Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019

Open Access 01-12-2019 | Angiography | Research Article

The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling

Authors: Eleanor S. K. Berry, Peter Jezzard, Thomas W. Okell

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2019

Login to get access

Abstract

Objectives

To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire.

Materials and methods

Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested.

Results

The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13).

Conclusion

Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaufmann TJ, Kallmes DF (2008) Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? Am J Roentgenol 190:1435–1437CrossRef Kaufmann TJ, Kallmes DF (2008) Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? Am J Roentgenol 190:1435–1437CrossRef
2.
go back to reference Lindner T, Jensen-Kondering U, van Osch MJP, Jansen O, Helle M (2015) 3D time-resolved vessel-selective angiography based on pseudo-continuous arterial spin labeling. Magn Reson Imaging 33:840–846PubMedCrossRef Lindner T, Jensen-Kondering U, van Osch MJP, Jansen O, Helle M (2015) 3D time-resolved vessel-selective angiography based on pseudo-continuous arterial spin labeling. Magn Reson Imaging 33:840–846PubMedCrossRef
3.
go back to reference Nakamura M, Yoneyama M, Tabuchi T, Takemura A, Obara M, Tatsuno S, Sawano S (2013) Vessel-selective, non-contrast enhanced, time-resolved MR angiography with vessel-selective arterial spin labeling technique (CINEMA-SELECT) in intracranial arteries. Radiol Phys Technol 6:327–334PubMedCrossRef Nakamura M, Yoneyama M, Tabuchi T, Takemura A, Obara M, Tatsuno S, Sawano S (2013) Vessel-selective, non-contrast enhanced, time-resolved MR angiography with vessel-selective arterial spin labeling technique (CINEMA-SELECT) in intracranial arteries. Radiol Phys Technol 6:327–334PubMedCrossRef
4.
go back to reference Okell TW, Chappell MA, Woolrich MW, Günther M, Feinberg DA, Jezzard P (2010) Vessel-encoded dynamic magnetic resonance angiography using arterial spin labeling. Magn Reson Med 64:698–706PubMedCrossRef Okell TW, Chappell MA, Woolrich MW, Günther M, Feinberg DA, Jezzard P (2010) Vessel-encoded dynamic magnetic resonance angiography using arterial spin labeling. Magn Reson Med 64:698–706PubMedCrossRef
5.
go back to reference Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257:507–515PubMedPubMedCentralCrossRef Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257:507–515PubMedPubMedCentralCrossRef
6.
go back to reference Jensen-Kondering U, Lindner T, Van Osch MJP, Rohr A, Jansen O, Helle M (2015) Superselective pseudo-continuous arterial spin labeling angiography. Eur J Radiol 84:1758–1767PubMedCrossRef Jensen-Kondering U, Lindner T, Van Osch MJP, Rohr A, Jansen O, Helle M (2015) Superselective pseudo-continuous arterial spin labeling angiography. Eur J Radiol 84:1758–1767PubMedCrossRef
7.
go back to reference Wong EC (2007) Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 58:1086–1091PubMedCrossRef Wong EC (2007) Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 58:1086–1091PubMedCrossRef
8.
go back to reference Dai W, Robson PM, Shankaranarayanan A, Alsop DC (2010) Modified pulsed continuous arterial spin labeling for labeling of a single artery. Magn Reson Med 64:975–982PubMedPubMedCentralCrossRef Dai W, Robson PM, Shankaranarayanan A, Alsop DC (2010) Modified pulsed continuous arterial spin labeling for labeling of a single artery. Magn Reson Med 64:975–982PubMedPubMedCentralCrossRef
9.
go back to reference Helle M, Norris DG, Rüfer S, Alfke K, Jansen O, van Osch MJP (2010) Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 64:777–786PubMedCrossRef Helle M, Norris DG, Rüfer S, Alfke K, Jansen O, van Osch MJP (2010) Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 64:777–786PubMedCrossRef
10.
