Skip to main content
Top
Published in: Journal of Neural Transmission 3/2019

Open Access 01-03-2019 | Frontotemporal Dementia | Neurology and Preclinical Neurological Studies - Review Article

Dementia spectrum disorders: lessons learnt from decades with PET research

Authors: Heather Wilson, Gennaro Pagano, Marios Politis

Published in: Journal of Neural Transmission | Issue 3/2019

Login to get access

Abstract

The dementia spectrum encompasses a range of disorders with complex diagnosis, pathophysiology and limited treatment options. Positron emission tomography (PET) imaging provides insights into specific neurodegenerative processes underlying dementia disorders in vivo. Here we focus on some of the most common dementias: Alzheimer’s disease, Parkinsonism dementias including Parkinson’s disease with dementia, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal syndrome, and frontotemporal lobe degeneration. PET tracers have been developed to target specific proteinopathies (amyloid, tau and α-synuclein), glucose metabolism, cholinergic system and neuroinflammation. Studies have shown distinct imaging abnormalities can be detected early, in some cases prior to symptom onset, allowing disease progression to be monitored and providing the potential to predict symptom onset. Furthermore, advances in PET imaging have identified potential therapeutic targets and novel methods to accurately discriminate between different types of dementias in vivo. There are promising imaging markers with a clinical application on the horizon, however, further studies are required before they can be implantation into clinical practice.
Literature
go back to reference Aarsland D, Beyer MK, Kurz MW (2008) Dementia in Parkinson’s disease. Curr Opin Neurol 21(6):676–682CrossRefPubMed Aarsland D, Beyer MK, Kurz MW (2008) Dementia in Parkinson’s disease. Curr Opin Neurol 21(6):676–682CrossRefPubMed
go back to reference Arbizu J et al (2013) Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging 40(9):1394–1405CrossRefPubMed Arbizu J et al (2013) Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging 40(9):1394–1405CrossRefPubMed
go back to reference Arnold SE et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1(1):103–116CrossRefPubMed Arnold SE et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1(1):103–116CrossRefPubMed
go back to reference Arriagada PV et al (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639CrossRefPubMed Arriagada PV et al (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639CrossRefPubMed
go back to reference Bagchi DP et al (2013) Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One 8(2):e55031CrossRefPubMedPubMedCentral Bagchi DP et al (2013) Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One 8(2):e55031CrossRefPubMedPubMedCentral
go back to reference Barret O et al (2017) Initial clinical pet studies with the novel tau agent 18-F PI-2620 IN Alzheimer’s disease and controls. J Nucl Med 58(supplement 1):630 Barret O et al (2017) Initial clinical pet studies with the novel tau agent 18-F PI-2620 IN Alzheimer’s disease and controls. J Nucl Med 58(supplement 1):630
go back to reference Bartus RT et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414CrossRefPubMed Bartus RT et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414CrossRefPubMed
go back to reference Bennett DA et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844CrossRefPubMed Bennett DA et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844CrossRefPubMed
go back to reference Benzinger TL et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci USA 110(47):E4502–E4509CrossRefPubMedPubMedCentral Benzinger TL et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci USA 110(47):E4502–E4509CrossRefPubMedPubMedCentral
go back to reference Berger-Sweeney J (2003) The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers. Neurosci Biobehav Rev 27(4):401–411CrossRefPubMed Berger-Sweeney J (2003) The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers. Neurosci Biobehav Rev 27(4):401–411CrossRefPubMed
go back to reference Bevan Jones WR et al (2016) [18F]AV-1451 PET in behavioral variant frontotemporal dementia due to MAPT mutation. Ann Clin Transl Neurol 3(12):940–947CrossRefPubMedPubMedCentral Bevan Jones WR et al (2016) [18F]AV-1451 PET in behavioral variant frontotemporal dementia due to MAPT mutation. Ann Clin Transl Neurol 3(12):940–947CrossRefPubMedPubMedCentral
go back to reference Bierer LM et al (1995a) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88CrossRefPubMed Bierer LM et al (1995a) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88CrossRefPubMed
go back to reference Bierer LM et al (1995b) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760CrossRefPubMed Bierer LM et al (1995b) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760CrossRefPubMed
go back to reference Bohnen NI et al (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748CrossRefPubMed Bohnen NI et al (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748CrossRefPubMed
go back to reference Bohnen NI et al (2005) Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 380(1–2):127–132CrossRefPubMed Bohnen NI et al (2005) Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 380(1–2):127–132CrossRefPubMed
go back to reference Bohnen NI et al (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253(2):242–247CrossRefPubMed Bohnen NI et al (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253(2):242–247CrossRefPubMed
go back to reference Boutin H et al (2007) 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 48(4):573–581CrossRefPubMed Boutin H et al (2007) 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 48(4):573–581CrossRefPubMed
