Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019

01-12-2019 | Research Article

Inductive measurement and encoding of k-space trajectories in MR raw data

Authors: Jan Ole Pedersen, Christian G. Hanson, Rong Xue, Lars G. Hanson

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2019

Login to get access

Abstract

Objectives

 The objective of this study was to concurrently acquire an inductive k-space trajectory measure and corresponding imaging data by an MR scanner.

Materials and methods

 1D gradient measures were obtained by digital integration, regularized using measured gradient coil currents and recorded individually by the scanner concurrently with raw MR data. Gradient measures were frequency modulated into an RF signal receivable by the scanner, yielding a k-space trajectory measure from the cumulative phase of the acquired data. Generation of the gradient measure and frequency modulation was performed by previously developed custom, versatile circuitry.

Results

 For a normal echo planar imaging (EPI) sequence, the acquired k-space trajectory measure yielded slightly improved image quality compared to that obtained from using the scanner’s estimated eddy current-compensated k-space trajectory. For a spiral trajectory, the regularized inductive k-space trajectory measure lead to a 76% decrease in the root-mean-square error of the reconstructed image.

Discussion

 While the proof-of-concept experiments show potential for further improvement, the feasibility of inductively measuring k-space trajectories and increasing the precision through regularization was demonstrated. The approach may offer an inexpensive method to acquire k-space trajectories concurrently with scanning.
Literature
1.
go back to reference Barmet C, Zanche ND, Pruessmann KP (2008) Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 60(1):187–197CrossRef Barmet C, Zanche ND, Pruessmann KP (2008) Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 60(1):187–197CrossRef
2.
go back to reference Dietrich BE, Brunner DO, Wilm BJ, Barmet C, Gross S, Kasper L, Haeberlin M, Schmid T, Vannesjo SJ, Pruessmann KP (2016) A field camera for MR sequence monitoring and system analysis. Magn Reson Med 75(4):1831–1840CrossRef Dietrich BE, Brunner DO, Wilm BJ, Barmet C, Gross S, Kasper L, Haeberlin M, Schmid T, Vannesjo SJ, Pruessmann KP (2016) A field camera for MR sequence monitoring and system analysis. Magn Reson Med 75(4):1831–1840CrossRef
3.
go back to reference Kasper L, Bollmann S, Vannesjo SJ, Gross S, Haeberlin M, Dietrich BE, Pruessmann KP (2015) Monitoring, analysis, and correction of magnetic field fluctuations in echo planar imaging time series. Magn Reson Med 74(2):396–409CrossRef Kasper L, Bollmann S, Vannesjo SJ, Gross S, Haeberlin M, Dietrich BE, Pruessmann KP (2015) Monitoring, analysis, and correction of magnetic field fluctuations in echo planar imaging time series. Magn Reson Med 74(2):396–409CrossRef
4.
go back to reference Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRef Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRef
5.
go back to reference Delattre BMA, Heidemann RM, Crowe LA, Vallée JP, Hyacinthe JN (2010) Spiral demystified. Magn Reson Imaging 28(6):862–881CrossRef Delattre BMA, Heidemann RM, Crowe LA, Vallée JP, Hyacinthe JN (2010) Spiral demystified. Magn Reson Imaging 28(6):862–881CrossRef
6.
go back to reference Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 132(1):150–153CrossRef Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 132(1):150–153CrossRef
7.
go back to reference Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB (1997) A method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 38(3):492–496CrossRef Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB (1997) A method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 38(3):492–496CrossRef
8.
