mullins, E. S., et al. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood, 118(10), 2889–2895.PubMedPubMedCentralCrossRef
27.
go back to reference DeFeo, K., Hayes, C., Chernick, M., Ryn, J. V., & Gilmour, S. K. (2010). Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biology and Therapy, 10, 1001–1008.PubMedCrossRef DeFeo, K., Hayes, C., Chernick, M., Ryn, J. V., & Gilmour, S. K. (2010). Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biology and Therapy, 10, 1001–1008.PubMedCrossRef
28.
go back to reference Nieman, M. T., LaRusch, G., Fang, C., Zhou, Y., & Schmaier, A. H. (2010). Oral thrombostatin FM19 inhibits prostate cancer. Thrombosis and Haemostasis, 104, 1044–1048.PubMedPubMedCentralCrossRef Nieman, M. T., LaRusch, G., Fang, C., Zhou, Y., & Schmaier, A. H. (2010). Oral thrombostatin FM19 inhibits prostate cancer. Thrombosis and Haemostasis, 104, 1044–1048.PubMedPubMedCentralCrossRef
29.
go back to reference Ratnoff, O. D., Ratnoff, O. D., & Forbes, C. D. (Eds.). (1996). The evolution of knowledge about hemostasis. Disorders of Hemostasis (3rd ed.). Philadelphia: WB Saunders Company. Ratnoff, O. D., Ratnoff, O. D., & Forbes, C. D. (Eds.). (1996). The evolution of knowledge about hemostasis. Disorders of Hemostasis (3rd ed.). Philadelphia: WB Saunders Company.
30.
go back to reference Huntington, J. A. (2005). Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis, 3(8), 1861–1872.PubMedCrossRef Huntington, J. A. (2005). Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis, 3(8), 1861–1872.PubMedCrossRef
31.
go back to reference Higgins, D. L., Lewis, S. D., & Shafer, J. A. (1983). Steady state kinetic parameters for the thrombin-catalyzed conversion of human fibrinogen to fibrin. Journal of Biological Chemistry, 258, 9276–9282.PubMed Higgins, D. L., Lewis, S. D., & Shafer, J. A. (1983). Steady state kinetic parameters for the thrombin-catalyzed conversion of human fibrinogen to fibrin. Journal of Biological Chemistry, 258, 9276–9282.PubMed
32.
go back to reference Boknäs, N., Faxälv, L., Sanchez Centellas, D., Wallstedt, M., Ramström, S., Grenegård, M., et al. (2014). Thrombin-induced platelet activation via PAR4, pivotal role for exosite II. Thrombosis and Haemostasis, 112(3), 558–565.PubMedCrossRef Boknäs, N., Faxälv, L., Sanchez Centellas, D., Wallstedt, M., Ramström, S., Grenegård, M., et al. (2014). Thrombin-induced platelet activation via PAR4, pivotal role for exosite II. Thrombosis and Haemostasis, 112(3), 558–565.PubMedCrossRef
33.
go back to reference Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 10557–10568.CrossRef Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 10557–10568.CrossRef
35.
go back to reference Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3, 1800–1814.PubMedCrossRef Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3, 1800–1814.PubMedCrossRef
36.
go back to reference Ossovskaya, V. S., & Bunnett, N. W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiological Reviews, 84(2), 579–621.PubMedCrossRef Ossovskaya, V. S., & Bunnett, N. W. (2004). Protease-activated receptors: contribution to physiology and disease. Physiological Reviews, 84(2), 579–621.PubMedCrossRef
37.
go back to reference Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. (2013). Cofactoring and dimerization of proteinase-activated receptors. Pharmacological Reviews, 65(4), 1198–1213.PubMedPubMedCentralCrossRef Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. (2013). Cofactoring and dimerization of proteinase-activated receptors. Pharmacological Reviews, 65(4), 1198–1213.PubMedPubMedCentralCrossRef
38.
go back to reference Junge, C. E., Lee, C. J., Hubbard, K. B., Zhang, Z., Olson, J. J., Hepler, J. R., et al. (2004). Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Experimental Neurology, 188(1), 94–103.PubMedCrossRef Junge, C. E., Lee, C. J., Hubbard, K. B., Zhang, Z., Olson, J. J., Hepler, J. R., et al. (2004). Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Experimental Neurology, 188(1), 94–103.PubMedCrossRef
39.
go back to reference Xie, Q., Bao, X., Chen, Z. H., Xu, Y., Keep, R. F., Muraszko, K. M., et al. (2016). Role of protease-activated receptor-1 in glioma growth. Acta Neurochirurgica Supplement, 121, 355–360.PubMed Xie, Q., Bao, X., Chen, Z. H., Xu, Y., Keep, R. F., Muraszko, K. M., et al. (2016). Role of protease-activated receptor-1 in glioma growth. Acta Neurochirurgica Supplement, 121, 355–360.PubMed
40.
go back to reference Li, S. M., Jiang, P., Xiang, Y., Wang, W. W., Zhu, Y. C., Feng, W. Y., et al. (2015). Protease-activated receptor (PAR)1, PAR2 and PAR4 expressions in esophageal squamous cell carcinoma. Dongwuxue Yanjiu, 35(5), 420–425. Li, S. M., Jiang, P., Xiang, Y., Wang, W. W., Zhu, Y. C., Feng, W. Y., et al. (2015). Protease-activated receptor (PAR)1, PAR2 and PAR4 expressions in esophageal squamous cell carcinoma. Dongwuxue Yanjiu, 35(5), 420–425.
41.
go back to reference Adams, G. N., Rosenfeldt, L., Frederick, M., Miller, W., Waltz, D., Kombrinck, K., et al. (2015). Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Research, 75(19), 4235–4243.PubMedCrossRef Adams, G. N., Rosenfeldt, L., Frederick, M., Miller, W., Waltz, D., Kombrinck, K., et al. (2015). Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Research, 75(19), 4235–4243.PubMedCrossRef
42.
go back to reference Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20, 11977–11984.PubMedPubMedCentralCrossRef Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20, 11977–11984.PubMedPubMedCentralCrossRef
43.
go back to reference Schulze, E. B., Hedley, B. D., Goodale, D., Postenka, C. O., Al-Katib, W., & Tuck, A. B. (2008). The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Research and Treatment, 112(2), 243–254.PubMedCrossRef Schulze, E. B., Hedley, B. D., Goodale, D., Postenka, C. O., Al-Katib, W., & Tuck, A. B. (2008). The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Research and Treatment, 112(2), 243–254.PubMedCrossRef
44.
go back to reference Zain, J., Huang, Y. Q., Feng, X., Nierodzik, M. L., Li, J. J., & Karpatkin, S. (2000). Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood, 95(10), 3133–3138.PubMed Zain, J., Huang, Y. Q., Feng, X., Nierodzik, M. L., Li, J. J., & Karpatkin, S. (2000). Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood, 95(10), 3133–3138.PubMed
45.
go back to reference Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of the hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30(1), 5–20.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., & Rak, J. (2004). Contribution of the hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30(1), 5–20.PubMedCrossRef
46.
go back to reference van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.PubMedCrossRef van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.PubMedCrossRef
47.
go back to reference Schaffner, F., & Ruf, W. (2009). Tissue factor and PAR2 signaling in the tumor microenvironment. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 1999–2004.PubMedPubMedCentralCrossRef Schaffner, F., & Ruf, W. (2009). Tissue factor and PAR2 signaling in the tumor microenvironment. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 1999–2004.PubMedPubMedCentralCrossRef
48.
go back to reference Lindahl, U., Peiler, G., Bozgwald, J., & Seljelid, R. (1989). A prothrominase complex of mouse peritoneal macrophages. Archives of Biochemistry and Biophysics, 273, 180–188.PubMedCrossRef Lindahl, U., Peiler, G., Bozgwald, J., & Seljelid, R. (1989). A prothrominase complex of mouse peritoneal macrophages. Archives of Biochemistry and Biophysics, 273, 180–188.PubMedCrossRef
49.
go back to reference Vrana, J. A., Stang, M. T., Grande, J. P., & Getz, M. J. (1996). Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family. Cancer Research, 56(21), 5063–5070.PubMed Vrana, J. A., Stang, M. T., Grande, J. P., & Getz, M. J. (1996). Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family. Cancer Research, 56(21), 5063–5070.PubMed
50.
go back to reference Wojtukiewicz, M. Z., Zacharski, L. R., Ruciñska, M., Zimnoch, L., Jaromin, J., Rózañska-Kudelska, M., et al. (1999). Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thrombosis and Haemostasis, 82(6), 1659–1662.PubMed Wojtukiewicz, M. Z., Zacharski, L. R., Ruciñska, M., Zimnoch, L., Jaromin, J., Rózañska-Kudelska, M., et al. (1999). Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thrombosis and Haemostasis, 82(6), 1659–1662.PubMed
51.