go back to reference Brooks DJ (2009) Imaging amyloid in Parkinson’s disease dementia and dementia with Lewy bodies with positron emission tomography. Mov Disord 24(Suppl 2):S742–S747CrossRefPubMed Brooks DJ (2009) Imaging amyloid in Parkinson’s disease dementia and dementia with Lewy bodies with positron emission tomography. Mov Disord 24(Suppl 2):S742–S747CrossRefPubMed
go back to reference Cagnin A et al (2004) In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 56(6):894–897CrossRefPubMed Cagnin A et al (2004) In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 56(6):894–897CrossRefPubMed
go back to reference Cagnin A et al (2006) In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185:107–114CrossRefPubMed Cagnin A et al (2006) In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185:107–114CrossRefPubMed
go back to reference Chauveau F et al (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50(3):468–476CrossRefPubMed Chauveau F et al (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50(3):468–476CrossRefPubMed
go back to reference Chien DT et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34(2):457–468CrossRefPubMed Chien DT et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34(2):457–468CrossRefPubMed
go back to reference Cho H et al (2016) Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 87(4):375–383CrossRefPubMed Cho H et al (2016) Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 87(4):375–383CrossRefPubMed
go back to reference Cho H et al (2017) 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 89(11):1170–1178CrossRefPubMed Cho H et al (2017) 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 89(11):1170–1178CrossRefPubMed
go back to reference Cohen AD et al (2009) Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci 29(47):14770–14778CrossRefPubMedPubMedCentral Cohen AD et al (2009) Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci 29(47):14770–14778CrossRefPubMedPubMedCentral
go back to reference Collier TL et al (2017) cGMP production of the radiopharmaceutical [18 F]MK-6240 for PET imaging of human neurofibrillary tangles. J Labelled Comp Radiopharm 60(5):263–269CrossRefPubMed Collier TL et al (2017) cGMP production of the radiopharmaceutical [18 F]MK-6240 for PET imaging of human neurofibrillary tangles. J Labelled Comp Radiopharm 60(5):263–269CrossRefPubMed
go back to reference Compta Y et al (2014) The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener Dis 13(2–3):154–156PubMed Compta Y et al (2014) The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener Dis 13(2–3):154–156PubMed
go back to reference Cselenyi Z et al (2012) Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med 53(3):415–424CrossRefPubMed Cselenyi Z et al (2012) Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med 53(3):415–424CrossRefPubMed
go back to reference Davies CA et al (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78(2):151–164CrossRefPubMed Davies CA et al (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78(2):151–164CrossRefPubMed
go back to reference De Vos H et al (1994) Imidazoline receptors, non-adrenergic idazoxan binding sites and alpha 2-adrenoceptors in the human central nervous system. Neuroscience 59(3):589–598CrossRefPubMed De Vos H et al (1994) Imidazoline receptors, non-adrenergic idazoxan binding sites and alpha 2-adrenoceptors in the human central nervous system. Neuroscience 59(3):589–598CrossRefPubMed
go back to reference Delacourte A et al (2002) Tau aggregation in the hippocampal formation: an ageing or a pathological process? Exp Gerontol 37(10–11):1291–1296CrossRefPubMed Delacourte A et al (2002) Tau aggregation in the hippocampal formation: an ageing or a pathological process? Exp Gerontol 37(10–11):1291–1296CrossRefPubMed
go back to reference Diehl J et al (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25(8):1051–1056CrossRefPubMed Diehl J et al (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25(8):1051–1056CrossRefPubMed
go back to reference Diehl-Schmid J et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 28(1):42–50CrossRefPubMed Diehl-Schmid J et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 28(1):42–50CrossRefPubMed
go back to reference Doraiswamy PM et al (2014) Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol Psychiatry 19(9):1044–1051CrossRefPubMedPubMedCentral Doraiswamy PM et al (2014) Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol Psychiatry 19(9):1044–1051CrossRefPubMedPubMedCentral
go back to reference Drzezga A et al (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39(2):619–633CrossRefPubMed Drzezga A et al (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39(2):619–633CrossRefPubMed
go back to reference Edison P et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7):501–508CrossRefPubMed Edison P et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7):501–508CrossRefPubMed
go back to reference Edison P et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419CrossRefPubMed Edison P et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419CrossRefPubMed
go back to reference Edison P et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949CrossRefPubMedPubMedCentral Edison P et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949CrossRefPubMedPubMedCentral
go back to reference Eggers C et al (2006) Cortical acetylcholine esterase activity and ApoE4 genotype in Alzheimer disease. Neurosci Lett 408:46–50CrossRefPubMed Eggers C et al (2006) Cortical acetylcholine esterase activity and ApoE4 genotype in Alzheimer disease. Neurosci Lett 408:46–50CrossRefPubMed
go back to reference Engler H et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866CrossRefPubMed Engler H et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866CrossRefPubMed
go back to reference Engler H et al (2008) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35(1):100–106CrossRefPubMed Engler H et al (2008) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35(1):100–106CrossRefPubMed