go back to reference Okell TW, Chappell MA, Kelly ME, Jezzard P (2013) Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab 33:1716–1724PubMedPubMedCentralCrossRef Okell TW, Chappell MA, Kelly ME, Jezzard P (2013) Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab 33:1716–1724PubMedPubMedCentralCrossRef
11.
go back to reference Okell TW, Schmitt P, Bi X, Chappell MA, Tijssen RHN, Sheerin F, Miller KL, Jezzard P (2016) Optimization of 4D vessel-selective arterial spin labeling angiography using balanced steady-state free precession and vessel-encoding. NMR Biomed 29:776–786PubMedPubMedCentralCrossRef Okell TW, Schmitt P, Bi X, Chappell MA, Tijssen RHN, Sheerin F, Miller KL, Jezzard P (2016) Optimization of 4D vessel-selective arterial spin labeling angiography using balanced steady-state free precession and vessel-encoding. NMR Biomed 29:776–786PubMedPubMedCentralCrossRef
12.
go back to reference Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418PubMedCrossRef Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418PubMedCrossRef
13.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef
14.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef
16.
go back to reference Mistretta CA (2009) Undersampled radial MR acquisition and highly constrained back projection (HYPR) reconstruction: potential medical imaging applications in the post-Nyquist era. J Magn Reson Imaging 29:501–516PubMedCrossRef Mistretta CA (2009) Undersampled radial MR acquisition and highly constrained back projection (HYPR) reconstruction: potential medical imaging applications in the post-Nyquist era. J Magn Reson Imaging 29:501–516PubMedCrossRef
17.
go back to reference Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK, Mistretta CA (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43:91–101PubMedCrossRef Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK, Mistretta CA (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43:91–101PubMedCrossRef
18.
go back to reference Wu H, Block WF, Turski PA, Mistretta CA, Rusinak DJ, Wu Y, Johnson KM (2014) Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 39:1320–1326PubMedCrossRef Wu H, Block WF, Turski PA, Mistretta CA, Rusinak DJ, Wu Y, Johnson KM (2014) Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 39:1320–1326PubMedCrossRef
19.
go back to reference Koktzoglou I, Meyer JR, Ankenbrandt WJ, Giri S, Piccini D, Zenge MO, Flanagan O, Desai T, Gupta N, Edelman RR (2015) Nonenhanced arterial spin labeled carotid MR angiography using three-dimensional radial balanced steady-state free precession imaging. J Magn Reson Imaging 41:1150–1156PubMedCrossRef Koktzoglou I, Meyer JR, Ankenbrandt WJ, Giri S, Piccini D, Zenge MO, Flanagan O, Desai T, Gupta N, Edelman RR (2015) Nonenhanced arterial spin labeled carotid MR angiography using three-dimensional radial balanced steady-state free precession imaging. J Magn Reson Imaging 41:1150–1156PubMedCrossRef
20.
go back to reference Wu H, Block WF, Turski PA, Mistretta CA, Johnson KM (2013) Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med 69:708–715PubMedCrossRef Wu H, Block WF, Turski PA, Mistretta CA, Johnson KM (2013) Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med 69:708–715PubMedCrossRef
21.
go back to reference Song HK, Yan L, Smith RX, Xue Y, Rapacchi S, Srinivasan S, Ennis DB, Hu P, Pouratian N, Wang DJJ (2014) Noncontrast enhanced four-dimensional dynamic MRA with golden angle radial acquisition and K-space weighted image contrast (KWIC) reconstruction. Magn Reson Med 72:1541–1551PubMedCrossRef Song HK, Yan L, Smith RX, Xue Y, Rapacchi S, Srinivasan S, Ennis DB, Hu P, Pouratian N, Wang DJJ (2014) Noncontrast enhanced four-dimensional dynamic MRA with golden angle radial acquisition and K-space weighted image contrast (KWIC) reconstruction. Magn Reson Med 72:1541–1551PubMedCrossRef
22.