go back to reference Wojtukiewicz, M. Z., Sierko, E., Zacharski, L. R., Zimnoch, L., Kudryk, B., & Kisiel, W. (2003). Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Seminars in Thrombosis and Hemostasis, 29(3), 291–300.PubMedCrossRef Wojtukiewicz, M. Z., Sierko, E., Zacharski, L. R., Zimnoch, L., Kudryk, B., & Kisiel, W. (2003). Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Seminars in Thrombosis and Hemostasis, 29(3), 291–300.PubMedCrossRef
52.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef
53.
go back to reference Young, A., Chapman, O., Connor, C., Poole, C., Rose, P., & Kakkar, A. K. (2012). Thrombosis and cancer. Nature Reviews. Clinical Oncology, 9(8), 437–449.PubMedCrossRef Young, A., Chapman, O., Connor, C., Poole, C., Rose, P., & Kakkar, A. K. (2012). Thrombosis and cancer. Nature Reviews. Clinical Oncology, 9(8), 437–449.PubMedCrossRef
54.
go back to reference Thomas, G. M., Brill, A., Mezouar, S., Crescence, L., Gallant, M., Dubois, C., et al. (2015). Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 13(7), 1310–1319.PubMedCrossRef Thomas, G. M., Brill, A., Mezouar, S., Crescence, L., Gallant, M., Dubois, C., et al. (2015). Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 13(7), 1310–1319.PubMedCrossRef
55.
go back to reference D’Asti, E., & Rak, J. (2016). Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thrombosis Research, 140(Suppl 1), 37–43.CrossRef D’Asti, E., & Rak, J. (2016). Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thrombosis Research, 140(Suppl 1), 37–43.CrossRef
56.
go back to reference D’Andrea, M. R., Derian, C. K., Santulli, R. J., & Andrade-Gordon, P. (2001). Differential expression of protease activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. American Journal of Pathology, 158, 2031–2041.PubMedPubMedCentralCrossRef D’Andrea, M. R., Derian, C. K., Santulli, R. J., & Andrade-Gordon, P. (2001). Differential expression of protease activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. American Journal of Pathology, 158, 2031–2041.PubMedPubMedCentralCrossRef
57.
go back to reference Zhao, F., Li, L., Guan, L., Yang, H., Wu, C., & Liu, Y. (2014). Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Letters, 344(1), 62–73.PubMedCrossRef Zhao, F., Li, L., Guan, L., Yang, H., Wu, C., & Liu, Y. (2014). Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Letters, 344(1), 62–73.PubMedCrossRef
58.
go back to reference Radjabi, A. R., Sawada, K., Jagadeeswaran, S., Eichbichler, A., Kenny, H. A., Montag, A., et al. (2008). Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. Journal of Biological Chemistry, 283, 2822–2834.PubMedCrossRef Radjabi, A. R., Sawada, K., Jagadeeswaran, S., Eichbichler, A., Kenny, H. A., Montag, A., et al. (2008). Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. Journal of Biological Chemistry, 283, 2822–2834.PubMedCrossRef
59.
go back to reference Shi, X., Gangadharan, B., Brass, L., Ruf, W., & Mueller, B. (2004). Protease activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Molecular Cancer Research, 2, 395–402.PubMed Shi, X., Gangadharan, B., Brass, L., Ruf, W., & Mueller, B. (2004). Protease activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Molecular Cancer Research, 2, 395–402.PubMed
60.
go back to reference Liotta, L. A., Steeg, P. S., & Stetler-Stevenson, W. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64, 327–336.PubMedCrossRef Liotta, L. A., Steeg, P. S., & Stetler-Stevenson, W. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64, 327–336.PubMedCrossRef
61.
go back to reference Hu, L., Roth, J. M., Brooks, P., Luty, J., & Karpatkin, S. (2008). Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Research, 68(12), 4666–4673.PubMedCrossRef Hu, L., Roth, J. M., Brooks, P., Luty, J., & Karpatkin, S. (2008). Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Research, 68(12), 4666–4673.PubMedCrossRef
62.
go back to reference Hu, L., Roth, J. M., Brooks, P., Ibrahim, S., & Karpatkin, S. (2008). Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Research, 68(11), 4296–4302.PubMedCrossRef Hu, L., Roth, J. M., Brooks, P., Ibrahim, S., & Karpatkin, S. (2008). Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Research, 68(11), 4296–4302.PubMedCrossRef
63.
go back to reference Chang, L. H., Chen, C. H., Huang, D. Y., Pai, H. C., Pan, S. L., & Teng, C. M. (2011). Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1α translational pathway in colorectal cancer cells. Journal of Cell Physiology, 226(4), 1060–1068.CrossRef Chang, L. H., Chen, C. H., Huang, D. Y., Pai, H. C., Pan, S. L., & Teng, C. M. (2011). Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1α translational pathway in colorectal cancer cells. Journal of Cell Physiology, 226(4), 1060–1068.CrossRef
64.
go back to reference Beausoleil, M. S., Schulze, E. B., Goodale, D., Postenka, C. O., & Allan, A. L. (2011). Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis. BioMed Central Cancer. doi:10.1186/1471-2407-11-25.PubMedPubMedCentral Beausoleil, M. S., Schulze, E. B., Goodale, D., Postenka, C. O., & Allan, A. L. (2011). Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis. BioMed Central Cancer. doi:10.​1186/​1471-2407-11-25.PubMedPubMedCentral
65.
go back to reference Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62, 3417–3427.PubMed Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62, 3417–3427.PubMed
66.
go back to reference Tuck, A. B., Chambers, A. F., & Allan, A. L. (2007). Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. Journal of Cellular Biochemistry, 102(4), 859–868.PubMedCrossRef Tuck, A. B., Chambers, A. F., & Allan, A. L. (2007). Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. Journal of Cellular Biochemistry, 102(4), 859–868.PubMedCrossRef
67.
go back to reference Senger, D., & Peruzzi, C. (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochem et Biophysica Acta, 1314, 13–24.CrossRef Senger, D., & Peruzzi, C. (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochem et Biophysica Acta, 1314, 13–24.CrossRef
68.
go back to reference Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149(1), 293–305.PubMedPubMedCentral Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149(1), 293–305.PubMedPubMedCentral
69.
go back to reference Schulze, E. B., Hedley, B. D., Goodale, D., Postenka, C. O., Al-Katib, W., Tuck, A. B., et al. (2008). The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Research and Treatment, 112(2), 243–254.PubMedCrossRef Schulze, E. B., Hedley, B. D., Goodale, D., Postenka, C. O., Al-Katib, W., Tuck, A. B., et al. (2008). The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Research and Treatment, 112(2), 243–254.PubMedCrossRef
70.
go back to reference Wallerand, H., Robert, G., Pasticier, G., Ravaud, A., Ballanger, P., Reiter, R. E., et al. (2010). The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urologic Oncology, 28(5), 473–479.PubMedCrossRef Wallerand, H., Robert, G., Pasticier, G., Ravaud, A., Ballanger, P., Reiter, R. E., et al. (2010). The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urologic Oncology, 28(5), 473–479.PubMedCrossRef
71.
go back to reference Khan, M. A., Chen, H. C., Zhang, D., & Fu, J. (2013). Twist: a molecular target in cancer therapeutics. Tumour Biology, 34(5), 2497–2506.PubMedCrossRef Khan, M. A., Chen, H. C., Zhang, D., & Fu, J. (2013). Twist: a molecular target in cancer therapeutics. Tumour Biology, 34(5), 2497–2506.PubMedCrossRef
72.
go back to reference Caunt, M., Hu, L., Tang, T., Brooks, P. C., Ibrahim, S., & Karpatkin, S. (2006). Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Research, 66(8), 4125–4132.PubMedCrossRef Caunt, M., Hu, L., Tang, T., Brooks, P. C., Ibrahim, S., & Karpatkin, S. (2006). Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Research, 66(8), 4125–4132.PubMedCrossRef
73.
go back to reference Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef
74.
go back to reference Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2014). Integrin αvβ5 as a biomarker for the assessment of non-small cell lung cancer metastasis and overall survival. The Clinical Respiratory Journal. doi:10.1111/crj.12163.PubMedCentral Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2014). Integrin αvβ5 as a biomarker for the assessment of non-small cell lung cancer metastasis and overall survival. The Clinical Respiratory Journal. doi:10.​1111/​crj.​12163.PubMedCentral
75.
go back to reference Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed
76.
go back to reference Rásó, E., Tóvári, J., Tóth, K., Paku, S., Trikha, M., Honn, K. V., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–1042.PubMed Rásó, E., Tóvári, J., Tóth, K., Paku, S., Trikha, M., Honn, K. V., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–1042.PubMed
77.
go back to reference Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y., Dome, B., et al. (2002). Role for beta3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.PubMedCrossRef Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y., Dome, B., et al. (2002). Role for beta3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.PubMedCrossRef
78.
go back to reference Xu, Z., Zhu, L., Yao, M., Zhong, G., Dong, Q., & Yu, A. (2015). PTEN plays an important role in thrombin-mediated lung cancer cell functions. Biomed Research International. doi:10.1155/2015/459170. Xu, Z., Zhu, L., Yao, M., Zhong, G., Dong, Q., & Yu, A. (2015). PTEN plays an important role in thrombin-mediated lung cancer cell functions. Biomed Research International. doi:10.​1155/​2015/​459170.