go back to reference Fan Z et al (2015) Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain 138(Pt 12):3685–3698CrossRefPubMed Fan Z et al (2015) Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain 138(Pt 12):3685–3698CrossRefPubMed
go back to reference Fan Z et al (2016) Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 57(11):1753–1759CrossRefPubMed Fan Z et al (2016) Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 57(11):1753–1759CrossRefPubMed
go back to reference Finnema SJ et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8(348):348ra96CrossRefPubMed Finnema SJ et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8(348):348ra96CrossRefPubMed
go back to reference Fodero-Tavoletti MT et al (2009) In vitro characterisation of BF227 binding to alpha-synuclein/Lewy bodies. Eur J Pharmacol 617(1–3):54–58CrossRefPubMed Fodero-Tavoletti MT et al (2009) In vitro characterisation of BF227 binding to alpha-synuclein/Lewy bodies. Eur J Pharmacol 617(1–3):54–58CrossRefPubMed
go back to reference Fodero-Tavoletti MT et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134(Pt 4):1089–1100CrossRefPubMed Fodero-Tavoletti MT et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134(Pt 4):1089–1100CrossRefPubMed
go back to reference Fodero-Tavoletti MT et al (2012) In vitro characterization of [18F]-florbetaben, an Abeta imaging radiotracer. Nucl Med Biol 39(7):1042–1048CrossRefPubMed Fodero-Tavoletti MT et al (2012) In vitro characterization of [18F]-florbetaben, an Abeta imaging radiotracer. Nucl Med Biol 39(7):1042–1048CrossRefPubMed
go back to reference Fujishiro H et al (2010) Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett 486(1):19–23CrossRefPubMed Fujishiro H et al (2010) Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett 486(1):19–23CrossRefPubMed
go back to reference Furst AJ et al (2012) Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33(2):215–225CrossRefPubMed Furst AJ et al (2012) Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33(2):215–225CrossRefPubMed
go back to reference Garcia-Sevilla JA et al (1998) Imidazoline receptor proteins in brains of patients with Alzheimer’s disease. Neurosci Lett 247(2–3):95–98CrossRefPubMed Garcia-Sevilla JA et al (1998) Imidazoline receptor proteins in brains of patients with Alzheimer’s disease. Neurosci Lett 247(2–3):95–98CrossRefPubMed
go back to reference Gomperts SN et al., Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol, 2016 Gomperts SN et al., Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol, 2016
go back to reference Gomperts SM, Schultz A, Caso C (2015) [18F]T807 PET imaging of hyperphosphorylated tau to differentiate PSP from PD. In: Human amyloid imaging conference book of abstracts ID: 118 Gomperts SM, Schultz A, Caso C (2015) [18F]T807 PET imaging of hyperphosphorylated tau to differentiate PSP from PD. In: Human amyloid imaging conference book of abstracts ID: 118
go back to reference Gomperts SN et al (2016) PET radioligands reveal the basis of dementia in parkinson’s disease and dementia with Lewy bodies. Neurodegener Dis 16(1–2):118–124CrossRefPubMed Gomperts SN et al (2016) PET radioligands reveal the basis of dementia in parkinson’s disease and dementia with Lewy bodies. Neurodegener Dis 16(1–2):118–124CrossRefPubMed
go back to reference Harada R et al (2015) [(18)F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 42(7):1052–1061CrossRefPubMed Harada R et al (2015) [(18)F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 42(7):1052–1061CrossRefPubMed
go back to reference Harada R et al (2016) 18-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med 57(2):208–214CrossRefPubMed Harada R et al (2016) 18-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med 57(2):208–214CrossRefPubMed
go back to reference Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9(3 Suppl):151–153CrossRefPubMed Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9(3 Suppl):151–153CrossRefPubMed
go back to reference Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4(1):17–32CrossRefPubMed Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4(1):17–32CrossRefPubMed
go back to reference Hilker R et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65(11):1716–1722CrossRefPubMed Hilker R et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65(11):1716–1722CrossRefPubMed
go back to reference Hirano S et al (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 133(Pt 7):2058–2068CrossRefPubMed Hirano S et al (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 133(Pt 7):2058–2068CrossRefPubMed
go back to reference Hirono N et al (2000) Features of regional cerebral glucose metabolism abnormality in corticobasal degeneration. Dement Geriatr Cogn Disord 11(3):139–146CrossRefPubMed Hirono N et al (2000) Features of regional cerebral glucose metabolism abnormality in corticobasal degeneration. Dement Geriatr Cogn Disord 11(3):139–146CrossRefPubMed
go back to reference Horti AG et al (2010) Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci 86:575–584CrossRefPubMed Horti AG et al (2010) Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci 86:575–584CrossRefPubMed
go back to reference Horvath J et al (2013) Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Parkinsonism Relat Disord 19(10):864–868; (discussion 864)CrossRefPubMed Horvath J et al (2013) Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Parkinsonism Relat Disord 19(10):864–868; (discussion 864)CrossRefPubMed
go back to reference Hosaka K et al (2002) Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 199(1–2):67–71CrossRefPubMed Hosaka K et al (2002) Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 199(1–2):67–71CrossRefPubMed
go back to reference Hostetler ED et al (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57(10):1599–1606CrossRefPubMed Hostetler ED et al (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57(10):1599–1606CrossRefPubMed