go back to reference Koktzoglou I, Giri S, Piccini D, Grodzki DM, Flanagan O, Murphy IG, Gupta N, Collins JD, Edelman RR (2016) Arterial spin labeled carotid MR angiography: a phantom study examining the impact of technical and hemodynamic factors. Magn Reson Med 75:295–301PubMedCrossRef Koktzoglou I, Giri S, Piccini D, Grodzki DM, Flanagan O, Murphy IG, Gupta N, Collins JD, Edelman RR (2016) Arterial spin labeled carotid MR angiography: a phantom study examining the impact of technical and hemodynamic factors. Magn Reson Med 75:295–301PubMedCrossRef
23.
go back to reference Cong F, Zhuo Y, Yu S, Zhang X, Miao X, An J, Wang S, Cao Y, Zhang Y, Song HK, Wang DJJ, Yan L (2018) Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7 T: a feasibility study. J Magn Reson Imaging 48:111–120PubMedCrossRef Cong F, Zhuo Y, Yu S, Zhang X, Miao X, An J, Wang S, Cao Y, Zhang Y, Song HK, Wang DJJ, Yan L (2018) Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7 T: a feasibility study. J Magn Reson Imaging 48:111–120PubMedCrossRef
24.
go back to reference Bieri O, Scheffler K (2005) Flow compensation in balanced SSFP sequences. Magn Reson Med 54:901–907PubMedCrossRef Bieri O, Scheffler K (2005) Flow compensation in balanced SSFP sequences. Magn Reson Med 54:901–907PubMedCrossRef
25.
go back to reference Berry ESK, Jezzard P, Okell TW (2016) Vessel-selective time-resolved cerebral angiograms in less than one minute. In: Proceedings of 24th scientific meeting, ISMRM. Singapore, p 2690 Berry ESK, Jezzard P, Okell TW (2016) Vessel-selective time-resolved cerebral angiograms in less than one minute. In: Proceedings of 24th scientific meeting, ISMRM. Singapore, p 2690
26.
go back to reference Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 1:647–662CrossRef Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 1:647–662CrossRef
27.
go back to reference Nielles-Vallespin S, Weber M-A, Bock M, Bongers A, Speier P, Combs SE, Wöhrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57:74–81PubMedCrossRef Nielles-Vallespin S, Weber M-A, Bock M, Bongers A, Speier P, Combs SE, Wöhrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57:74–81PubMedCrossRef
28.
go back to reference Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans Signal Process 51:560–574CrossRef Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans Signal Process 51:560–574CrossRef
30.
go back to reference Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48:297–305PubMedCrossRef Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48:297–305PubMedCrossRef
31.
go back to reference Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225PubMedCrossRef Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225PubMedCrossRef
32.
go back to reference Berry ESK, Jezzard P, Okell TW (2015) An optimized encoding scheme for planning vessel-encoded pseudocontinuous arterial spin labeling. Magn Reson Med 74:1248–1256PubMedCrossRef Berry ESK, Jezzard P, Okell TW (2015) An optimized encoding scheme for planning vessel-encoded pseudocontinuous arterial spin labeling. Magn Reson Med 74:1248–1256PubMedCrossRef
33.
go back to reference Berry ESK, Jezzard P, Okell TW (2019) Off-resonance correction for pseudo-continuous arterial spin labeling using the optimized encoding scheme. Neuroimage 199:304–312PubMedCrossRef Berry ESK, Jezzard P, Okell TW (2019) Off-resonance correction for pseudo-continuous arterial spin labeling using the optimized encoding scheme. Neuroimage 199:304–312PubMedCrossRef
34.
go back to reference Wong EC, Guo J (2012) Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. Magn Reson Mater Phy Biol Med 25:95–101CrossRef Wong EC, Guo J (2012) Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. Magn Reson Mater Phy Biol Med 25:95–101CrossRef
35.
go back to reference Yan L, Wang S, Zhuo Y, Wolf RL, Stiefel MF, An J, Ye Y, Zhang Q, Melhem ER, Wang DJJ (2010) Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology 256:270–279PubMedPubMedCentralCrossRef Yan L, Wang S, Zhuo Y, Wolf RL, Stiefel MF, An J, Ye Y, Zhang Q, Melhem ER, Wang DJJ (2010) Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology 256:270–279PubMedPubMedCentralCrossRef
