Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019

01-12-2019 | Magnetic Resonance Imaging | Research Article

A high duty-cycle, multi-channel, power amplifier for high-resolution radiofrequency encoded magnetic resonance imaging

Authors: Aaron R. Purchase, Tadeusz Pałasz, Hongwei Sun, Jonathan C. Sharp, Boguslaw Tomanek

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2019

Login to get access

Abstract

Objective

A radiofrequency (RF) power amplifier is an essential component of any magnetic resonance imaging (MRI) system. Unfortunately, no commercial amplifier exists to fulfill the needs of the transmit array spatial encoding (TRASE) MRI technique, requiring high duty cycle, high RF output power and independently controlled multi-channel capability. Thus, an RF amplifier for TRASE MRI is needed.

Materials and methods

A dual-channel RF power amplifier dedicated for TRASE at 0.22 T (9.27 MHz) was designed and constructed using commercially available components. The amplifier was tested on the bench and used a 0.22 T MRI system with a twisted solenoid and saddle RF coil combination capable of a single-axis TRASE.

Results

The amplifier is capable of sequential, dual-channel operation up to 50% duty cycle, 1 kW peak output and highly stable 100 μs RF pulse trains. High spatial resolution one-dimensional TRASE was obtained with the power amplifier to demonstrate its capability.