go back to reference Iannaccone S et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord 19(1):47–52CrossRefPubMed Iannaccone S et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord 19(1):47–52CrossRefPubMed
go back to reference Ikawa M et al (2017) 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med 58(2):320–325CrossRefPubMedPubMedCentral Ikawa M et al (2017) 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med 58(2):320–325CrossRefPubMedPubMedCentral
go back to reference Ikonomovic MD et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–1645CrossRefPubMedPubMedCentral Ikonomovic MD et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–1645CrossRefPubMedPubMedCentral
go back to reference Imamura K et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526CrossRefPubMed Imamura K et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526CrossRefPubMed
go back to reference Irie T et al (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AchE) in vivo. Nucl Med Biol 21(6):801–808CrossRefPubMed Irie T et al (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AchE) in vivo. Nucl Med Biol 21(6):801–808CrossRefPubMed
go back to reference Ishii K et al (1998a) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39(11):1875–1878PubMed Ishii K et al (1998a) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39(11):1875–1878PubMed
go back to reference Ishii K et al (1998b) Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 51(1):125–130CrossRefPubMed Ishii K et al (1998b) Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 51(1):125–130CrossRefPubMed
go back to reference Ishii K et al (2015) Regional glucose metabolic reduction in dementia with Lewy bodies is independent of amyloid deposition. Ann Nucl Med 29(1):78–83CrossRefPubMed Ishii K et al (2015) Regional glucose metabolic reduction in dementia with Lewy bodies is independent of amyloid deposition. Ann Nucl Med 29(1):78–83CrossRefPubMed
go back to reference Ittner LM, Gotz J (2011) Amyloid-beta and tau-a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72CrossRefPubMed Ittner LM, Gotz J (2011) Amyloid-beta and tau-a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72CrossRefPubMed
go back to reference Jack CR Jr et al (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133(11):3336–3348CrossRefPubMedPubMedCentral Jack CR Jr et al (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133(11):3336–3348CrossRefPubMedPubMedCentral
go back to reference Johnson KB, Sepulcre J, Rentz D (2014) Tau PET: initial experience with F18 T807. In: Human amyloid imaging conference book of abstracts ID: 103 Johnson KB, Sepulcre J, Rentz D (2014) Tau PET: initial experience with F18 T807. In: Human amyloid imaging conference book of abstracts ID: 103
go back to reference Johnson KA et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119CrossRefPubMed Johnson KA et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119CrossRefPubMed
go back to reference Jonasson M et al (2016) Tracer Kinetic analysis of (S)-(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med 57(4):574–581CrossRefPubMed Jonasson M et al (2016) Tracer Kinetic analysis of (S)-(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med 57(4):574–581CrossRefPubMed
go back to reference Josephs KA et al (2016) [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):931–933CrossRefPubMedPubMedCentral Josephs KA et al (2016) [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):931–933CrossRefPubMedPubMedCentral
go back to reference Juh R et al., Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J, Radiol (2004) 51(3): pp. 223–33 Juh R et al., Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J, Radiol (2004) 51(3): pp. 223–33
go back to reference Juh R et al (2005) Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci Lett 383(1–2):22–27CrossRefPubMed Juh R et al (2005) Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci Lett 383(1–2):22–27CrossRefPubMed
go back to reference Kaasinen V et al (2002) Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol 22(6):615–620CrossRefPubMed Kaasinen V et al (2002) Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol 22(6):615–620CrossRefPubMed
go back to reference Kadir A et al (2006) PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology 188(4):509–520CrossRefPubMed Kadir A et al (2006) PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology 188(4):509–520CrossRefPubMed
go back to reference Kadir A et al (2008) PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging 29(8):1204–1217CrossRefPubMed Kadir A et al (2008) PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging 29(8):1204–1217CrossRefPubMed
go back to reference Kantarci K et al (2012) Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 33(9):2091–2105CrossRefPubMed Kantarci K et al (2012) Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 33(9):2091–2105CrossRefPubMed
go back to reference Kantarci K et al (2017) AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 81(1):58–67CrossRefPubMed Kantarci K et al (2017) AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 81(1):58–67CrossRefPubMed
go back to reference Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76(2):185–205CrossRefPubMedPubMedCentral Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76(2):185–205CrossRefPubMedPubMedCentral
go back to reference Kealey S et al (2013) Imaging imidazoline-I2 binding sites in porcine brain using 11C-BU99008. J Nucl Med 54(1):139–144CrossRefPubMed Kealey S et al (2013) Imaging imidazoline-I2 binding sites in porcine brain using 11C-BU99008. J Nucl Med 54(1):139–144CrossRefPubMed
go back to reference Kennedy AM et al (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 186(1):17–20CrossRefPubMed Kennedy AM et al (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 186(1):17–20CrossRefPubMed