79.
go back to reference Mußbach, F., Henklein, P., Westermann, M., Settmacher, U., Böhmer, F. D., & Kaufmann, R. (2014). Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. Journal of Cancer Research and Clinical Oncology, 141(5), 813–825.PubMedCrossRef Mußbach, F., Henklein, P., Westermann, M., Settmacher, U., Böhmer, F. D., & Kaufmann, R. (2014). Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. Journal of Cancer Research and Clinical Oncology, 141(5), 813–825.PubMedCrossRef
80.
go back to reference Trejo, J., Connolly, A. J., & Coughlin, S. R. (1996). The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. Journal of Biological Chemistry, 271(35), 21536–21541.PubMedCrossRef Trejo, J., Connolly, A. J., & Coughlin, S. R. (1996). The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. Journal of Biological Chemistry, 271(35), 21536–21541.PubMedCrossRef
81.
go back to reference Gratio, V., Walker, F., Lehy, T., Laburthe, M., & Darmoul, D. (2009). Aberrant expression of proteinase-activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbB-2 kinase. International Journal of Cancer, 124(7), 1517–1525.PubMedCrossRef Gratio, V., Walker, F., Lehy, T., Laburthe, M., & Darmoul, D. (2009). Aberrant expression of proteinase-activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbB-2 kinase. International Journal of Cancer, 124(7), 1517–1525.PubMedCrossRef
82.
go back to reference Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMed Yuan, L., & Liu, X. (2015). Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Molecular Medicine Reports, 11(4), 2449–2458.PubMed
83.
go back to reference Schiller, H., Bartscht, T., Arlt, A., Zahn, M. O., Seifert, A., Bruhn, T., et al. (2002). Thrombin as a survival factor for cancer cells: thrombin activation in malignant effusions in vivo and inhibition of idarubicin-induced cell death in vitro. International Journal of Clinical Pharmacology and Therapeutics, 40(8), 329–335.PubMedCrossRef Schiller, H., Bartscht, T., Arlt, A., Zahn, M. O., Seifert, A., Bruhn, T., et al. (2002). Thrombin as a survival factor for cancer cells: thrombin activation in malignant effusions in vivo and inhibition of idarubicin-induced cell death in vitro. International Journal of Clinical Pharmacology and Therapeutics, 40(8), 329–335.PubMedCrossRef
84.
go back to reference Pang, J. H., Coupland, L. A., Freeman, C., Chong, B. H., & Parish, C. R. (2015). Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clinical & Experimental Metastasis, 32(5), 495–505.CrossRef Pang, J. H., Coupland, L. A., Freeman, C., Chong, B. H., & Parish, C. R. (2015). Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clinical & Experimental Metastasis, 32(5), 495–505.CrossRef
85.
go back to reference Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., MarquezCurtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760.PubMedCrossRef Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., MarquezCurtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760.PubMedCrossRef
86.
go back to reference Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M., & Ratajczak, M. Z. (2006). Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 46(7), 1199–1209.PubMedCrossRef Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M., & Ratajczak, M. Z. (2006). Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 46(7), 1199–1209.PubMedCrossRef
87.
go back to reference Lou, X. L., Sun, J., Gong, S. Q., Yu, X. F., Gong, R., & Deng, H. (2015). Interaction between circulating cancer cells and platelets: clinical implication. Chinese Journal of Cancer Research, 27(5), 450–460.PubMedPubMedCentral Lou, X. L., Sun, J., Gong, S. Q., Yu, X. F., Gong, R., & Deng, H. (2015). Interaction between circulating cancer cells and platelets: clinical implication. Chinese Journal of Cancer Research, 27(5), 450–460.PubMedPubMedCentral
88.
go back to reference Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.PubMedPubMedCentralCrossRef Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.PubMedPubMedCentralCrossRef
89.
go back to reference Cho, M. S., Bottsford-Miller, J., Vasquez, H. G., Stone, R., Zand, B., Kroll, M. H., et al. (2012). Platelets increase the proliferation of ovarian cancer cells. Blood, 120(24), 4869–4872.PubMedPubMedCentralCrossRef Cho, M. S., Bottsford-Miller, J., Vasquez, H. G., Stone, R., Zand, B., Kroll, M. H., et al. (2012). Platelets increase the proliferation of ovarian cancer cells. Blood, 120(24), 4869–4872.PubMedPubMedCentralCrossRef
90.
go back to reference Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Journal of Thrombosis and Haemostasis, 13(3), 465–476.PubMedCrossRef Huang, Z., Miao, X., Luan, Y., Zhu, L., Kong, F., Lu, Q., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Journal of Thrombosis and Haemostasis, 13(3), 465–476.PubMedCrossRef
91.
go back to reference Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef Sierko, E., & Wojtukiewicz, M. Z. (2007). Inhibition of platelet function: does it offer a chance of better cancer progression control? Seminars in Thrombosis and Hemostasis, 33(7), 712–721.PubMedCrossRef
92.
go back to reference Boucharaba, A., Serre, C. M., Grès, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investment, 114(12), 1714–1725.CrossRef Boucharaba, A., Serre, C. M., Grès, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investment, 114(12), 1714–1725.CrossRef
93.
go back to reference Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.PubMedCrossRef Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.PubMedCrossRef
94.
go back to reference Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef
95.
go back to reference Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef
96.
go back to reference Steinbrecher, K. A., Horowitz, N. A., Blevins, E. A., Barney, K. A., Shaw, M. A., Harmel-Laws, E., et al. (2010). Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Research, 70, 2634–2643.PubMedPubMedCentralCrossRef Steinbrecher, K. A., Horowitz, N. A., Blevins, E. A., Barney, K. A., Shaw, M. A., Harmel-Laws, E., et al. (2010). Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Research, 70, 2634–2643.PubMedPubMedCentralCrossRef
97.
go back to reference Liu, C. Y., Nossel, H. L., & Kaplan, K. L. (1979). The binding of thrombin by fibrin. Journal of Biological Chemistry, 254(20), 10421–10425.PubMed Liu, C. Y., Nossel, H. L., & Kaplan, K. L. (1979). The binding of thrombin by fibrin. Journal of Biological Chemistry, 254(20), 10421–10425.PubMed
98.
go back to reference Turpin, B., Miller, W., Rosenfeldt, L., Kombrinck, K., Flick, M. J., Steinbrecher, K. A., et al. (2014). Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Research, 74(11), 3020–3030.PubMedPubMedCentralCrossRef Turpin, B., Miller, W., Rosenfeldt, L., Kombrinck, K., Flick, M. J., Steinbrecher, K. A., et al. (2014). Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Research, 74(11), 3020–3030.PubMedPubMedCentralCrossRef
99.
go back to reference Sahni, A., & Francis, C. W. (2000). Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood, 96, 3772–3778.PubMed Sahni, A., & Francis, C. W. (2000). Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood, 96, 3772–3778.PubMed
100.
go back to reference Mosesson, M. W. (2005). Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 3, 1894–1904.PubMedCrossRef Mosesson, M. W. (2005). Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 3, 1894–1904.PubMedCrossRef
101.
go back to reference Schachtrup, C., Ryu, J. K., Helmrick, M. J., Vagena, E., Galanakis, D. K., Degen, J. L., et al. (2010). Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. Journal of Neuroscience, 30(17), 5843–5854.PubMedPubMedCentralCrossRef Schachtrup, C., Ryu, J. K., Helmrick, M. J., Vagena, E., Galanakis, D. K., Degen, J. L., et al. (2010). Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. Journal of Neuroscience, 30(17), 5843–5854.PubMedPubMedCentralCrossRef
102.
go back to reference Palumbo, J. S., Potter, J. M., Kaplan, L. S., Talmage, K., Jackson, D. G., & Degen, J. L. (2002). Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Research, 62, 6966–6972.PubMed Palumbo, J. S., Potter, J. M., Kaplan, L. S., Talmage, K., Jackson, D. G., & Degen, J. L. (2002). Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Research, 62, 6966–6972.PubMed
103.