go back to reference Onodera T, Matsui S, Sekihara K, Kohno H (1987) A method of measuring field-gradient modulation shapes. Application to high-speed NMR spectroscopic imaging. J Phys E Sci Inst 20(4):416–419CrossRef Onodera T, Matsui S, Sekihara K, Kohno H (1987) A method of measuring field-gradient modulation shapes. Application to high-speed NMR spectroscopic imaging. J Phys E Sci Inst 20(4):416–419CrossRef
9.
go back to reference Addy NO, Wu HH, Nishimura DG (2012) Simple method for MR gradient system characterization and k-space trajectory estimation. Magn Reson Med 68(1):120–129CrossRef Addy NO, Wu HH, Nishimura DG (2012) Simple method for MR gradient system characterization and k-space trajectory estimation. Magn Reson Med 68(1):120–129CrossRef
10.
go back to reference Campbell-Washburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS (2016) Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med 75(6):2278–2285CrossRef Campbell-Washburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS (2016) Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med 75(6):2278–2285CrossRef
11.
go back to reference Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP (2013) Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med 69(2):583–593CrossRef Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP (2013) Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med 69(2):583–593CrossRef
12.
go back to reference Brunner DO, Dietrich BE, Cavusoglu M, Wilm BJ, Schmid T, Gross S, Barmet C, Pruessmann KP (2016) Concurrent recording of RF pulses and gradient fields—comprehensive field monitoring for MRI. NMR Biomed 29(9):1162–1172CrossRef Brunner DO, Dietrich BE, Cavusoglu M, Wilm BJ, Schmid T, Gross S, Barmet C, Pruessmann KP (2016) Concurrent recording of RF pulses and gradient fields—comprehensive field monitoring for MRI. NMR Biomed 29(9):1162–1172CrossRef
13.
go back to reference Vannesjo SJ, Dietrich BE, Pavan M, Brunner DO, Wilm BJ, Barmet C, Pruessmann KP (2014) Field camera measurements of gradient and shim impulse responses using frequency sweeps. Magn Reson Med 72(2):570–583CrossRef Vannesjo SJ, Dietrich BE, Pavan M, Brunner DO, Wilm BJ, Barmet C, Pruessmann KP (2014) Field camera measurements of gradient and shim impulse responses using frequency sweeps. Magn Reson Med 72(2):570–583CrossRef
14.
go back to reference Barmet C, De Zanche N, Wilm BJ, Pruessmann KP (2009) A transmit/receive system for magnetic field monitoring of in vivo MRI. Magn Reson Med 62(1):269–276CrossRef Barmet C, De Zanche N, Wilm BJ, Pruessmann KP (2009) A transmit/receive system for magnetic field monitoring of in vivo MRI. Magn Reson Med 62(1):269–276CrossRef
15.
go back to reference Senaj V, Guillot G, Darrasse L (1998) Inductive measurement of magnetic field gradients for magnetic resonance imaging. Rev Sci Inst 69(6):2400–2405CrossRef Senaj V, Guillot G, Darrasse L (1998) Inductive measurement of magnetic field gradients for magnetic resonance imaging. Rev Sci Inst 69(6):2400–2405CrossRef
16.
go back to reference D’Antona G, Lazzaroni M, Ottoboni R, Svelto C (2003) AC current-to-voltage transducer for industrial application. In: Instrumentation and measurement technology: 2003 IEEE conference, pp 1185–1190 D’Antona G, Lazzaroni M, Ottoboni R, Svelto C (2003) AC current-to-voltage transducer for industrial application. In: Instrumentation and measurement technology: 2003 IEEE conference, pp 1185–1190
17.
go back to reference Hanson LG, Lund TE, Hanson CG (2007) Encoding of electrophysiology and other signals in MR images. J Magn Reson Imaging 25(5):1059–1066CrossRef Hanson LG, Lund TE, Hanson CG (2007) Encoding of electrophysiology and other signals in MR images. J Magn Reson Imaging 25(5):1059–1066CrossRef
18.
go back to reference Pedersen JO, Hanson CG, Xue R, Hanson LG (2018) General purpose electronics for real-time processing and encoding of non-MR data in MR acquisitions. Concepts Magn Reson Part B Magn Reson Eng 48(2):e21385CrossRef Pedersen JO, Hanson CG, Xue R, Hanson LG (2018) General purpose electronics for real-time processing and encoding of non-MR data in MR acquisitions. Concepts Magn Reson Part B Magn Reson Eng 48(2):e21385CrossRef
20.