go back to reference Kertesz A et al (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):1996–2005CrossRefPubMed Kertesz A et al (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):1996–2005CrossRefPubMed
go back to reference Kim EJ et al (2005) Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 128(Pt 8):1790–1801CrossRefPubMed Kim EJ et al (2005) Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 128(Pt 8):1790–1801CrossRefPubMed
go back to reference Klein RC et al (2005) Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 20(8):1021–1030CrossRefPubMed Klein RC et al (2005) Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 20(8):1021–1030CrossRefPubMed
go back to reference Knopman DS et al (2014) 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 35(9):2096–2106CrossRefPubMedPubMedCentral Knopman DS et al (2014) 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 35(9):2096–2106CrossRefPubMedPubMedCentral
go back to reference Kotagal V et al (2012) Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett 514(2):169–172CrossRefPubMedPubMedCentral Kotagal V et al (2012) Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett 514(2):169–172CrossRefPubMedPubMedCentral
go back to reference Kreisl WC et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136(Pt 7):2228–2238CrossRefPubMedPubMedCentral Kreisl WC et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136(Pt 7):2228–2238CrossRefPubMedPubMedCentral
go back to reference Kuhl DE et al (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40(3):399–410CrossRefPubMed Kuhl DE et al (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40(3):399–410CrossRefPubMed
go back to reference Kuhl DE et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52(4):691–699CrossRefPubMed Kuhl DE et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52(4):691–699CrossRefPubMed
go back to reference Landau SM et al (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7):1207–1218CrossRefPubMed Landau SM et al (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7):1207–1218CrossRefPubMed
go back to reference Langbaum JB et al (2010) Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E epsilon4 allele. Arch Neurol 67(4):462–468CrossRefPubMedPubMedCentral Langbaum JB et al (2010) Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E epsilon4 allele. Arch Neurol 67(4):462–468CrossRefPubMedPubMedCentral
go back to reference Lant SB et al (2014) Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 40(6):686–696CrossRefPubMed Lant SB et al (2014) Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 40(6):686–696CrossRefPubMed
go back to reference Leung K (2007) N-Acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine. In: Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information (US), Bethesda, MD; 2004–2013 [Updated 25 Aug 2011] Leung K (2007) N-Acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine. In: Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information (US), Bethesda, MD; 2004–2013 [Updated 25 Aug 2011]
go back to reference Li Y et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181CrossRefPubMedPubMedCentral Li Y et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181CrossRefPubMedPubMedCentral
go back to reference Lim YY et al (2014) Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain 137(Pt 1):221–231CrossRefPubMed Lim YY et al (2014) Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain 137(Pt 1):221–231CrossRefPubMed
go back to reference Lohith T et al (2016) Preclinical evaluation and first-in-human dosimetry of [18F]MK-6240, a new PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57(supplement 2):125 Lohith T et al (2016) Preclinical evaluation and first-in-human dosimetry of [18F]MK-6240, a new PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57(supplement 2):125
go back to reference Lohith T et al (2017) Quantification of [18F]MK-6240, a new PET tracer targeting human neurofibrillary tangles (NFTs) in brain of healthy elderly and subjects with Alzheimer’s disease. J Nucl Med 58(supplement 1):277 Lohith T et al (2017) Quantification of [18F]MK-6240, a new PET tracer targeting human neurofibrillary tangles (NFTs) in brain of healthy elderly and subjects with Alzheimer’s disease. J Nucl Med 58(supplement 1):277
go back to reference Maeda J et al (2004) Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse 52(4):283–291CrossRefPubMed Maeda J et al (2004) Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse 52(4):283–291CrossRefPubMed
go back to reference Maetzler W et al (2008) [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 39(3):1027–1033CrossRefPubMed Maetzler W et al (2008) [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 39(3):1027–1033CrossRefPubMed
go back to reference Magistretti PJ (2000) Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res 886(1–2):108–112CrossRefPubMed Magistretti PJ (2000) Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res 886(1–2):108–112CrossRefPubMed
go back to reference Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58(3):365–370CrossRefPubMed Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58(3):365–370CrossRefPubMed
go back to reference Marquie M et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800CrossRefPubMedPubMedCentral Marquie M et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800CrossRefPubMedPubMedCentral
go back to reference Maruyama M et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094–1108CrossRefPubMed Maruyama M et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094–1108CrossRefPubMed
go back to reference Matsunaga S et al., Cholinesterase inhibitors for Lewy body disorders: a meta-analysis. Int J Neuropsychopharmacol, 2015. 19(2) Matsunaga S et al., Cholinesterase inhibitors for Lewy body disorders: a meta-analysis. Int J Neuropsychopharmacol, 2015. 19(2)