Conclusion

The constructed amplifier is the first prototype that meets the requirements of TRASE rectifying limitations of duty cycle and timing presented by commercial RF amplifiers. The amplifier makes possible future high resolution in vivo TRASE MRI.
Literature
1.
go back to reference Brown RW, Cheng YN, Haacke EM, Thompson MR, Venkatesan R (2014) Multi-dimensional fourier imaging and slice selection, Chap 10. In: Magnetic resonance imaging: physical principles and sequence design, 2nd edn. Wiley Blackwell, Hoboken, pp 166–174 Brown RW, Cheng YN, Haacke EM, Thompson MR,  Venkatesan R (2014) Multi-dimensional fourier imaging and slice selection, Chap 10. In: Magnetic resonance imaging: physical principles and sequence design, 2nd edn. Wiley Blackwell, Hoboken, pp 166–174
2.
go back to reference Sharp JC, King SB, Deng Q, Volotovskyy V, Tomanek B (2013) High-resolution MRI encoding using radiofrequency phase gradients. NMR Biomed 26:1602–1607CrossRef Sharp JC, King SB, Deng Q, Volotovskyy V, Tomanek B (2013) High-resolution MRI encoding using radiofrequency phase gradients. NMR Biomed 26:1602–1607CrossRef
3.
go back to reference Deng Q, King SB, Volotovskyy V, Tomanek B, Sharp JC (2013) B1 transmit phase gradient coil for single-axis TRASE RF encoding. Magn Reson Imaging 31:891–899CrossRef Deng Q, King SB, Volotovskyy V, Tomanek B, Sharp JC (2013) B1 transmit phase gradient coil for single-axis TRASE RF encoding. Magn Reson Imaging 31:891–899CrossRef
4.
go back to reference Sharp JC, King SB (2010) MRI using radiofrequency magnetic field phase gradients. Magn Reson Med 63:151–161PubMed Sharp JC, King SB (2010) MRI using radiofrequency magnetic field phase gradients. Magn Reson Med 63:151–161PubMed
8.
go back to reference Ivanov EN, Pogromsky AY, Van Den Brink JS, Rooda JE (2010) Optimization of duty cycles for MRI scanners. Concepts Magn Reson Part B (Magn Reson Eng) 37B(3):180–192CrossRef Ivanov EN, Pogromsky AY, Van Den Brink JS, Rooda JE (2010) Optimization of duty cycles for MRI scanners. Concepts Magn Reson Part B (Magn Reson Eng) 37B(3):180–192CrossRef
9.
go back to reference Goldman M, Johannesson H, Axelsson O, Karlsson M (2006) Design and implementation of 13C hyper polarization from para-hydrogen, for new MRI contrast agents. C.R. Chimie 9:357–363CrossRef Goldman M, Johannesson H, Axelsson O, Karlsson M (2006) Design and implementation of 13C hyper polarization from para-hydrogen, for new MRI contrast agents. C.R. Chimie 9:357–363CrossRef
10.
go back to reference Holland GN, Heysmond E (1979) A solid state high-power RF amplifier for pulsed NMR. J Phys E Sci Instrum 12:480CrossRef Holland GN, Heysmond E (1979) A solid state high-power RF amplifier for pulsed NMR. J Phys E Sci Instrum 12:480CrossRef
11.
go back to reference Horowitz P, Hill W (2015) Foundations, Chap 1. In: The art of electronics, 3rd edn. Cambridge University Press, New York, pp 26–27 Horowitz P, Hill W (2015) Foundations, Chap 1. In: The art of electronics, 3rd edn. Cambridge University Press, New York, pp 26–27
16.
go back to reference Sharkov SB, Krasnov AA, Polikhov SA (2016) 100 kW very compact pulsed solid-state RF amplifier: development and tests. In: Proceedings of NAPA2016, Chicago, IL, USA. ISBN: 978-3-95450-180-9 Sharkov SB, Krasnov AA, Polikhov SA (2016) 100 kW very compact pulsed solid-state RF amplifier: development and tests. In: Proceedings of NAPA2016, Chicago, IL, USA. ISBN: 978-3-95450-180-9
17.
go back to reference Sharp JC, Yin D, Bernhardt RH, Deng Q, Procca AE, Tyson RL, Lo K, Tomanek B (2009) The integration of real and virtual magnetic resonance imaging experiments in a single instrument. Am Inst Phys Rev Sci Instrum 80:093709CrossRef Sharp JC, Yin D, Bernhardt RH, Deng Q, Procca AE, Tyson RL, Lo K, Tomanek B (2009) The integration of real and virtual magnetic resonance imaging experiments in a single instrument. Am Inst Phys Rev Sci Instrum 80:093709CrossRef
18.
go back to reference Walker J (2012) Amplifier measurements, Chap 12. In: Handbook of RF and microwave power amplifiers, 3rd edn. Cambridge University Press, New York, pp 636. ISBN: 978-0-521-76010-2 (sec. 12.7) Walker J (2012) Amplifier measurements, Chap 12. In: Handbook of RF and microwave power amplifiers, 3rd edn. Cambridge University Press, New York, pp 636. ISBN: 978-0-521-76010-2 (sec. 12.7)
19.
go back to reference Bowick C, Byler J, Ajluni C (2008) RF circuit design. Elsevier Inc., Amsterdam, pp 174–176 Bowick C, Byler J, Ajluni C (2008) RF circuit design. Elsevier Inc., Amsterdam, pp 174–176
20.
go back to reference Medical electrical equipment (2005) IEC 60601-1. International Standard, 3rd edn, 2005–12. Reference number: IEC 60601-1:2005(E) Medical electrical equipment (2005) IEC 60601-1. International Standard, 3rd edn, 2005–12. Reference number: IEC 60601-1:2005(E)
21.
go back to reference Sarty G, Kontulainen S, Baxter-Jones A, Pierson R, Turek K, Obenaus A, Tomanek B, Sharp J, Scott A, Piche L (2012) Compact MRI for astronaut physiological research and medical diagnosis. In: Com Dev, AIAA SPACE conference & exposition, Pasadena, California Sarty G, Kontulainen S, Baxter-Jones A, Pierson R, Turek K, Obenaus A, Tomanek B, Sharp J, Scott A, Piche L (2012) Compact MRI for astronaut physiological research and medical diagnosis. In: Com Dev, AIAA SPACE conference & exposition, Pasadena, California
22.
go back to reference Sarty GE, Obenaus A (2012) Magnetic resonance imaging of astronauts on the international space station and into the solar system. Can Aeronaut Space J 58:60–68CrossRef Sarty GE, Obenaus A (2012) Magnetic resonance imaging of astronauts on the international space station and into the solar system. Can Aeronaut Space J 58:60–68CrossRef
23.
go back to reference Sarty GE, Vidarsson L (2018) Natural slice encoded magnetic resonance imaging. Magn Reson Imaging 46:47–55CrossRef Sarty GE, Vidarsson L (2018) Natural slice encoded magnetic resonance imaging. Magn Reson Imaging 46:47–55CrossRef
24.
go back to reference ANALOGIC: The World Resource for Health and Security Technology (2002) AN8110 RF Amplifier Installation Manual. Analogic Corporation Medical Imaging Division, Insert no. 16-00070 REV. 02., Binder no. 28-002011, Publication no. 10-62836-01 ANALOGIC: The World Resource for Health and Security Technology (2002) AN8110 RF Amplifier Installation Manual. Analogic Corporation Medical Imaging Division, Insert no. 16-00070 REV. 02., Binder no. 28-002011, Publication no. 10-62836-01
25.
go back to reference TOMCO Technologies (2002) 500 W Pulsed RF Amplifier Model BT00 BETA Operation Manual. Tomco Electronics Pty Ltd, Document No. T001591 Issue A, June 25 TOMCO Technologies (2002) 500 W Pulsed RF Amplifier Model BT00 BETA Operation Manual. Tomco Electronics Pty Ltd, Document No. T001591 Issue A, June 25
30.
go back to reference ANALOGIC: The World Resource for Health and Security Technology (2016) 6 kW RF Power Amplifier for MRI Scanner Applications, Analogic Medical Imaging Group., ANALOGIC Corporation, Bulletin No. 16-00115 REV 1 3/04, Printed in USA ANALOGIC: The World Resource for Health and Security Technology (2016) 6 kW RF Power Amplifier for MRI Scanner Applications, Analogic Medical Imaging Group., ANALOGIC Corporation, Bulletin No. 16-00115 REV 1 3/04, Printed in USA
31.
go back to reference Qian D, El-Sharkawy AM, Bottomley PA, Edelstein WA (2013) An RF dosimeter for independent SAR measurement in MRI scanners. Med Phys 40(12):122303CrossRef Qian D, El-Sharkawy AM, Bottomley PA, Edelstein WA (2013) An RF dosimeter for independent SAR measurement in MRI scanners. Med Phys 40(12):122303CrossRef
34.
go back to reference Pozar DM (2012) Noise and nonlinear distortion, Chap 10. In: Microwave engineering, 2nd edn. Wiley, Hoboken, p 512 (sec. 10.3) Pozar DM (2012) Noise and nonlinear distortion, Chap 10. In: Microwave engineering, 2nd edn. Wiley, Hoboken, p 512 (sec. 10.3)
Metadata
Title
A high duty-cycle, multi-channel, power amplifier for high-resolution radiofrequency encoded magnetic resonance imaging
Authors
Aaron R. Purchase
Tadeusz Pałasz
Hongwei Sun
Jonathan C. Sharp
Boguslaw Tomanek
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00763-1

Other articles of this Issue 6/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019 Go to the issue