36.
go back to reference Yan L, Salamon N, Wang DJJ (2014) Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med 71:551–560PubMedPubMedCentralCrossRef Yan L, Salamon N, Wang DJJ (2014) Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med 71:551–560PubMedPubMedCentralCrossRef
37.
go back to reference Okell TW, Chappell MA, Schulz UG, Jezzard P (2012) A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 68:969–979PubMedPubMedCentralCrossRef Okell TW, Chappell MA, Schulz UG, Jezzard P (2012) A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. Magn Reson Med 68:969–979PubMedPubMedCentralCrossRef
38.
go back to reference Chappell MA, Okell TW, Payne SJ, Jezzard P, Woolrich MW (2012) A fast analysis method for non-invasive imaging of blood flow in individual cerebral arteries using vessel-encoded arterial spin labelling angiography. Med Image Anal 16:831–839PubMedPubMedCentralCrossRef Chappell MA, Okell TW, Payne SJ, Jezzard P, Woolrich MW (2012) A fast analysis method for non-invasive imaging of blood flow in individual cerebral arteries using vessel-encoded arterial spin labelling angiography. Med Image Anal 16:831–839PubMedPubMedCentralCrossRef
39.
go back to reference MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P (2010) Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 63:641–647PubMedCrossRef MacIntosh BJ, Filippini N, Chappell MA, Woolrich MW, Mackay CE, Jezzard P (2010) Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med 63:641–647PubMedCrossRef
40.
go back to reference Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60:895–907PubMedPubMedCentralCrossRef Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60:895–907PubMedPubMedCentralCrossRef
41.
go back to reference Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46:638–651PubMedCrossRef Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46:638–651PubMedCrossRef
42.
go back to reference Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224PubMedCrossRef Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224PubMedCrossRef
43.
go back to reference Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, Van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in dementia. Magn Reson Med 73:102–116PubMedCrossRef Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, Van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in dementia. Magn Reson Med 73:102–116PubMedCrossRef
44.
go back to reference Gevers S, Bokkers RP, Hendrikse J, Majoie CB, Kies DA, Teeuwisse WM, Nederveen AJ, van Osch MJ (2012) Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol 33:E21–25PubMedCrossRefPubMedCentral Gevers S, Bokkers RP, Hendrikse J, Majoie CB, Kies DA, Teeuwisse WM, Nederveen AJ, van Osch MJ (2012) Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol 33:E21–25PubMedCrossRefPubMedCentral
45.
go back to reference Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRef
47.
go back to reference Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden ratio for time-resolved MRI. IEEE Trans Med Imaging 26:68–76PubMedCrossRef Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden ratio for time-resolved MRI. IEEE Trans Med Imaging 26:68–76PubMedCrossRef
48.
go back to reference Chan RW, Ramsay EA, Cunningham CH, Plewes DB (2009) Temporal stability of adaptive 3D radial MRI using multidimensional golden means. Magn Reson Med 61:354–363PubMedCrossRef Chan RW, Ramsay EA, Cunningham CH, Plewes DB (2009) Temporal stability of adaptive 3D radial MRI using multidimensional golden means. Magn Reson Med 61:354–363PubMedCrossRef
Metadata
Title
The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling
Authors
Eleanor S. K. Berry
Peter Jezzard
Thomas W. Okell
Publication date
01-12-2019
Publisher
Springer International Publishing
Keyword
Angiography
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00771-1

Other articles of this Issue 6/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019 Go to the issue