go back to reference Mazere J et al (2012) Progressive supranuclear palsy: in vivo SPECT imaging of presynaptic vesicular acetylcholine transporter with [123I]-iodobenzovesamicol. Radiology 265(2):537–543CrossRefPubMed Mazere J et al (2012) Progressive supranuclear palsy: in vivo SPECT imaging of presynaptic vesicular acetylcholine transporter with [123I]-iodobenzovesamicol. Radiology 265(2):537–543CrossRefPubMed
go back to reference McKeith IG et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872CrossRefPubMed McKeith IG et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872CrossRefPubMed
go back to reference McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentral McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentral
go back to reference McMillan CT et al (2016) Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):935–937CrossRefPubMedPubMedCentral McMillan CT et al (2016) Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):935–937CrossRefPubMedPubMedCentral
go back to reference Mendez MF et al (2007) Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry 15(1):84–87CrossRefPubMed Mendez MF et al (2007) Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry 15(1):84–87CrossRefPubMed
go back to reference Miller ZA et al (2013) TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry 84(9):956–962CrossRefPubMed Miller ZA et al (2013) TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry 84(9):956–962CrossRefPubMed
go back to reference Minoshima S et al (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36(7):1238–1248PubMed Minoshima S et al (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36(7):1238–1248PubMed
go back to reference Minoshima S et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50(3):358–365CrossRefPubMed Minoshima S et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50(3):358–365CrossRefPubMed
go back to reference Mintun MD, Pontecorvo M, Joshi A, Potential for PET imaging tau tracer 18F-AV-1451 (also known as 18F-T807) to detect neurodegenerative progression in Alzheimer’s disease. Human amyloid imaging conference book of abstracts (2015) ID: 98 Mintun MD, Pontecorvo M, Joshi A, Potential for PET imaging tau tracer 18F-AV-1451 (also known as 18F-T807) to detect neurodegenerative progression in Alzheimer’s disease. Human amyloid imaging conference book of abstracts (2015) ID: 98
go back to reference Mitsis EM et al (2009) 123I-5-IA-85380 SPECT imaging of nicotinic receptors in Alzheimer disease and mild cognitive impairment. J Nucl Med 50(9):1455–1463CrossRefPubMed Mitsis EM et al (2009) 123I-5-IA-85380 SPECT imaging of nicotinic receptors in Alzheimer disease and mild cognitive impairment. J Nucl Med 50(9):1455–1463CrossRefPubMed
go back to reference Miyoshi M et al (2010) In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord 16(6):404–408CrossRefPubMed Miyoshi M et al (2010) In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord 16(6):404–408CrossRefPubMed
go back to reference Moonga I et al (2017) Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur J Neurol 24(9):1173–1182CrossRefPubMed Moonga I et al (2017) Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur J Neurol 24(9):1173–1182CrossRefPubMed
go back to reference Morales I et al (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112PubMedPubMedCentral Morales I et al (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112PubMedPubMedCentral
go back to reference Mueller A et al (2017) Characterization of the novel PET Tracer PI-2620 for the assessment of Tau pathology in Alzheimer’s disease and other tauopathies. J Nucl Med 58(supplement 1):847 Mueller A et al (2017) Characterization of the novel PET Tracer PI-2620 for the assessment of Tau pathology in Alzheimer’s disease and other tauopathies. J Nucl Med 58(supplement 1):847
go back to reference Niccolini F, Politis M (2016) A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 43(12):2244–2254CrossRefPubMedPubMedCentral Niccolini F, Politis M (2016) A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 43(12):2244–2254CrossRefPubMedPubMedCentral
go back to reference Nordberg A et al (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9(1):21–27CrossRefPubMed Nordberg A et al (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9(1):21–27CrossRefPubMed
go back to reference Nyback H et al (1994) PET studies of the uptake of (S)- and (R)-[11C]nicotine in the human brain: difficulties in visualizing specific receptor binding in vivo. Psychopharmacology 115:31–36CrossRefPubMed Nyback H et al (1994) PET studies of the uptake of (S)- and (R)-[11C]nicotine in the human brain: difficulties in visualizing specific receptor binding in vivo. Psychopharmacology 115:31–36CrossRefPubMed
go back to reference Okada H et al (2013) Alterations in alpha4beta2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain 136(Pt 10):3004–3017CrossRefPubMed Okada H et al (2013) Alterations in alpha4beta2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain 136(Pt 10):3004–3017CrossRefPubMed
go back to reference Okamura N, Yanai K (2010) Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs 13(12):890–899PubMed Okamura N, Yanai K (2010) Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs 13(12):890–899PubMed
go back to reference Okamura N et al (2005) Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J Neurosci 25(47):10857–10862CrossRefPubMedPubMedCentral Okamura N et al (2005) Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J Neurosci 25(47):10857–10862CrossRefPubMedPubMedCentral
go back to reference Okamura N et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137(Pt 6):1762–1771CrossRefPubMed Okamura N et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137(Pt 6):1762–1771CrossRefPubMed
go back to reference Ossenkoppele R et al (2013) Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 80(4):359–365CrossRefPubMed Ossenkoppele R et al (2013) Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 80(4):359–365CrossRefPubMed