go back to reference Haralabopoulos, G., Grant, D., Kleinman, H., & Maragoudakis, M. (1997). Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. American Journal of Physiology, 273, C239–C245.PubMed Haralabopoulos, G., Grant, D., Kleinman, H., & Maragoudakis, M. (1997). Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. American Journal of Physiology, 273, C239–C245.PubMed
105.
go back to reference Posch, F., Thaler, J., Zlabinger, G. J., Königsbrügge, O., Koder, S., Zielinski, C., et al. (2016). Soluble vascular endothelial growth factor (sVEGF) and the risk of venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study (CATS). Clinical Cancer Research, 22(1), 200–206.PubMedCrossRef Posch, F., Thaler, J., Zlabinger, G. J., Königsbrügge, O., Koder, S., Zielinski, C., et al. (2016). Soluble vascular endothelial growth factor (sVEGF) and the risk of venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study (CATS). Clinical Cancer Research, 22(1), 200–206.PubMedCrossRef
106.
go back to reference Ma, L., Perini, R., McKnight, W., Klein, A., Hollenberg, M. D., & Wallace, J. L. (2005). Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proceedings of the National Academy of Sciences of the United States of America, 102, 216.PubMedCrossRef Ma, L., Perini, R., McKnight, W., Klein, A., Hollenberg, M. D., & Wallace, J. L. (2005). Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proceedings of the National Academy of Sciences of the United States of America, 102, 216.PubMedCrossRef
107.
go back to reference Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A. W., & Honn, K. V. (2011). The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Reviews, 30(3–4), 397–408.PubMedCrossRef Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A. W., & Honn, K. V. (2011). The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Reviews, 30(3–4), 397–408.PubMedCrossRef
108.
go back to reference Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–14.PubMedCrossRef Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–14.PubMedCrossRef
109.
go back to reference Honn, K. V., Grossi, I. M., Fitzgerald, L. A., Umbarger, L. A., Diglio, C. A., et al. (1988). Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proceedings of the Society for Experimental Biology and Medicine, 189(1), 130–135.PubMedCrossRef Honn, K. V., Grossi, I. M., Fitzgerald, L. A., Umbarger, L. A., Diglio, C. A., et al. (1988). Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proceedings of the Society for Experimental Biology and Medicine, 189(1), 130–135.PubMedCrossRef
110.
go back to reference Honn, K. V., Tang, D. G., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18(4), 392–415.PubMedCrossRef Honn, K. V., Tang, D. G., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18(4), 392–415.PubMedCrossRef
111.
go back to reference Honn, K. V., Tang, D. G., Grossi, I. M., Renaud, C., Duniec, Z. M., Johnson, C. R., et al. (1994). Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Experimental Cell Research, 210(1), 1–9.PubMedCrossRef Honn, K. V., Tang, D. G., Grossi, I. M., Renaud, C., Duniec, Z. M., Johnson, C. R., et al. (1994). Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Experimental Cell Research, 210(1), 1–9.PubMedCrossRef
112.
go back to reference Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.PubMedCrossRef Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.PubMedCrossRef
113.
go back to reference Chen, Y. Q., Hagmann, W., & Honn, K. V. (1997). Regulation of 12(S)-HETE production in tumor cells. Advances in Experimental Medicine and Biology, 400A, 159–66.PubMedCrossRef Chen, Y. Q., Hagmann, W., & Honn, K. V. (1997). Regulation of 12(S)-HETE production in tumor cells. Advances in Experimental Medicine and Biology, 400A, 159–66.PubMedCrossRef
114.
go back to reference Tang, D. G., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins, 45(3), 249–67.PubMedCrossRef Tang, D. G., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins, 45(3), 249–67.PubMedCrossRef
115.
go back to reference Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. Journal of Cell Biology, 121(3), 689–704.PubMedCrossRef Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. Journal of Cell Biology, 121(3), 689–704.PubMedCrossRef
116.
go back to reference Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pagès, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedPubMedCentralCrossRef Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pagès, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedPubMedCentralCrossRef
117.
go back to reference Krishnamoorthy, S., & Honn, K. V. (2011). Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Reviews, 30(3–4), 613–618.PubMedCrossRef Krishnamoorthy, S., & Honn, K. V. (2011). Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Reviews, 30(3–4), 613–618.PubMedCrossRef
118.
go back to reference Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef
119.
go back to reference Tucker, S. C., & Honn, K. V. (2013). Emerging targets in lipid-based therapy. Biochemical Pharmacology, 85(5), 673–688.PubMedCrossRef Tucker, S. C., & Honn, K. V. (2013). Emerging targets in lipid-based therapy. Biochemical Pharmacology, 85(5), 673–688.PubMedCrossRef
120.
go back to reference Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.PubMedPubMedCentralCrossRef Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. International Journal of Cancer, 133(8), 1784–1791.PubMedPubMedCentralCrossRef
121.
go back to reference Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524.PubMedCrossRef Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524.PubMedCrossRef
122.
go back to reference Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.PubMed
123.
go back to reference Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.PubMedCrossRef
124.
go back to reference Tang, K., Cai, Y., Joshi, S., Tovar, E., Tucker, S. C., Maddipati, K. R., et al. (2015). Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Molecular Cancer, 3(14), 111.CrossRef Tang, K., Cai, Y., Joshi, S., Tovar, E., Tucker, S. C., Maddipati, K. R., et al. (2015). Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Molecular Cancer, 3(14), 111.CrossRef
125.
go back to reference Timar, J., Bazaz, R., Tang, D. G., Kimler, V., Taylor, J. D., & Honn, K. V. (1997). Post-translational regulation of surface integrin expression in tumor cells by 12(S)-HETE. Advances in Experimental Medicine and Biology, 400B, 757–763.PubMed Timar, J., Bazaz, R., Tang, D. G., Kimler, V., Taylor, J. D., & Honn, K. V. (1997). Post-translational regulation of surface integrin expression in tumor cells by 12(S)-HETE. Advances in Experimental Medicine and Biology, 400B, 757–763.PubMed
126.
go back to reference Maragoudakis, M. E., Tsopanoglou, N. E., & Andriopoulou, P. (2002). Mechanism of thrombin-induced angiogenesis. Biochemical Society Transactions, 30(2), 173–177.PubMedCrossRef Maragoudakis, M. E., Tsopanoglou, N. E., & Andriopoulou, P. (2002). Mechanism of thrombin-induced angiogenesis. Biochemical Society Transactions, 30(2), 173–177.PubMedCrossRef
127.
go back to reference Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapeutics, 318, 246–254.PubMedCrossRef
128.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (1999). On the mechanism of thrombin-induced angiogenesis: potentiation of vascular endothelial growth factor activity on endothelial cells by upregulation of its receptors. Journal of Biological Chemistry, 274(34), 23969–23976.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (1999). On the mechanism of thrombin-induced angiogenesis: potentiation of vascular endothelial growth factor activity on endothelial cells by upregulation of its receptors. Journal of Biological Chemistry, 274(34), 23969–23976.PubMedCrossRef
129.
go back to reference Tsopanoglou, N. E., Andriopoulou, P., & Maragoudakis, M. E. (2002). On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. American Journal of Physiology. Cell Physiology, 83(5), C1501–1510.CrossRef Tsopanoglou, N. E., Andriopoulou, P., & Maragoudakis, M. E. (2002). On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. American Journal of Physiology. Cell Physiology, 83(5), C1501–1510.CrossRef
130.
go back to reference Andrikopoulos, P., Kieswich, J., Harwood, S. M., Baba, A., Matsuda, T., Barbeau, O., et al. (2015). Endothelial angiogenesis and barrier function in response to thrombin require Ca2+ influx through the Na+/Ca2+ exchanger. The Journal of Biological Chemistry, 290(30), 18412–18428.PubMedCrossRef Andrikopoulos, P., Kieswich, J., Harwood, S. M., Baba, A., Matsuda, T., Barbeau, O., et al. (2015). Endothelial angiogenesis and barrier function in response to thrombin require Ca2+ influx through the Na+/Ca2+ exchanger. The Journal of Biological Chemistry, 290(30), 18412–18428.PubMedCrossRef
131.
go back to reference Olivot, J. M., Estebanell, E., Lafay, M., Brohard, B., Aiach, M., & Rendu, F. (2001). Thrombomodulin prolongs thrombin-induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circulation Research, 88, 681.PubMedCrossRef Olivot, J. M., Estebanell, E., Lafay, M., Brohard, B., Aiach, M., & Rendu, F. (2001). Thrombomodulin prolongs thrombin-induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circulation Research, 88, 681.PubMedCrossRef
132.
go back to reference D’Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis, 12(11), 1838–1849.PubMedCrossRef D’Asti, E., Kool, M., Pfister, S. M., & Rak, J. (2014). Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. Journal of Thrombosis and Haemostasis, 12(11), 1838–1849.PubMedCrossRef
133.