go back to reference Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, Burlington Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, Burlington
21.
go back to reference Brodsky EK, Samsonov AA, Block WF (2009) Characterizing and correcting gradient errors in non-cartesian imaging: are gradient errors linear time-invariant (LTI)? Magn Reson Med 62(6):1466–1476CrossRef Brodsky EK, Samsonov AA, Block WF (2009) Characterizing and correcting gradient errors in non-cartesian imaging: are gradient errors linear time-invariant (LTI)? Magn Reson Med 62(6):1466–1476CrossRef
22.
go back to reference Spielman DM, Pauly JM (1995) Spiral imaging on a small-bore system at 4.7t. Magn Reson Med 34(4):580–585CrossRef Spielman DM, Pauly JM (1995) Spiral imaging on a small-bore system at 4.7t. Magn Reson Med 34(4):580–585CrossRef
23.
go back to reference Hiltunen J, Hari R, Jousmäki V, Müller K, Sepponen R, Joensuu R (2006) Quantification of mechanical vibration during diffusion tensor imaging at 3 T. NeuroImage 32(1):93–103CrossRef Hiltunen J, Hari R, Jousmäki V, Müller K, Sepponen R, Joensuu R (2006) Quantification of mechanical vibration during diffusion tensor imaging at 3 T. NeuroImage 32(1):93–103CrossRef
24.
go back to reference Greengard L, Lee JY (2004) Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev 46(3):443–454CrossRef Greengard L, Lee JY (2004) Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev 46(3):443–454CrossRef
25.
go back to reference Pipe JG, Menon P (1999) Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med 41(1):179–186CrossRef Pipe JG, Menon P (1999) Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med 41(1):179–186CrossRef
26.
go back to reference De Zanche N, Barmet C, Nordmeyer-Massner Ja, Pruessmann KP (2008) NMR Probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 60(1):176–186CrossRef De Zanche N, Barmet C, Nordmeyer-Massner Ja, Pruessmann KP (2008) NMR Probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 60(1):176–186CrossRef
27.
go back to reference Wilm BJ, Barmet C, Pavan M, Pruessmann KP (2011) Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn Reson Med 65(6):1690–1701CrossRef Wilm BJ, Barmet C, Pavan M, Pruessmann KP (2011) Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn Reson Med 65(6):1690–1701CrossRef
28.
go back to reference Andersen M, Hanson LG, Madsen KH, Wezel J, Boer V, Van Der Velden T, Van Osch MJ, Klomp D, Webb AG, Versluis MJ (2016) Measuring motion-induced B0-fluctuations in the brain using field probes. Magn Reson Med Andersen M, Hanson LG, Madsen KH, Wezel J, Boer V, Van Der Velden T, Van Osch MJ, Klomp D, Webb AG, Versluis MJ (2016) Measuring motion-induced B0-fluctuations in the brain using field probes. Magn Reson Med
29.
go back to reference Analog Devices; Inc (2016) AD9951 direct digital synthesize (data sheet. Rev, B) Analog Devices; Inc (2016) AD9951 direct digital synthesize (data sheet. Rev, B)
30.
go back to reference Nevo E (2003) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging. US patent 6,516,213 B1, 4 Feb 2003 Nevo E (2003) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging. US patent 6,516,213 B1, 4 Feb 2003
31.
go back to reference van Niekerk A, Meintjes E, van der Kouwe A (2019) A wireless radio frequency triggered acquisition device (WRAD) for self-synchronised measurements of the rate of change of the MRI gradient vector field for motion tracking. IEEE Trans Med Imaging 38(7):1610–1621CrossRef van Niekerk A, Meintjes E, van der Kouwe A (2019) A wireless radio frequency triggered acquisition device (WRAD) for self-synchronised measurements of the rate of change of the MRI gradient vector field for motion tracking. IEEE Trans Med Imaging 38(7):1610–1621CrossRef
Metadata
Title
Inductive measurement and encoding of k-space trajectories in MR raw data
Authors
Jan Ole Pedersen
Christian G. Hanson
Rong Xue
Lars G. Hanson
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00770-2

Other articles of this Issue 6/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019 Go to the issue