go back to reference Parker CA et al (2014) Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med 55(5):838–844CrossRefPubMed Parker CA et al (2014) Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med 55(5):838–844CrossRefPubMed
go back to reference Passamonti L et al (2017) 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 140(3):781–791PubMedPubMedCentral Passamonti L et al (2017) 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 140(3):781–791PubMedPubMedCentral
go back to reference Perry EK et al (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265CrossRefPubMed Perry EK et al (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265CrossRefPubMed
go back to reference Petit-Taboue MC et al (1991) Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 200(2–3):347–351CrossRefPubMed Petit-Taboue MC et al (1991) Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 200(2–3):347–351CrossRefPubMed
go back to reference Petrou M et al (2014) In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 55(3):396–404CrossRefPubMed Petrou M et al (2014) In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 55(3):396–404CrossRefPubMed
go back to reference Pike KE et al (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130(Pt 11):2837–2844CrossRefPubMed Pike KE et al (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130(Pt 11):2837–2844CrossRefPubMed
go back to reference Politis M (2014) Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 10(12):708–722CrossRefPubMed Politis M (2014) Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 10(12):708–722CrossRefPubMed
go back to reference Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259(9):1769–1780CrossRefPubMed Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259(9):1769–1780CrossRefPubMed
go back to reference Politis M, Pagano G, Niccolini F (2017) Imaging in Parkinson’s disease. Int Rev Neurobiol 132:233–274CrossRefPubMed Politis M, Pagano G, Niccolini F (2017) Imaging in Parkinson’s disease. Int Rev Neurobiol 132:233–274CrossRefPubMed
go back to reference Poljansky S et al (2011) A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration. Eur Arch Psychiatry Clin Neurosci 261(6):433–446CrossRefPubMed Poljansky S et al (2011) A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration. Eur Arch Psychiatry Clin Neurosci 261(6):433–446CrossRefPubMed
go back to reference Pontecorvo MD, Joshi A, Lu M (2015) Relationships between florbetapir PET amyloid and 18F AV-1451 (aka 18F-T807) PET tau binding in cognitively normal subjects and patients with cognitive impairments suspected of Alzheimer’s disease. In: Human amyloid imaging conference book of abstracts ID: 98 Pontecorvo MD, Joshi A, Lu M (2015) Relationships between florbetapir PET amyloid and 18F AV-1451 (aka 18F-T807) PET tau binding in cognitively normal subjects and patients with cognitive impairments suspected of Alzheimer’s disease. In: Human amyloid imaging conference book of abstracts ID: 98
go back to reference Rabinovici GD et al (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68(15):1205–1212CrossRefPubMed Rabinovici GD et al (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68(15):1205–1212CrossRefPubMed
go back to reference Rabinovici GD et al (2010) Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 133(Pt 2):512–528CrossRefPubMedPubMedCentral Rabinovici GD et al (2010) Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 133(Pt 2):512–528CrossRefPubMedPubMedCentral
go back to reference Raboinovici GD et al (2015) Tau PET with [18F]AV1451 in non-alzheimer's disease neurodegenerative syndromes. Alzheimer's Dementia J Alzheimer's Assoc 11(7):P107–P109CrossRef Raboinovici GD et al (2015) Tau PET with [18F]AV1451 in non-alzheimer's disease neurodegenerative syndromes. Alzheimer's Dementia J Alzheimer's Assoc 11(7):P107–P109CrossRef
go back to reference Rayaprolu S et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8:19CrossRefPubMedPubMedCentral Rayaprolu S et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8:19CrossRefPubMedPubMedCentral
go back to reference Rocchi L, Niccolini F, Politis M (2015) Recent imaging advances in neurology. J Neurol 262(9):2182–2194CrossRefPubMed Rocchi L, Niccolini F, Politis M (2015) Recent imaging advances in neurology. J Neurol 262(9):2182–2194CrossRefPubMed
go back to reference Sabri O et al (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35(Suppl 1):S30–S45CrossRefPubMed Sabri O et al (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35(Suppl 1):S30–S45CrossRefPubMed
go back to reference Sander K et al (2016) Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement 12(11):1116–1124CrossRefPubMed Sander K et al (2016) Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement 12(11):1116–1124CrossRefPubMed
go back to reference Schultz A et al., (2015) Relationship between longitudinal amyloid accumulation and T807-Tau, In: Human amyloid imaging conference book of abstracts, Submission ID 101. 2015:68 Schultz A et al., (2015) Relationship between longitudinal amyloid accumulation and T807-Tau, In: Human amyloid imaging conference book of abstracts, Submission ID 101. 2015:68
go back to reference Schwarz AJ et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550CrossRefPubMed Schwarz AJ et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550CrossRefPubMed
go back to reference Shimada H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278CrossRefPubMed Shimada H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278CrossRefPubMed
go back to reference Shimada H et al (2013) beta-Amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord 28(2):169–175CrossRefPubMed Shimada H et al (2013) beta-Amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord 28(2):169–175CrossRefPubMed