go back to reference Xu, Y., Gu, Y., Keep, R. F., Heth, J., Muraszko, K. M., Xi, G., et al. (2009). Thrombin up-regulates vascular endothelial growth factor in experimental gliomas. Neurological Research, 31(7), 759–765.PubMedCrossRef Xu, Y., Gu, Y., Keep, R. F., Heth, J., Muraszko, K. M., Xi, G., et al. (2009). Thrombin up-regulates vascular endothelial growth factor in experimental gliomas. Neurological Research, 31(7), 759–765.PubMedCrossRef
134.
go back to reference Zania, P., Gourni, D., Aplin, A. C., Nicosia, R. F., Flordellis, C. S., Maragoudakis, M. E., et al. (2009). Parstatin, the cleaved peptide on proteinase-activated receptor 1 activation, is a potent inhibitor of angiogenesis. Journal of Pharmacology and Experimental Therapeutics, 328(2), 378–389.PubMedCrossRef Zania, P., Gourni, D., Aplin, A. C., Nicosia, R. F., Flordellis, C. S., Maragoudakis, M. E., et al. (2009). Parstatin, the cleaved peptide on proteinase-activated receptor 1 activation, is a potent inhibitor of angiogenesis. Journal of Pharmacology and Experimental Therapeutics, 328(2), 378–389.PubMedCrossRef
135.
go back to reference Koolwijk, P., van Erck, M. G., de Vree, W. J., Vermeer, M. A., Weich, H. A., Hanemaaijer, R., et al. (1996). Cooperative effect of TNF-alpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. Journal of Cellular Biology, 132, 1177.CrossRef Koolwijk, P., van Erck, M. G., de Vree, W. J., Vermeer, M. A., Weich, H. A., Hanemaaijer, R., et al. (1996). Cooperative effect of TNF-alpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. Journal of Cellular Biology, 132, 1177.CrossRef
136.
go back to reference Mittermayr, R., Slezak, P., Haffner, N., Smolen, D., Hartinger, J., Hofmann, A., et al. (2016). Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomaterialia, 29, 11–20.PubMedCrossRef Mittermayr, R., Slezak, P., Haffner, N., Smolen, D., Hartinger, J., Hofmann, A., et al. (2016). Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomaterialia, 29, 11–20.PubMedCrossRef
137.
go back to reference Smadja, D. M., Basire, A., Amelot, A., Conte, A., Bièche, I., Le Bonniec, B. F., et al. (2008). Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 12, 975.PubMedPubMedCentralCrossRef Smadja, D. M., Basire, A., Amelot, A., Conte, A., Bièche, I., Le Bonniec, B. F., et al. (2008). Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 12, 975.PubMedPubMedCentralCrossRef
139.
go back to reference Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669.PubMedPubMedCentralCrossRef Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669.PubMedPubMedCentralCrossRef
140.
go back to reference Liu, H., Zhang, X., Li, J., Sun, B., Qian, H., & Yin, Z. (2015). The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells. Journal of Cancer Research and Clinical Oncology, 141(2), 189–201.PubMedCrossRef Liu, H., Zhang, X., Li, J., Sun, B., Qian, H., & Yin, Z. (2015). The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells. Journal of Cancer Research and Clinical Oncology, 141(2), 189–201.PubMedCrossRef
141.
go back to reference Ozdemir, T., Zhang, P., Fu, C., & Dong, C. (2012). Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions. American Journal of Physiology - Cell Physiology, 302(8), C1189–1201.PubMedPubMedCentralCrossRef Ozdemir, T., Zhang, P., Fu, C., & Dong, C. (2012). Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions. American Journal of Physiology - Cell Physiology, 302(8), C1189–1201.PubMedPubMedCentralCrossRef
142.
go back to reference Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45, 2287–2294.PubMed Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45, 2287–2294.PubMed
143.
go back to reference Pavese, J. M., & Bergan, R. C. (2014). Circulating tumor cells exhibit a biologically aggressive cancer phenotype accompanied by selective resistance to chemotherapy. Cancer Letters, 352(2), 179–186.PubMedPubMedCentralCrossRef Pavese, J. M., & Bergan, R. C. (2014). Circulating tumor cells exhibit a biologically aggressive cancer phenotype accompanied by selective resistance to chemotherapy. Cancer Letters, 352(2), 179–186.PubMedPubMedCentralCrossRef
144.
go back to reference Lecharpentier, A., Vielh, P., Perez-Moreno, P., Planchard, D., Soria, J. C., & Farace, F. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105, 1338–1341.PubMedPubMedCentralCrossRef Lecharpentier, A., Vielh, P., Perez-Moreno, P., Planchard, D., Soria, J. C., & Farace, F. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105, 1338–1341.PubMedPubMedCentralCrossRef
145.
go back to reference Hou, J. M., Krebs, M., Ward, T., Sloane, R., Priest, L., Hughes, A., et al. (2011). Circulating tumor cells as a window on metastasis biology in lung cancer. The American Journal of Pathology, 178, 989–996.PubMedPubMedCentralCrossRef Hou, J. M., Krebs, M., Ward, T., Sloane, R., Priest, L., Hughes, A., et al. (2011). Circulating tumor cells as a window on metastasis biology in lung cancer. The American Journal of Pathology, 178, 989–996.PubMedPubMedCentralCrossRef
146.
go back to reference Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMedPubMedCentralCrossRef Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMedPubMedCentralCrossRef
147.
go back to reference Konstantoulaki, M., Kouklis, P., & Malik, A. B. (2003). Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology Lung Cellular and Molecular Physiology, 285, L434–442.PubMedCrossRef Konstantoulaki, M., Kouklis, P., & Malik, A. B. (2003). Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology Lung Cellular and Molecular Physiology, 285, L434–442.PubMedCrossRef
148.
go back to reference Yokota, N., Zarpellon, A., Chakrabarty, S., Bogdanov, V. Y., Gruber, A., Castellino, F. J., et al. (2014). Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. Journal of Thrombosis and Haemostasis, 12(1), 71–81.PubMedPubMedCentralCrossRef Yokota, N., Zarpellon, A., Chakrabarty, S., Bogdanov, V. Y., Gruber, A., Castellino, F. J., et al. (2014). Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. Journal of Thrombosis and Haemostasis, 12(1), 71–81.PubMedPubMedCentralCrossRef
149.
go back to reference Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed
150.
go back to reference Crissman, J. D., Hatfield, J. S., & Honn, K. V. (1986). Clinical and experimental morphologic parameters predictive of tumor metastasis. Progress in Clinical and Biological Research, 212, 251–267.PubMed Crissman, J. D., Hatfield, J. S., & Honn, K. V. (1986). Clinical and experimental morphologic parameters predictive of tumor metastasis. Progress in Clinical and Biological Research, 212, 251–267.PubMed
151.
go back to reference Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed
152.
go back to reference Qian, W., Tao, L., Wang, Y., Zhang, F., Li, M., Huang, S., et al. (2015). Downregulation of integrins in cancer cells and anti-platelet properties are involved in Holothurian glycosaminoglycan-mediated disruption of the interaction of cancer cells and platelets in hematogenous metastasis. Journal of Vascular Research, 52(3), 197–209.PubMedCrossRef Qian, W., Tao, L., Wang, Y., Zhang, F., Li, M., Huang, S., et al. (2015). Downregulation of integrins in cancer cells and anti-platelet properties are involved in Holothurian glycosaminoglycan-mediated disruption of the interaction of cancer cells and platelets in hematogenous metastasis. Journal of Vascular Research, 52(3), 197–209.PubMedCrossRef
153.
go back to reference Lova, P., Canobbio, I., Guidetti, G. F., Balduini, C., & Torti, M. (2010). Thrombin induces platelet activation in the absence of functional protease activated receptors 1 and 4 and glycoprotein Ib-IX-V. Cellular Signalling, 22(11), 1681–1687.PubMedCrossRef Lova, P., Canobbio, I., Guidetti, G. F., Balduini, C., & Torti, M. (2010). Thrombin induces platelet activation in the absence of functional protease activated receptors 1 and 4 and glycoprotein Ib-IX-V. Cellular Signalling, 22(11), 1681–1687.PubMedCrossRef
154.
go back to reference De Candia, E., Hall, S. W., Rutella, S., Landolfi, R., Andrews, R. K., & De Cristofaro, R. (2001). Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. The Journal of Biological Chemistry, 276, 4692–4698.PubMedCrossRef De Candia, E., Hall, S. W., Rutella, S., Landolfi, R., Andrews, R. K., & De Cristofaro, R. (2001). Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. The Journal of Biological Chemistry, 276, 4692–4698.PubMedCrossRef
155.
go back to reference Tanaka, N. G., Tohgo, A., & Ogawa, H. (1986). Platelet-aggregating activities of metastasizing tumor cells. V. In situ roles of platelets in hematogenous metastases. Invasion & Metastasis, 6(4), 209–224. Tanaka, N. G., Tohgo, A., & Ogawa, H. (1986). Platelet-aggregating activities of metastasizing tumor cells. V. In situ roles of platelets in hematogenous metastases. Invasion & Metastasis, 6(4), 209–224.