go back to reference Shimada H, Shinotoh H, Sahara N (2015) Diagnostic utility and clinical significance of tau PET imaging with [11C]PBB3 in diverse tauopathies. In: Human amyloid imaging conference book of abstracts ID: 69 Shimada H, Shinotoh H, Sahara N (2015) Diagnostic utility and clinical significance of tau PET imaging with [11C]PBB3 in diverse tauopathies. In: Human amyloid imaging conference book of abstracts ID: 69
go back to reference Shinotoh H et al (2004) Acetylcholinesterase imaging: its use in therapy evaluation and drug design. Curr Pharm Des 10(13):1505–1517CrossRefPubMed Shinotoh H et al (2004) Acetylcholinesterase imaging: its use in therapy evaluation and drug design. Curr Pharm Des 10(13):1505–1517CrossRefPubMed
go back to reference Silverman DH et al (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. Jama 286(17):2120–2127CrossRefPubMed Silverman DH et al (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. Jama 286(17):2120–2127CrossRefPubMed
go back to reference Small GW, Kepe V, Barrio JR (2006) Seeing is believing: neuroimaging adds to our understanding of cerebral pathology. Curr Opin Psychiatry 19(6):564–569CrossRefPubMed Small GW, Kepe V, Barrio JR (2006) Seeing is believing: neuroimaging adds to our understanding of cerebral pathology. Curr Opin Psychiatry 19(6):564–569CrossRefPubMed
go back to reference Teipel S et al (2015) Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol 14(10):1037–1053CrossRefPubMed Teipel S et al (2015) Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol 14(10):1037–1053CrossRefPubMed
go back to reference Terriere E et al (2010) 5-(123)I-A-85380 binding to the alpha4beta2-nicotinic receptor in mild cognitive impairment. Neurobiol Aging 31(11):1885–1893CrossRefPubMed Terriere E et al (2010) 5-(123)I-A-85380 binding to the alpha4beta2-nicotinic receptor in mild cognitive impairment. Neurobiol Aging 31(11):1885–1893CrossRefPubMed
go back to reference Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580CrossRefPubMed Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580CrossRefPubMed
go back to reference Tyacke RJ et al., Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand. BU99008 (2-(4,5-dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline(2) binding site. Synapse, 2012. 66(6): 542–551CrossRefPubMed Tyacke RJ et al., Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand. BU99008 (2-(4,5-dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline(2) binding site. Synapse, 2012. 66(6): 542–551CrossRefPubMed
go back to reference Vandenberghe R et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68(3):319–329CrossRefPubMed Vandenberghe R et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68(3):319–329CrossRefPubMed
go back to reference Vander Borght T et al (1997) Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 38(5):797–802PubMed Vander Borght T et al (1997) Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 38(5):797–802PubMed
go back to reference Villemagne VL et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(5):816–826CrossRefPubMed Villemagne VL et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(5):816–826CrossRefPubMed
go back to reference Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640CrossRefPubMed Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640CrossRefPubMed
go back to reference Walji AM et al (2016) Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem 59(10):4778–4789CrossRefPubMed Walji AM et al (2016) Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem 59(10):4778–4789CrossRefPubMed
go back to reference Wang M, Gao M, Zheng QH (2012) Fully automated synthesis of PET TSPO radioligands [11C]DAA1106 and [18F]FEDAA1106. Appl Radiat Isot 70(6):965–973CrossRefPubMed Wang M, Gao M, Zheng QH (2012) Fully automated synthesis of PET TSPO radioligands [11C]DAA1106 and [18F]FEDAA1106. Appl Radiat Isot 70(6):965–973CrossRefPubMed
go back to reference Whitwell JL et al (2017) [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 32(1):124–133CrossRefPubMed Whitwell JL et al (2017) [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 32(1):124–133CrossRefPubMed
go back to reference Wiley CA et al (2009) Carbon 11-labeled pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66(1):60–67CrossRefPubMedPubMedCentral Wiley CA et al (2009) Carbon 11-labeled pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66(1):60–67CrossRefPubMedPubMedCentral
go back to reference Xia CF et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676CrossRefPubMed Xia CF et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676CrossRefPubMed
go back to reference Yasuno F et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64(10):835–841CrossRefPubMed Yasuno F et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64(10):835–841CrossRefPubMed
go back to reference Ye L et al (2008) In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem 105(4):1428–1437CrossRefPubMedPubMedCentral Ye L et al (2008) In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem 105(4):1428–1437CrossRefPubMedPubMedCentral
go back to reference Yong SW et al (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14(12):1357–1362CrossRefPubMed Yong SW et al (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14(12):1357–1362CrossRefPubMed
go back to reference Yuan Y, Gu ZX, Wei WS (2009) Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol 30(2):404–410CrossRefPubMedPubMedCentral Yuan Y, Gu ZX, Wei WS (2009) Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol 30(2):404–410CrossRefPubMedPubMedCentral
go back to reference Zhang S et al (2012) Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66(2):185–198CrossRefPubMed Zhang S et al (2012) Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66(2):185–198CrossRefPubMed
Metadata
Title
Dementia spectrum disorders: lessons learnt from decades with PET research
Authors
Heather Wilson
Gennaro Pagano
Marios Politis
Publication date
01-03-2019

Other articles of this Issue 3/2019

Journal of Neural Transmission 3/2019 Go to the issue