156.
go back to reference Gasic, G., Gasic, T., Galanti, N., Johnson, T., & Murphy, S. (1973). Platelet tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. International Journal of Cancer, 11, 704–718.PubMedCrossRef Gasic, G., Gasic, T., Galanti, N., Johnson, T., & Murphy, S. (1973). Platelet tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. International Journal of Cancer, 11, 704–718.PubMedCrossRef
157.
go back to reference Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.PubMedCrossRef Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.PubMedCrossRef
158.
go back to reference Naimushin, Y. A., & Mazurov, A. V. (2004). Von Willebrand factor can support platelet aggregation via interaction with activated GPIIb-IIIa and GPIb. Platelets, 15(7), 419–425.PubMedCrossRef Naimushin, Y. A., & Mazurov, A. V. (2004). Von Willebrand factor can support platelet aggregation via interaction with activated GPIIb-IIIa and GPIb. Platelets, 15(7), 419–425.PubMedCrossRef
159.
go back to reference Naimushin, Y. A., & Mazurov, A. V. (2005). Ability of different glycoprotein IIb-IIIa ligands to support platelet aggregation induced by activating antibody CRC54. Biochemistry (Mosc), 70(7), 782–789.CrossRef Naimushin, Y. A., & Mazurov, A. V. (2005). Ability of different glycoprotein IIb-IIIa ligands to support platelet aggregation induced by activating antibody CRC54. Biochemistry (Mosc), 70(7), 782–789.CrossRef
160.
go back to reference Ünlü, B., & Versteeg, H. H. (2014). Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thrombosis Research, 133(Suppl 2), S76–84.PubMedCrossRef Ünlü, B., & Versteeg, H. H. (2014). Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thrombosis Research, 133(Suppl 2), S76–84.PubMedCrossRef
161.
go back to reference Maskrey, B. H., Bermúdez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. The Journal of Biological Chemistry, 282(28), 20151–20163.PubMedCrossRef Maskrey, B. H., Bermúdez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. The Journal of Biological Chemistry, 282(28), 20151–20163.PubMedCrossRef
162.
go back to reference Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59, 1295–1300.PubMed Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59, 1295–1300.PubMed
163.
go back to reference Ohana, O. M., Ozer, J., Prinsloo, I., Benharroch, D., & Gopas, J. (2015). Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to human umbilical vein endothelial cells (HUVEC). Cancer Biology and Therapy, 16(11), 1651–1659.PubMedCrossRef Ohana, O. M., Ozer, J., Prinsloo, I., Benharroch, D., & Gopas, J. (2015). Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to human umbilical vein endothelial cells (HUVEC). Cancer Biology and Therapy, 16(11), 1651–1659.PubMedCrossRef
164.
go back to reference Fidler, I. (1970). Metastases: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. Journal of National Cancer Institute, 45, 773–782. Fidler, I. (1970). Metastases: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. Journal of National Cancer Institute, 45, 773–782.
165.
go back to reference Coupland, L. A., Chong, B. H., & Parish, C. R. (2012). Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Research, 72(18), 4662–4671.PubMedCrossRef Coupland, L. A., Chong, B. H., & Parish, C. R. (2012). Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Research, 72(18), 4662–4671.PubMedCrossRef
166.
go back to reference Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105, 178.PubMedCrossRef Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105, 178.PubMedCrossRef
167.
go back to reference Placke, T., Orgel, M., Schaller, M., Jung, G., Rammensee, H. G., Kopp, H. G., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72, 440–448.PubMedCrossRef Placke, T., Orgel, M., Schaller, M., Jung, G., Rammensee, H. G., Kopp, H. G., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72, 440–448.PubMedCrossRef
168.
go back to reference Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9024–9028.PubMedPubMedCentralCrossRef Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9024–9028.PubMedPubMedCentralCrossRef
169.
go back to reference Boukerche, H., Berthier-Vergnes, O., Tabone, E., Dore, J., Leung, L., & McGregor, J. (1989). Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood, 74, 658–663.PubMed Boukerche, H., Berthier-Vergnes, O., Tabone, E., Dore, J., Leung, L., & McGregor, J. (1989). Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood, 74, 658–663.PubMed
170.
go back to reference McGregor, B., McGregor, J., Weiss, L., Wood, G., Hu, C., Boukerche, H., et al. (1989). Presence of cytoadhesins (IIb-IIIa-like glycoproteins) on human metastatic melanomas but not on benign melanocytes. American Journal of Clinical Pathology, 92, 495–499.PubMedCrossRef McGregor, B., McGregor, J., Weiss, L., Wood, G., Hu, C., Boukerche, H., et al. (1989). Presence of cytoadhesins (IIb-IIIa-like glycoproteins) on human metastatic melanomas but not on benign melanocytes. American Journal of Clinical Pathology, 92, 495–499.PubMedCrossRef
171.
go back to reference McCarty, O., Mousa, S., Bray, P., & Konstantopoulos, K. (2000). Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood, 96, 1789–1797.PubMed McCarty, O., Mousa, S., Bray, P., & Konstantopoulos, K. (2000). Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood, 96, 1789–1797.PubMed
172.
go back to reference Aigner, S., Ramos, C., Hafezi-Moghadam, A., Lawrence, M., Friederichs, J., Altevogt, P., et al. (1998). CD24 mediates rolling of breast carcinoma cells on P-selectin. Federation of American Societies for Experimental Biology Journal, 12, 1241–1251.PubMed Aigner, S., Ramos, C., Hafezi-Moghadam, A., Lawrence, M., Friederichs, J., Altevogt, P., et al. (1998). CD24 mediates rolling of breast carcinoma cells on P-selectin. Federation of American Societies for Experimental Biology Journal, 12, 1241–1251.PubMed
173.
go back to reference Lou, X. L., Deng, J., Deng, H., Ting, Y., Zhou, L., Liu, Y. H., et al. (2014). Aspirin inhibit platelet-induced epithelial-to-mesenchymal transition of circulating tumor cells (review). Biomedical Reports, 2(3), 331–334.PubMedPubMedCentral Lou, X. L., Deng, J., Deng, H., Ting, Y., Zhou, L., Liu, Y. H., et al. (2014). Aspirin inhibit platelet-induced epithelial-to-mesenchymal transition of circulating tumor cells (review). Biomedical Reports, 2(3), 331–334.PubMedPubMedCentral
174.
go back to reference Humphries, M., Olden, K., & Yamada, K. (1986). A synthetic peptide from fibronectin inhibits experimental metastases of murine melanoma cells. Science, 467, 467–470.CrossRef Humphries, M., Olden, K., & Yamada, K. (1986). A synthetic peptide from fibronectin inhibits experimental metastases of murine melanoma cells. Science, 467, 467–470.CrossRef
175.
go back to reference Klepfish, A., Greco, M., & Karpatkin, S. (1993). Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. International Journal of Cancer, 53, 978–982.PubMedCrossRef Klepfish, A., Greco, M., & Karpatkin, S. (1993). Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. International Journal of Cancer, 53, 978–982.PubMedCrossRef
176.
go back to reference Dardik, R., Savion, N., Kaufmann, Y., & Varon, D. (1998). Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIa. British Journal of Cancer, 77, 2069–2075.PubMedPubMedCentralCrossRef Dardik, R., Savion, N., Kaufmann, Y., & Varon, D. (1998). Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIa. British Journal of Cancer, 77, 2069–2075.PubMedPubMedCentralCrossRef
177.
go back to reference Wang, J., Xiao, J., Wen, D., Wu, X., Mao, Z., Zhang, J., et al. (2016). Endothelial cell-anchored tissue factor pathway inhibitor regulates tumor metastasis to the lung in mice. Molecular Carcinogenesis, 55(5), 882–896.PubMedCrossRef Wang, J., Xiao, J., Wen, D., Wu, X., Mao, Z., Zhang, J., et al. (2016). Endothelial cell-anchored tissue factor pathway inhibitor regulates tumor metastasis to the lung in mice. Molecular Carcinogenesis, 55(5), 882–896.PubMedCrossRef
178.
go back to reference Nie, D., Tang, K., Szekeres, K., Trikha, M., & Honn, K. V. (2000). The role of eicosanoids in tumor growth and metastasis. Ernst Schering Research Foundation Workshop Journal, 31, 201–217. Nie, D., Tang, K., Szekeres, K., Trikha, M., & Honn, K. V. (2000). The role of eicosanoids in tumor growth and metastasis. Ernst Schering Research Foundation Workshop Journal, 31, 201–217.
179.
go back to reference Honn, K. V., Tang, D. G., Grossi, I., Duniec, Z. M., Timar, J., Renaud, C., et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Research, 54(2), 565–574.PubMed Honn, K. V., Tang, D. G., Grossi, I., Duniec, Z. M., Timar, J., Renaud, C., et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Research, 54(2), 565–574.PubMed
180.
go back to reference Weiler, H., & Isermann, B. H. (2003). Thrombomodulin. Journal of Thrombosis and Haemostasis, 1, 1515–1524.PubMedCrossRef Weiler, H., & Isermann, B. H. (2003). Thrombomodulin. Journal of Thrombosis and Haemostasis, 1, 1515–1524.PubMedCrossRef
181.
go back to reference Van Sluis, G. L., Niers, T. M., Esmon, C. T., Tigchelaar, W., Richel, D. J., & Buller, H. R. (2009). Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood, 114(9), 1968–1973.PubMedPubMedCentralCrossRef Van Sluis, G. L., Niers, T. M., Esmon, C. T., Tigchelaar, W., Richel, D. J., & Buller, H. R. (2009). Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood, 114(9), 1968–1973.PubMedPubMedCentralCrossRef
182.
go back to reference Palumbo, J. S., Kombrinck, K. W., Drew, A. F., Grimes, T. S., Kiser, J. H., Degen, J. L., et al. (2000). Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood, 96, 3302.PubMed Palumbo, J. S., Kombrinck, K. W., Drew, A. F., Grimes, T. S., Kiser, J. H., Degen, J. L., et al. (2000). Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood, 96, 3302.PubMed
183.
go back to reference Palumbo, J. S. (2008). Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. Seminars in Thrombosis and Hemostasis, 34, 154–160.PubMedCrossRef Palumbo, J. S. (2008). Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. Seminars in Thrombosis and Hemostasis, 34, 154–160.PubMedCrossRef
184.
go back to reference Palumbo, J.S., Talmage, K.E., Massari, J.V., La Jeunesse, C.M., Flick, M.J., Kombrinck, K.W., et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood. 19. Palumbo, J.S., Talmage, K.E., Massari, J.V., La Jeunesse, C.M., Flick, M.J., Kombrinck, K.W., et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood. 19.
185.
go back to reference Palumbo, J. S., Barney, K. A., Blevins, E. A., Shaw, M. A., Mishra, A., Flick, M. J., et al. (2008). Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. Journal of Thrombosis and Haemostasis, 6, 812–819.PubMedCrossRef Palumbo, J. S., Barney, K. A., Blevins, E. A., Shaw, M. A., Mishra, A., Flick, M. J., et al. (2008). Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. Journal of Thrombosis and Haemostasis, 6, 812–819.PubMedCrossRef
186.
go back to reference Biggerstaff, J. P., Seth, N., Amirkhosravi, A., Amaya, M., Fogarty, S., Meyer, T. V., Siddiqui, F., Francis, J. L., et al. (1999). Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clinical & Experimental Metastasis, 17, 723–730.CrossRef Biggerstaff, J. P., Seth, N., Amirkhosravi, A., Amaya, M., Fogarty, S., Meyer, T. V., Siddiqui, F., Francis, J. L., et al. (1999). Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clinical & Experimental Metastasis, 17, 723–730.CrossRef
187.
go back to reference Zhang, P., Ozdemir, T., Chung, C. Y., Robertson, G. P., & Dong, C. (2011). Sequential binding of α(v)β(3) and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. Journal of Immunology, 186, 242–254.CrossRef Zhang, P., Ozdemir, T., Chung, C. Y., Robertson, G. P., & Dong, C. (2011). Sequential binding of α(v)β(3) and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. Journal of Immunology, 186, 242–254.CrossRef
188.
189.
go back to reference Yokoyama, K., Erickson, H. P., Ikeda, Y., & Takada, Y. (2000). Identification of amino acid sequences in fibrinogen γ-chain and tenascin CC-terminal domains critical for binding to integrin α(v)β(3). Journal of Biological Chemistry, 275, 16891–16898.PubMedCrossRef Yokoyama, K., Erickson, H. P., Ikeda, Y., & Takada, Y. (2000). Identification of amino acid sequences in fibrinogen γ-chain and tenascin CC-terminal domains critical for binding to integrin α(v)β(3). Journal of Biological Chemistry, 275, 16891–16898.PubMedCrossRef
190.
go back to reference Lee, S. H., Suh, I. B., Lee, E. J., Hur, G. Y., Lee, S. Y., Lee, S. Y., et al. (2013). Relationships of coagulation factor XIII activity with cell-type and stage of non-small cell lung cancer. Yonsei Medical Journal, 54(6), 1394–1399.PubMedPubMedCentralCrossRef Lee, S. H., Suh, I. B., Lee, E. J., Hur, G. Y., Lee, S. Y., Lee, S. Y., et al. (2013). Relationships of coagulation factor XIII activity with cell-type and stage of non-small cell lung cancer. Yonsei Medical Journal, 54(6), 1394–1399.PubMedPubMedCentralCrossRef
191.
go back to reference Vairaktaris, E., Vassiliou, S., Yapijakis, C., Spyridonidou, S., Vylliotis, A., Derka, S., et al. (2007). Increased risk for oral cancer is associated with coagulation factor XIII but not with factor XII. Oncology Reports, 18, 1537–1543.PubMed Vairaktaris, E., Vassiliou, S., Yapijakis, C., Spyridonidou, S., Vylliotis, A., Derka, S., et al. (2007). Increased risk for oral cancer is associated with coagulation factor XIII but not with factor XII. Oncology Reports, 18, 1537–1543.PubMed
192.
go back to reference An, Y., Bekesova, S., Edwards, N., & Goldman, R. (2010). Peptides in low molecular weight fraction of serum associated with hepatocellular carcinoma. Disease Markers, 29, 11–20.PubMedPubMedCentralCrossRef An, Y., Bekesova, S., Edwards, N., & Goldman, R. (2010). Peptides in low molecular weight fraction of serum associated with hepatocellular carcinoma. Disease Markers, 29, 11–20.PubMedPubMedCentralCrossRef
193.
go back to reference Kiss, F., Hevessy, Z., Veszprémi, A., Katona, E., Kiss, C., Vereb, G., et al. (2006). Leukemic lymphoblasts, a novel expression site of coagulation factor XIII subunit A. Thrombosis and Haemostasis, 96, 176–182.PubMed Kiss, F., Hevessy, Z., Veszprémi, A., Katona, E., Kiss, C., Vereb, G., et al. (2006). Leukemic lymphoblasts, a novel expression site of coagulation factor XIII subunit A. Thrombosis and Haemostasis, 96, 176–182.PubMed
194.
go back to reference Andersson, C., Kvist, P. H., McElhinney, K., Baylis, R., Gram, L. K., Pelzer, H., et al. (2015). Factor XIII transglutaminase supports the resolution of mucosal damage in experimental colitis. Public Library of Science One, 10(6), e0128113.PubMedPubMedCentral Andersson, C., Kvist, P. H., McElhinney, K., Baylis, R., Gram, L. K., Pelzer, H., et al. (2015). Factor XIII transglutaminase supports the resolution of mucosal damage in experimental colitis. Public Library of Science One, 10(6), e0128113.PubMedPubMedCentral
195.
go back to reference Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.PubMedCrossRef Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.PubMedCrossRef
196.
go back to reference Helland, I., Klemensten, B., & Jorgensen, L. (1997). Addition of both platelets and thrombin in combination accelerates tumor cells to adhere to endothelial cells in vitro. In Vitro Cellular & Developmental Biology, 33, 182–186.CrossRef Helland, I., Klemensten, B., & Jorgensen, L. (1997). Addition of both platelets and thrombin in combination accelerates tumor cells to adhere to endothelial cells in vitro. In Vitro Cellular & Developmental Biology, 33, 182–186.CrossRef
197.
go back to reference Pilch, J., Habermann, R., & Felding-Habermann, B. (2002). Unique ability of integrin alpha(v)beta 3 to support tumor cell arrest under dynamic flow conditions. The Journal of Biological Chemistry, 277(24), 21930–21938.PubMedCrossRef Pilch, J., Habermann, R., & Felding-Habermann, B. (2002). Unique ability of integrin alpha(v)beta 3 to support tumor cell arrest under dynamic flow conditions. The Journal of Biological Chemistry, 277(24), 21930–21938.PubMedCrossRef
198.
go back to reference Chen, Y. Q., & Honn, K. V. (1993). Eicosanoid regulation of tumor cell-platelet and -endothelium interaction during arrest and extravasation. In S. Nigam, K. Honn, L. Barnett, & T. Walden Jr. (Eds.), Developments in oncology. Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury (Vol. 71, pp. 613–617). New York: Springer. Chen, Y. Q., & Honn, K. V. (1993). Eicosanoid regulation of tumor cell-platelet and -endothelium interaction during arrest and extravasation. In S. Nigam, K. Honn, L. Barnett, & T. Walden Jr. (Eds.), Developments in oncology. Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury (Vol. 71, pp. 613–617). New York: Springer.
199.
go back to reference Chen, Y. Q., Duniec, Z. M., Liu, B., Hagmann, W., Gao, X., Shimoji, K., et al. (1994). Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Research, 54(6), 1574–1579.PubMed Chen, Y. Q., Duniec, Z. M., Liu, B., Hagmann, W., Gao, X., Shimoji, K., et al. (1994). Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Research, 54(6), 1574–1579.PubMed
200.
go back to reference Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. AMA Archives of Pathology, 59(1), 26–34.PubMed Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. AMA Archives of Pathology, 59(1), 26–34.PubMed
201.
go back to reference Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef
202.
go back to reference Khuon, S., Liang, L., Dettman, R. W., Sporn, P. H., Wysolmerski, R. B., & Chew, T. L. (2010). Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. Journal of Cellular Science, 123(Pt 3), 431–440.CrossRef Khuon, S., Liang, L., Dettman, R. W., Sporn, P. H., Wysolmerski, R. B., & Chew, T. L. (2010). Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. Journal of Cellular Science, 123(Pt 3), 431–440.CrossRef
203.
go back to reference Mierke, C. T., Zitterbart, D. P., Kollmannsberger, P., Raupach, C., Schlotzer-Schrehardt, U., Goecke, T. W., et al. (2008). Breakdown of the endothelial barrier function in tumor cell transmigration. Biophysical Journal, 94, 2832–2846.PubMedCrossRef Mierke, C. T., Zitterbart, D. P., Kollmannsberger, P., Raupach, C., Schlotzer-Schrehardt, U., Goecke, T. W., et al. (2008). Breakdown of the endothelial barrier function in tumor cell transmigration. Biophysical Journal, 94, 2832–2846.PubMedCrossRef
204.
go back to reference Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121(Pt 13), 2115–2122.PubMedCrossRef Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121(Pt 13), 2115–2122.PubMedCrossRef
205.
go back to reference Dudek, S. M., & Garcia, J. G. (2001). Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology, 91, 1487–1500.PubMed Dudek, S. M., & Garcia, J. G. (2001). Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology, 91, 1487–1500.PubMed
206.
go back to reference Rabiet, M. J., Plantier, J. L., Rival, Y., Genoux, Y., Lampugnani, M. G., & Dejana, E. (1996). Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 488–496.PubMedCrossRef Rabiet, M. J., Plantier, J. L., Rival, Y., Genoux, Y., Lampugnani, M. G., & Dejana, E. (1996). Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 488–496.PubMedCrossRef
207.
go back to reference Vincent, P. A., Xiao, K., Buckley, K. M., & Kowalczyk, A. P. (2004). VE-cadherin: adhesion at arm’s length. American Journal o Physiology - Cell Physiology, 286(5), C987–997.CrossRef Vincent, P. A., Xiao, K., Buckley, K. M., & Kowalczyk, A. P. (2004). VE-cadherin: adhesion at arm’s length. American Journal o Physiology - Cell Physiology, 286(5), C987–997.CrossRef
208.
go back to reference Potter, M. D., Barbero, S., & Cheresh, D. A. (2005). Tyrosine phosphorylatio of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. Journal of Biological Chemistry, 280, 31906–31912.PubMedCrossRef Potter, M. D., Barbero, S., & Cheresh, D. A. (2005). Tyrosine phosphorylatio of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. Journal of Biological Chemistry, 280, 31906–31912.PubMedCrossRef
209.
go back to reference Sandoval, R., Malik, A. B., Minshall, R. D., Kouklis, P., Ellis, C. A., & Tiruppathi, C. (2001). Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. Journal of Physiology, 533(Pt 2), 433–445.PubMedPubMedCentralCrossRef Sandoval, R., Malik, A. B., Minshall, R. D., Kouklis, P., Ellis, C. A., & Tiruppathi, C. (2001). Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. Journal of Physiology, 533(Pt 2), 433–445.PubMedPubMedCentralCrossRef
210.
go back to reference Stockton, R. A., Schaefer, E., & Schwartz, M. A. (2004). p21-activated kinase regulates endothelial permeability through modulation of contractility. Journal of Biological Chemistry, 279(45), 46621–46630.PubMedCrossRef Stockton, R. A., Schaefer, E., & Schwartz, M. A. (2004). p21-activated kinase regulates endothelial permeability through modulation of contractility. Journal of Biological Chemistry, 279(45), 46621–46630.PubMedCrossRef
211.
go back to reference Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., & Williams, E. D. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cell Physiology, 213(2), 374–383.CrossRef Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., & Williams, E. D. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cell Physiology, 213(2), 374–383.CrossRef
212.
go back to reference Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed
213.
go back to reference Esumi, N., Fan, D., & Fidler, I. (1991). Inhibition of murine melanoma experimental metastasis by recombinant-desulfatohirudin, a highly specific thrombin inhibitor. Cancer Research, 51, 4549–4556.PubMed Esumi, N., Fan, D., & Fidler, I. (1991). Inhibition of murine melanoma experimental metastasis by recombinant-desulfatohirudin, a highly specific thrombin inhibitor. Cancer Research, 51, 4549–4556.PubMed
214.
go back to reference Rousseau, A., Van Dreden, P., Mbemba, E., Elalamy, I., Larsen, A., & Gerotziafas, G. T. (2015). Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thrombosis Research, 136(6), 1273–1279.PubMedCrossRef Rousseau, A., Van Dreden, P., Mbemba, E., Elalamy, I., Larsen, A., & Gerotziafas, G. T. (2015). Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thrombosis Research, 136(6), 1273–1279.PubMedCrossRef
215.
go back to reference Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedPubMedCentralCrossRef Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68, 9078–9086.PubMedPubMedCentralCrossRef
216.
go back to reference Cowan, C., Muraleedharan, C. K., O’Donnell, J. J., Singh, P. K., Lum, H., Kumar, A., et al. (2014). MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Investigative Ophthalmology and Visual Science, 55(8), 4944–4951.PubMedCrossRef Cowan, C., Muraleedharan, C. K., O’Donnell, J. J., Singh, P. K., Lum, H., Kumar, A., et al. (2014). MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Investigative Ophthalmology and Visual Science, 55(8), 4944–4951.PubMedCrossRef
217.
go back to reference Saleiban, A., Faxälv, L., Claesson, K., Jönsson, J. I., & Osman, A. (2014). miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells. Pigment Cell & Melanoma Research, 27(3), 431–441.CrossRef Saleiban, A., Faxälv, L., Claesson, K., Jönsson, J. I., & Osman, A. (2014). miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells. Pigment Cell & Melanoma Research, 27(3), 431–441.CrossRef
218.
go back to reference Wang, H. J., Huang, Y. L., Shih, Y. Y., Wu, H. Y., Peng, C. T., & Lo, W. Y. (2014). MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators of Inflammation. doi:10.1155/2014/379537. Wang, H. J., Huang, Y. L., Shih, Y. Y., Wu, H. Y., Peng, C. T., & Lo, W. Y. (2014). MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators of Inflammation. doi:10.​1155/​2014/​379537.
219.
go back to reference Sun, X., Lin, J., He, S., Franck, G., Wara, A., Icli, B., Li, D., & Feinberg, M. W. (2015). MicroRNA-181b inhibits thrombin-mediated activation of endothelial cells and arterial thrombosis by targeting card10. Circulation, 132, A12208. Sun, X., Lin, J., He, S., Franck, G., Wara, A., Icli, B., Li, D., & Feinberg, M. W. (2015). MicroRNA-181b inhibits thrombin-mediated activation of endothelial cells and arterial thrombosis by targeting card10. Circulation, 132, A12208.
220.
go back to reference Peng, C. T., Lo, W. Y., & Wang, H. J. (2014). High glucose/thrombin-induced endothelial inflammation via microRNA-146a and Nox4 regulation. Blood, 124(21), 5952–5952. Peng, C. T., Lo, W. Y., & Wang, H. J. (2014). High glucose/thrombin-induced endothelial inflammation via microRNA-146a and Nox4 regulation. Blood, 124(21), 5952–5952.
Metadata
Title
Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis
Authors
Marek Z. Wojtukiewicz
Dominika Hempel
Ewa Sierko
Stephanie C. Tucker
Kenneth V. Honn
Publication date
01-06-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9626-0

Other articles of this Issue 2/2016

Cancer and Metastasis Reviews 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine