Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01-03-2008

Acetylcholine receptors in dementia and mild cognitive impairment

Authors: Osama Sabri, Kai Kendziorra, Henrike Wolf, Hermann-Josef Gertz, Peter Brust

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2008

Login to get access

Abstract

Purpose

To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer’s disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[18F]F-A-85380, which is supposed to be specific for α4β2 nicotinic acetylcholine receptors (nAChRs).

Method

We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD.

Results

Both patients with AD and MCI showed significant reductions in α4β2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in α4β2 nAChRs occurs during early symptomatic stages of AD. The α4β2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the α4β2 nAChR status.

Conclusion

Together, our results provide evidence for the potential of 2-[18]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[18F]F-A-85380, we developed the new α4β2 nAChR-specific radioligands (+)- and (−)-[18F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (−)-[18F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (−)-[18F]NCFHEB should be a suitable radioligand for larger clinical investigations.
Literature
1.
go back to reference Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MMB, et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurology 2000;54:S4–9.PubMed Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MMB, et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurology 2000;54:S4–9.PubMed
2.
go back to reference Dugue M, Neugroschl J, Sewell M, Marin D. Review of dementia. Mount Sinai J Med 2003;70:45–53. Dugue M, Neugroschl J, Sewell M, Marin D. Review of dementia. Mount Sinai J Med 2003;70:45–53.
3.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–6.PubMedCrossRef Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–6.PubMedCrossRef
5.
go back to reference Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004;44:181–93.PubMedCrossRef Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004;44:181–93.PubMedCrossRef
6.
go back to reference Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-[beta] protein assembly in the brain impairs memory. Nature 2006;440:352–7.PubMedCrossRef Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-[beta] protein assembly in the brain impairs memory. Nature 2006;440:352–7.PubMedCrossRef
7.
go back to reference Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001;81:741–66.PubMed Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001;81:741–66.PubMed
8.
go back to reference Perl DP. Neuropathology of Alzheimer’s disease and related disorders. Neurol Clin 2000;18:847–64.PubMedCrossRef Perl DP. Neuropathology of Alzheimer’s disease and related disorders. Neurol Clin 2000;18:847–64.PubMedCrossRef
9.
go back to reference Lovestone S, Reynolds CH. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 1997;78:309–24.PubMedCrossRef Lovestone S, Reynolds CH. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 1997;78:309–24.PubMedCrossRef
10.
go back to reference Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999;22:273–80.PubMedCrossRef Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999;22:273–80.PubMedCrossRef
11.
go back to reference Bowen DM, Smith CB, White P, Davison AN. Neurotransmitter-related enzymes and indexes of hypoxia in senile dementia and other abiotrophies. Brain 1976;99:459–96.PubMedCrossRef Bowen DM, Smith CB, White P, Davison AN. Neurotransmitter-related enzymes and indexes of hypoxia in senile dementia and other abiotrophies. Brain 1976;99:459–96.PubMedCrossRef
12.
go back to reference Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimers-Disease. Lancet 1976;2:1403.PubMedCrossRef Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimers-Disease. Lancet 1976;2:1403.PubMedCrossRef
13.
go back to reference Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia—choline-acetyltransferase and glutamic-acid decarboxylase activities in necropsy brain-tissue. J Neurol Sci 1977;34:247–65.PubMedCrossRef Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia—choline-acetyltransferase and glutamic-acid decarboxylase activities in necropsy brain-tissue. J Neurol Sci 1977;34:247–65.PubMedCrossRef
14.
go back to reference Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B. Physostigmine restores H-3 acetylcholine efflux from Alzheimer brain-slices to normal level. J Neural Transm 1986;67:275–85.PubMedCrossRef Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B. Physostigmine restores H-3 acetylcholine efflux from Alzheimer brain-slices to normal level. J Neural Transm 1986;67:275–85.PubMedCrossRef
15.
go back to reference Rylett RJ, Ball MJ, Colhoun EH. Evidence for high-affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimers-Disease. Brain Res 1983;289:169–75.PubMedCrossRef Rylett RJ, Ball MJ, Colhoun EH. Evidence for high-affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimers-Disease. Brain Res 1983;289:169–75.PubMedCrossRef
16.
go back to reference Sivaprakasam K. Towards a unifying hypothesis of Alzheimer’s disease: cholinergic system linked to plaques, tangles and neuroinflammation. Curr Med Chem 2006;13:2179–88.PubMedCrossRef Sivaprakasam K. Towards a unifying hypothesis of Alzheimer’s disease: cholinergic system linked to plaques, tangles and neuroinflammation. Curr Med Chem 2006;13:2179–88.PubMedCrossRef
17.
go back to reference Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–17.PubMedCrossRef Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–17.PubMedCrossRef
18.
go back to reference Pirttila T, Wilcock G, Truyen L, Damaraju CV. Long-term efficacy and safety of galantamine in patients with mild-to-moderate Alzheimer’s disease: multicenter trial. Eur J Neurol 2004;11:734–41.PubMedCrossRef Pirttila T, Wilcock G, Truyen L, Damaraju CV. Long-term efficacy and safety of galantamine in patients with mild-to-moderate Alzheimer’s disease: multicenter trial. Eur J Neurol 2004;11:734–41.PubMedCrossRef
19.
go back to reference Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004;19:624–33.PubMedCrossRef Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004;19:624–33.PubMedCrossRef
20.
go back to reference Bowen DM, Benton JS, Spillane JA, Smith CCT, Allen SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 1982;57:191–202.PubMedCrossRef Bowen DM, Benton JS, Spillane JA, Smith CCT, Allen SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 1982;57:191–202.PubMedCrossRef
21.
go back to reference Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 1986;371:146–51.PubMedCrossRef Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 1986;371:146–51.PubMedCrossRef
22.
go back to reference Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 1991;7:695–702.PubMedCrossRef Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 1991;7:695–702.PubMedCrossRef
23.
go back to reference Dai J, Buijs RM, Kamphorst W, Swaab DF. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 2002;948:138–44.PubMedCrossRef Dai J, Buijs RM, Kamphorst W, Swaab DF. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 2002;948:138–44.PubMedCrossRef
24.
go back to reference Lindström J, Anand R, Peng X, Gerzanich V, Wang F, Li YB. Neuronal nicotinic receptor subtypes. Ann NY Acad Sci 1995;757:100–16.PubMedCrossRef Lindström J, Anand R, Peng X, Gerzanich V, Wang F, Li YB. Neuronal nicotinic receptor subtypes. Ann NY Acad Sci 1995;757:100–16.PubMedCrossRef
25.
go back to reference Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, et al. α4 but not α3 and α7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 1999;73:1635–40.PubMedCrossRef Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, et al. α4 but not α3 and α7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 1999;73:1635–40.PubMedCrossRef
26.
go back to reference Warpman U, Nordberg A. Epibatidine and ABT 418 reveal selective losses of α4β2 nicotinic receptors in Alzheimer brains. Neuroreport 1995;6:2419–23.PubMedCrossRef Warpman U, Nordberg A. Epibatidine and ABT 418 reveal selective losses of α4β2 nicotinic receptors in Alzheimer brains. Neuroreport 1995;6:2419–23.PubMedCrossRef
27.
go back to reference Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000;393:215–22.PubMedCrossRef Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000;393:215–22.PubMedCrossRef
28.
go back to reference Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 1992;31:103–11.PubMedCrossRef Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 1992;31:103–11.PubMedCrossRef
29.
go back to reference Maelicke A, Schrattenholz A, Storch A, Schröder B, Gutbrod O, Methfessel C, et al. Noncompetitive agonism at nicotinic acetylcholine-receptors—functional-significance for cns signal-transduction. J Recept Signal Transduct Res 1995;15:333–53.PubMedCrossRef Maelicke A, Schrattenholz A, Storch A, Schröder B, Gutbrod O, Methfessel C, et al. Noncompetitive agonism at nicotinic acetylcholine-receptors—functional-significance for cns signal-transduction. J Recept Signal Transduct Res 1995;15:333–53.PubMedCrossRef
30.
go back to reference Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res 2000;113:199–206.PubMedCrossRef Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res 2000;113:199–206.PubMedCrossRef
31.
go back to reference Fujii S, Ji ZX, Morita N, Sumikawa K. Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 1999;846:137–43.PubMedCrossRef Fujii S, Ji ZX, Morita N, Sumikawa K. Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 1999;846:137–43.PubMedCrossRef
32.
go back to reference Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996;383:713–6.PubMedCrossRef Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996;383:713–6.PubMedCrossRef
33.
go back to reference Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 1998;138:217–30.CrossRef Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 1998;138:217–30.CrossRef
34.
go back to reference Maelicke A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement Geriatr Cogn Disord 2000;11:11–8.PubMedCrossRef Maelicke A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement Geriatr Cogn Disord 2000;11:11–8.PubMedCrossRef
35.
36.
go back to reference Nordberg A. PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol 1999;155:S53–63.PubMed Nordberg A. PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol 1999;155:S53–63.PubMed
37.
go back to reference Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 2001;49:200–10.PubMedCrossRef Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 2001;49:200–10.PubMedCrossRef
38.
go back to reference Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2005;30:895–908.PubMedCrossRef Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2005;30:895–908.PubMedCrossRef
39.
go back to reference Moran MA, Mufson EJ, Gomezramos P. Colocalization of cholinesterases with beta-amyloid protein in aged and Alzheimers brains. Acta Neuropathol 1993;85:362–9.PubMedCrossRef Moran MA, Mufson EJ, Gomezramos P. Colocalization of cholinesterases with beta-amyloid protein in aged and Alzheimers brains. Acta Neuropathol 1993;85:362–9.PubMedCrossRef
40.
41.
go back to reference Racchi M, Sironi M, Caprera A, Konig G, Govoni S. Short- and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol Psychiatry 2001;6:520–8.PubMedCrossRef Racchi M, Sironi M, Caprera A, Konig G, Govoni S. Short- and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol Psychiatry 2001;6:520–8.PubMedCrossRef
42.
go back to reference Mori F, Lai CC, Fusi F, Giacobini E. Cholinesterase-inhibitors increase secretion of apps in rat-brain cortex. Neuroreport 1995;6:633–6.PubMedCrossRef Mori F, Lai CC, Fusi F, Giacobini E. Cholinesterase-inhibitors increase secretion of apps in rat-brain cortex. Neuroreport 1995;6:633–6.PubMedCrossRef
43.
go back to reference Lahiri DK, Farlow MR, Nürnberger JI, Greig NH. Effects of cholinesterase inhibitors on the secretion of beta-amyloid precursor protein in cell cultures. Ann NY Acad Sci 1997;826:416–21.PubMedCrossRef Lahiri DK, Farlow MR, Nürnberger JI, Greig NH. Effects of cholinesterase inhibitors on the secretion of beta-amyloid precursor protein in cell cultures. Ann NY Acad Sci 1997;826:416–21.PubMedCrossRef
44.
go back to reference Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996;16:881–91.PubMedCrossRef Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996;16:881–91.PubMedCrossRef
45.
go back to reference Racchi M, Govoni S. The pharmacology of amyloid precursor protein processing. Exp Gerontol 2003;38:145–57.PubMedCrossRef Racchi M, Govoni S. The pharmacology of amyloid precursor protein processing. Exp Gerontol 2003;38:145–57.PubMedCrossRef
46.
go back to reference Zhang X. Cholinergic activity and amyloid precursor protein processing in aging and Alzheimer’s disease. Curr Drug Targets 2004;3:137–52.CrossRef Zhang X. Cholinergic activity and amyloid precursor protein processing in aging and Alzheimer’s disease. Curr Drug Targets 2004;3:137–52.CrossRef
47.
go back to reference Mufson EJ, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol 1999;158:469–90.PubMedCrossRef Mufson EJ, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol 1999;158:469–90.PubMedCrossRef
48.
go back to reference Harkany T, O’Mahony S, Kelly JP, Soos K, Toro I, Penke B, et al. Beta-Amyloid(Phe(SO3H)(24))25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res 1998;90:133–45.PubMedCrossRef Harkany T, O’Mahony S, Kelly JP, Soos K, Toro I, Penke B, et al. Beta-Amyloid(Phe(SO3H)(24))25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res 1998;90:133–45.PubMedCrossRef
49.
go back to reference Bartolini M, Bertucci C, Cavrini V, Andrisano V. Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003;65:407–16.PubMedCrossRef Bartolini M, Bertucci C, Cavrini V, Andrisano V. Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003;65:407–16.PubMedCrossRef
50.
go back to reference Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 1997;272:348–61.PubMedCrossRef Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 1997;272:348–61.PubMedCrossRef
51.
go back to reference Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC. Acetylcholinesterase-A beta complexes are more toxic than A beta fibrils in rat hippocampus—effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 2004;164:2163–74.PubMed Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC. Acetylcholinesterase-A beta complexes are more toxic than A beta fibrils in rat hippocampus—effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 2004;164:2163–74.PubMed
52.
go back to reference Alvarez A, Alarcon R, Opazo C, Campos EO, Munoz FJ, Calderon FH, et al. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 1998;18:3213–23.PubMed Alvarez A, Alarcon R, Opazo C, Campos EO, Munoz FJ, Calderon FH, et al. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 1998;18:3213–23.PubMed
53.
go back to reference Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S. Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 2003;24:777–87.PubMedCrossRef Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S. Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 2003;24:777–87.PubMedCrossRef
54.
go back to reference Lahiri DK, Utsuki T, Chen D, Farlow MR, Shoaib M, Ingram DK, et al. Nicotine reduces the secretion of Alzheimer’s beta-amyloid precursor protein containing beta-amyloid peptide in the rat without altering synaptic proteins. Ann NY Acad Sci 2002;965:364–72.PubMedCrossRef Lahiri DK, Utsuki T, Chen D, Farlow MR, Shoaib M, Ingram DK, et al. Nicotine reduces the secretion of Alzheimer’s beta-amyloid precursor protein containing beta-amyloid peptide in the rat without altering synaptic proteins. Ann NY Acad Sci 2002;965:364–72.PubMedCrossRef
55.
go back to reference Seo JH, Kim SH, Kim HS, Park CH, Jeong SJ, Lee JH, et al. Effects of nicotine on APP secretion and Aβ- or CT105-induced toxicity. Biol Psychiatry 2001;49:240–7.PubMedCrossRef Seo JH, Kim SH, Kim HS, Park CH, Jeong SJ, Lee JH, et al. Effects of nicotine on APP secretion and Aβ- or CT105-induced toxicity. Biol Psychiatry 2001;49:240–7.PubMedCrossRef
56.
go back to reference Efthimiopoulos S, Vassilacopoulou D, Ripellino JA, Tezapsidis N, Robakis NK. Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. Proc Natl Acad Sci USA 1996;93:8046–50.PubMedCrossRef Efthimiopoulos S, Vassilacopoulou D, Ripellino JA, Tezapsidis N, Robakis NK. Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. Proc Natl Acad Sci USA 1996;93:8046–50.PubMedCrossRef
57.
go back to reference de Leon MJ, Mosconi L, Blennow K, DeSanti S, Zinkowsky R, Metha PD, et al. Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann NY Acad Sci 2007;1097:114–45.PubMedCrossRef de Leon MJ, Mosconi L, Blennow K, DeSanti S, Zinkowsky R, Metha PD, et al. Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann NY Acad Sci 2007;1097:114–45.PubMedCrossRef
58.
go back to reference Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–19.PubMedCrossRef Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–19.PubMedCrossRef
59.
go back to reference Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006;355:2652–63.PubMedCrossRef Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006;355:2652–63.PubMedCrossRef
60.
61.
go back to reference Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, et al. PET amyloid ligand [C-11]PIB uptake is increased in mild cognitive impairment. Neurology 2007;68:1603–6.PubMedCrossRef Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, et al. PET amyloid ligand [C-11]PIB uptake is increased in mild cognitive impairment. Neurology 2007;68:1603–6.PubMedCrossRef
62.
go back to reference Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007;68:1718–25.PubMedCrossRef Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007;68:1718–25.PubMedCrossRef
63.
go back to reference Klingner M, Apelt J, Kumar A, Sorger D, Sabri O, Steinbach J, et al. Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with [beta]-amyloid plaque pathology. Int J Dev Neurosci 2003;21:357–69.PubMedCrossRef Klingner M, Apelt J, Kumar A, Sorger D, Sabri O, Steinbach J, et al. Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with [beta]-amyloid plaque pathology. Int J Dev Neurosci 2003;21:357–69.PubMedCrossRef
64.
go back to reference Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. Jama 1999;281:1401–6.PubMedCrossRef Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. Jama 1999;281:1401–6.PubMedCrossRef
65.
go back to reference Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 1999;411:693–704.PubMedCrossRef Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 1999;411:693–704.PubMedCrossRef
66.
go back to reference Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu M, et al. Brain acetylcholinesterase activity impairment and early Alzheimer’s in mild cognitive disease. J Neurol Neurosurg Psychiatry 2003;74:113–5.PubMedCrossRef Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu M, et al. Brain acetylcholinesterase activity impairment and early Alzheimer’s in mild cognitive disease. J Neurol Neurosurg Psychiatry 2003;74:113–5.PubMedCrossRef
67.
go back to reference DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–55.PubMedCrossRef DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–55.PubMedCrossRef
68.
go back to reference Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007;47:699–729.PubMedCrossRef Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007;47:699–729.PubMedCrossRef
69.
go back to reference Gotti C, Riganti L, Vailanti S, Clementi F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 2006;12:407–28.PubMedCrossRef Gotti C, Riganti L, Vailanti S, Clementi F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 2006;12:407–28.PubMedCrossRef
70.
go back to reference Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006;27:482–91.PubMedCrossRef Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006;27:482–91.PubMedCrossRef
71.
go back to reference Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 2004;32:529–34.PubMedCrossRef Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 2004;32:529–34.PubMedCrossRef
72.
go back to reference Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 2000;21:211–7.PubMedCrossRef Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 2000;21:211–7.PubMedCrossRef
73.
go back to reference Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr Drug Targets CNS Neurol Disord 2002;1:387.PubMedCrossRef Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr Drug Targets CNS Neurol Disord 2002;1:387.PubMedCrossRef
74.
go back to reference Sullivan JP, DonnellyRoberts D, Briggs CA, Anderson DJ, Gopalakrishnan M, PiattoniKaplan M, et al. A-85380 [3-(2(S)-azetidinylmethoxy)pyridine]: in vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptor ligand. Neuropharmacology 1996;35:725–34.PubMedCrossRef Sullivan JP, DonnellyRoberts D, Briggs CA, Anderson DJ, Gopalakrishnan M, PiattoniKaplan M, et al. A-85380 [3-(2(S)-azetidinylmethoxy)pyridine]: in vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptor ligand. Neuropharmacology 1996;35:725–34.PubMedCrossRef
75.
76.
go back to reference Fukuyama H. Functional brain imaging in Parkinson’s disease—overview. J Neurol 2004;251:vii1–3.PubMedCrossRef Fukuyama H. Functional brain imaging in Parkinson’s disease—overview. J Neurol 2004;251:vii1–3.PubMedCrossRef
77.
go back to reference Hirose S, Mitsudome A, Okada M, Kaneko S. Genetics of idiopathic epilepsies. Epilepsia 2005;46:38–43.PubMedCrossRef Hirose S, Mitsudome A, Okada M, Kaneko S. Genetics of idiopathic epilepsies. Epilepsia 2005;46:38–43.PubMedCrossRef
78.
go back to reference Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res 2000;31:131–44.PubMedCrossRef Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res 2000;31:131–44.PubMedCrossRef
79.
go back to reference Quik M, McIntosh JM. Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther 2006;316:481–9.PubMedCrossRef Quik M, McIntosh JM. Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther 2006;316:481–9.PubMedCrossRef
80.
go back to reference Williams M. Genome-based drug discovery: prioritizing disease-susceptibility/disease-associated genes as novel drug targets for schizophrenia. Curr Opin Investig Drugs 2003;4:31–6.PubMed Williams M. Genome-based drug discovery: prioritizing disease-susceptibility/disease-associated genes as novel drug targets for schizophrenia. Curr Opin Investig Drugs 2003;4:31–6.PubMed
81.
go back to reference Youdim MBH, Buccafusco JJ. CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 2005;112:519–37.PubMedCrossRef Youdim MBH, Buccafusco JJ. CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 2005;112:519–37.PubMedCrossRef
82.
go back to reference Horti AG, Villemagne VL. The quest for Eldorado: Development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Des 2006;12:3877–900.PubMedCrossRef Horti AG, Villemagne VL. The quest for Eldorado: Development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Des 2006;12:3877–900.PubMedCrossRef
83.
go back to reference Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Parkinson’s Dis Dement Sect 1990;2:215–24.CrossRef Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Parkinson’s Dis Dement Sect 1990;2:215–24.CrossRef
84.
go back to reference Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Nicotine receptors in the brain of patients with Alzheimer’s disease. Studies with 11C-nicotine and positron emission tomography. Acta Radiol Suppl 1991;376:165–6.PubMed Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Nicotine receptors in the brain of patients with Alzheimer’s disease. Studies with 11C-nicotine and positron emission tomography. Acta Radiol Suppl 1991;376:165–6.PubMed
85.
go back to reference Nyback H, Halldin C, Ahlin A, Curvall M, Eriksson L. Pet studies of the uptake of (s)-[C-11]nicotine and (r)-[C-11]nicotine in the human brain—difficulties in visualizing specific receptor-binding in-vivo. Psychopharmacology 1994;115:31–6.PubMedCrossRef Nyback H, Halldin C, Ahlin A, Curvall M, Eriksson L. Pet studies of the uptake of (s)-[C-11]nicotine and (r)-[C-11]nicotine in the human brain—difficulties in visualizing specific receptor-binding in-vivo. Psychopharmacology 1994;115:31–6.PubMedCrossRef
86.
go back to reference Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, et al. Cigarette smoking saturates brain alpha(4)beta(2) nicotinic acetylcholine receptors. Arch Gen Psychiatry 2006;63:907–15.PubMedCrossRef Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, et al. Cigarette smoking saturates brain alpha(4)beta(2) nicotinic acetylcholine receptors. Arch Gen Psychiatry 2006;63:907–15.PubMedCrossRef
87.
go back to reference Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, Coulon C, et al. In vivo Imaging of human cerebral nicotinic acetylcholine receptors with 2-F-18-fluoro-A-85380 and PET. J Nucl Med 2005;46:240–7.PubMed Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, Coulon C, et al. In vivo Imaging of human cerebral nicotinic acetylcholine receptors with 2-F-18-fluoro-A-85380 and PET. J Nucl Med 2005;46:240–7.PubMed
88.
go back to reference Kimes AS, Horti AG, London ED, Chefer SI, Contoreggi C, Ernst M, et al. 2-[F-18]F-A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. Faseb J 2003;10:1331–3. Kimes AS, Horti AG, London ED, Chefer SI, Contoreggi C, Ernst M, et al. 2-[F-18]F-A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. Faseb J 2003;10:1331–3.
89.
go back to reference Shumway DA, Pavlova OA, Mukhin AG. A simplified method for the measurement of nonmetabolized 2-[F-18]F-A-85380 in blood plasma using solid-phase extraction. Nucl Med Biol 2007;34:221–8.PubMedCrossRef Shumway DA, Pavlova OA, Mukhin AG. A simplified method for the measurement of nonmetabolized 2-[F-18]F-A-85380 in blood plasma using solid-phase extraction. Nucl Med Biol 2007;34:221–8.PubMedCrossRef
90.
go back to reference Staley JK, van Dyck CH, Weirizimmer D, Brenner E, Baldwin RA, Tamagnan GD, et al. I-123-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: Feasibility and reproducibility. J Nucl Med 2005;46:1466–72.PubMed Staley JK, van Dyck CH, Weirizimmer D, Brenner E, Baldwin RA, Tamagnan GD, et al. I-123-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: Feasibility and reproducibility. J Nucl Med 2005;46:1466–72.PubMed
91.
go back to reference Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, et al. Human tobacco smokers in early abstinence have higher levels of β2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 2006;26:8707–14.PubMedCrossRef Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, et al. Human tobacco smokers in early abstinence have higher levels of β2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 2006;26:8707–14.PubMedCrossRef
92.
go back to reference Picard F, Bruel D, Servent D, Saba W, Fruchart-Gaillard C, Schollhorn-Peyronneau MA, et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 2006;129:2047–60.PubMedCrossRef Picard F, Bruel D, Servent D, Saba W, Fruchart-Gaillard C, Schollhorn-Peyronneau MA, et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 2006;129:2047–60.PubMedCrossRef
93.
go back to reference O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, et al. α4β2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 SPECT. J Neurol Neurosurg Psychiatry 2007;78:356–62.PubMedCrossRef O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, et al. α4β2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 SPECT. J Neurol Neurosurg Psychiatry 2007;78:356–62.PubMedCrossRef
94.
go back to reference Gündisch D, Koren AO, Horti AG, Pavlova OA, Kimes AS, Mukhin AG, et al. In vitro characterization of 6-[F-18]fluoro-A85380, a high-affinity ligand for alpha 4 beta 2*nicotinic acetylcholine receptors. Synapse 2005;55:89–97.PubMedCrossRef Gündisch D, Koren AO, Horti AG, Pavlova OA, Kimes AS, Mukhin AG, et al. In vitro characterization of 6-[F-18]fluoro-A85380, a high-affinity ligand for alpha 4 beta 2*nicotinic acetylcholine receptors. Synapse 2005;55:89–97.PubMedCrossRef
95.
go back to reference Mukhin AG, Gündisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, et al. 5-Iodo-A-85380, an alpha 4 beta 2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 2000;57:642–9.PubMed Mukhin AG, Gündisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, et al. 5-Iodo-A-85380, an alpha 4 beta 2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 2000;57:642–9.PubMed
96.
go back to reference Horti AG, Scheffel U, Koren AO, Ravert HT, Mathews WB, Musachio JL, et al. 2-[F-18]fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nucl Med Biol 1998;25:599–603.PubMedCrossRef Horti AG, Scheffel U, Koren AO, Ravert HT, Mathews WB, Musachio JL, et al. 2-[F-18]fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nucl Med Biol 1998;25:599–603.PubMedCrossRef
97.
go back to reference Chefer SI, London ED, Koren AO, Pavlova OA, Kurian V, Kimes AS, et al. Graphical analysis of 2-[F-18]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 2003;48:25–34.PubMedCrossRef Chefer SI, London ED, Koren AO, Pavlova OA, Kurian V, Kimes AS, et al. Graphical analysis of 2-[F-18]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 2003;48:25–34.PubMedCrossRef
98.
go back to reference Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet 1997;349:1735–9.PubMedCrossRef Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet 1997;349:1735–9.PubMedCrossRef
99.
go back to reference Sabri O, Hellwig D, Schreckenberger M, Cremerius U, Schneider R, Kaiser HJ, et al. Correlation of neuropsychological, morphological and functional (regional cerebral blood flow and glucose utilization) findings in cerebral microangiopathy. J Nucl Med 1998;39:147–54.PubMed Sabri O, Hellwig D, Schreckenberger M, Cremerius U, Schneider R, Kaiser HJ, et al. Correlation of neuropsychological, morphological and functional (regional cerebral blood flow and glucose utilization) findings in cerebral microangiopathy. J Nucl Med 1998;39:147–54.PubMed
100.
go back to reference Sabri O, Ringelstein EB, Hellwig D, Schneider R, Schreckenberger M, Kaiser HJ, et al. Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke 1999;30:556–66.PubMed Sabri O, Ringelstein EB, Hellwig D, Schneider R, Schreckenberger M, Kaiser HJ, et al. Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke 1999;30:556–66.PubMed
101.
go back to reference Sorger D, Becker GA, Hauber K, Schildan A, Patt M, Birkenmeier G, et al. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nucl Med Biol 2006;33:899–906.PubMedCrossRef Sorger D, Becker GA, Hauber K, Schildan A, Patt M, Birkenmeier G, et al. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nucl Med Biol 2006;33:899–906.PubMedCrossRef
102.
go back to reference Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, et al. Measurement of the α4β2* nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 2007;34:331–42.PubMedCrossRef Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, et al. Measurement of the α4β2* nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 2007;34:331–42.PubMedCrossRef
103.
go back to reference Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, et al. 6-[F-18]fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: Studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 2004;53:184–9.PubMedCrossRef Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, et al. 6-[F-18]fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: Studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 2004;53:184–9.PubMedCrossRef
104.
go back to reference Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 2004;29:108–16.PubMedCrossRef Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 2004;29:108–16.PubMedCrossRef
105.
go back to reference Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 1992;58:529–41.PubMedCrossRef Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 1992;58:529–41.PubMedCrossRef
106.
go back to reference Rinne JO, Myllykylä T, Lönnberg P, Marjamäki P. A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 1991;547:167–70.PubMedCrossRef Rinne JO, Myllykylä T, Lönnberg P, Marjamäki P. A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 1991;547:167–70.PubMedCrossRef
107.
go back to reference Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 2005;62:1728–33.PubMedCrossRef Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 2005;62:1728–33.PubMedCrossRef
108.
go back to reference Friedland RP, Brun A, Budinger TF. Pathological and positron emission tomographic correlations in Alzheimers-disease. Lancet 1985;1:228.PubMedCrossRef Friedland RP, Brun A, Budinger TF. Pathological and positron emission tomographic correlations in Alzheimers-disease. Lancet 1985;1:228.PubMedCrossRef
109.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMedCrossRef Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMedCrossRef
110.
go back to reference Boxer AL, Rankin KP, Miller BL, Schuff N, Weiner M, Gorno-Tempini ML, et al. Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch Neurol 2003;60:949–56.PubMedCrossRef Boxer AL, Rankin KP, Miller BL, Schuff N, Weiner M, Gorno-Tempini ML, et al. Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch Neurol 2003;60:949–56.PubMedCrossRef
111.
go back to reference Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001;358:201–5.PubMedCrossRef Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001;358:201–5.PubMedCrossRef
112.
go back to reference Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi E, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007;68:288–91.PubMedCrossRef Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi E, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007;68:288–91.PubMedCrossRef
113.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic-approach in Alzheimers-disease using 3-dimensional stereotaxic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic-approach in Alzheimers-disease using 3-dimensional stereotaxic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48.PubMed
114.
go back to reference Frölich L. Cholinergic pathology in Alzheimer’s disease—discrepancies between clinical experience and pathophysiological findings. J Neural Transm 2002;109:1003–14.PubMedCrossRef Frölich L. Cholinergic pathology in Alzheimer’s disease—discrepancies between clinical experience and pathophysiological findings. J Neural Transm 2002;109:1003–14.PubMedCrossRef
115.
go back to reference Arendt T, Bigl V. Alzheimers-Disease as a presumptive threshold phenomenon. Neurobiol Aging 1987;8:552–4.PubMedCrossRef Arendt T, Bigl V. Alzheimers-Disease as a presumptive threshold phenomenon. Neurobiol Aging 1987;8:552–4.PubMedCrossRef
116.
go back to reference Meyer P, Kendziorra K, Barthel H, Hesse S, Becker G, Sorger D, et al. Quantitative assessment of the cerebral α4β2 nicotinic acetylcholine receptors in Parkinsons disease: a PET study using 2-[18F]F-A-85380. J Nucl Med 2005;46:65. Meyer P, Kendziorra K, Barthel H, Hesse S, Becker G, Sorger D, et al. Quantitative assessment of the cerebral α4β2 nicotinic acetylcholine receptors in Parkinsons disease: a PET study using 2-[18F]F-A-85380. J Nucl Med 2005;46:65.
117.
go back to reference Meyer P, Kendziorra K, Hesse S, Becker G, Strecker K, Patt M, et al. Nicotinic acetylcholine receptors (α4β2) and their relationship to cognitive and mood symptoms in Parkinson’s disease (PD): a 2-F18-F-A-85380-PET (2FA-PET) study. J Nucl Med 2006;47:209. Meyer P, Kendziorra K, Hesse S, Becker G, Strecker K, Patt M, et al. Nicotinic acetylcholine receptors (α4β2) and their relationship to cognitive and mood symptoms in Parkinson’s disease (PD): a 2-F18-F-A-85380-PET (2FA-PET) study. J Nucl Med 2006;47:209.
118.
go back to reference Meyer P, Kendziorra K, Hesse S, Becker G, Strecker K, Hensel A, et al. Nicotinic acetylcholine receptors (α4β2) and their relationship to cognitive and mood symptoms in Parkinson disease: a 2-[18F]-F-A-85380 PET study. Neuroimage 2006;31:T151.CrossRef Meyer P, Kendziorra K, Hesse S, Becker G, Strecker K, Hensel A, et al. Nicotinic acetylcholine receptors (α4β2) and their relationship to cognitive and mood symptoms in Parkinson disease: a 2-[18F]-F-A-85380 PET study. Neuroimage 2006;31:T151.CrossRef
119.
go back to reference Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical-diagnosis of Alzheimers-disease—report of the NINCDS-ADRDA work group under the auspices of department-of-health-and-human-services task-force on Alzheimers-disease. Neurology 1984;34:939–44.PubMed Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical-diagnosis of Alzheimers-disease—report of the NINCDS-ADRDA work group under the auspices of department-of-health-and-human-services task-force on Alzheimers-disease. Neurology 1984;34:939–44.PubMed
120.
go back to reference Nagy Z, Esiri MM, Hindley NJ, Joachim C, Morris JH, King EMF, et al. Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement Geriatr Cogn Disord 1998;9:219–26.PubMedCrossRef Nagy Z, Esiri MM, Hindley NJ, Joachim C, Morris JH, King EMF, et al. Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement Geriatr Cogn Disord 1998;9:219–26.PubMedCrossRef
121.
go back to reference Dolci L, Dolle F, Valette H, Vaufrey F, Fuseau C, Bottlaender M, et al. Synthesis of a fluorine-18 labeled derivative of epibatidine for in vivo nicotinic acetylcholine receptor PET imaging. Bioorg Med Chem 1999;7:467–79.PubMedCrossRef Dolci L, Dolle F, Valette H, Vaufrey F, Fuseau C, Bottlaender M, et al. Synthesis of a fluorine-18 labeled derivative of epibatidine for in vivo nicotinic acetylcholine receptor PET imaging. Bioorg Med Chem 1999;7:467–79.PubMedCrossRef
122.
go back to reference Patt JT, Spang JE, Buck A, Cristina H, Arras M, Schubiger PA, et al. Synthesis and in vivo studies of the stereoisomers of N-[11C]methyl-homoepibatidine. Nucl Med Biol 2001;28:645–55.PubMedCrossRef Patt JT, Spang JE, Buck A, Cristina H, Arras M, Schubiger PA, et al. Synthesis and in vivo studies of the stereoisomers of N-[11C]methyl-homoepibatidine. Nucl Med Biol 2001;28:645–55.PubMedCrossRef
123.
go back to reference Avalos M, Parker MJ, Maddox FN, Carroll FI, Luetje CW. Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther 2002;302:1246–52.PubMedCrossRef Avalos M, Parker MJ, Maddox FN, Carroll FI, Luetje CW. Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther 2002;302:1246–52.PubMedCrossRef
124.
go back to reference Horti AG, Scheffel U, Kimes AS, Musachio JL, Ravert HT, Mathews WB, et al. Synthesis and evaluation of N-[C-11]methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. J Med Chem 1998;41:4199–206.PubMedCrossRef Horti AG, Scheffel U, Kimes AS, Musachio JL, Ravert HT, Mathews WB, et al. Synthesis and evaluation of N-[C-11]methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. J Med Chem 1998;41:4199–206.PubMedCrossRef
125.
go back to reference Smith DF, Jakobsen S. Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 2007;17:507–22.PubMedCrossRef Smith DF, Jakobsen S. Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 2007;17:507–22.PubMedCrossRef
126.
go back to reference Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, et al. Tacrine restores cholinergic nicotinic receptors and glucose-metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 1992;13:747–58.PubMedCrossRef Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, et al. Tacrine restores cholinergic nicotinic receptors and glucose-metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 1992;13:747–58.PubMedCrossRef
127.
go back to reference Bohnen N, Frey K. Imaging of cholinergic and monoaminergic neurochemical changes in neurodegenerative disorders. Mol Imaging Biol 2007;9:243–57.PubMedCrossRef Bohnen N, Frey K. Imaging of cholinergic and monoaminergic neurochemical changes in neurodegenerative disorders. Mol Imaging Biol 2007;9:243–57.PubMedCrossRef
128.
go back to reference Tomizawa M, Cowan A, Casida JE. Analgesic and toxic effects of neonicotinoid insecticides in mice. Toxicol Appl Pharmacol 2001;177:77–83.PubMedCrossRef Tomizawa M, Cowan A, Casida JE. Analgesic and toxic effects of neonicotinoid insecticides in mice. Toxicol Appl Pharmacol 2001;177:77–83.PubMedCrossRef
129.
go back to reference Deuther-Conrad W, Patt JT, Feuerbach D, Wegner F, Brust P, Steinbach J. Norchloro-fluoro-homoepibatidine: specificity to neuronal nicotinic acetylcholine receptor subtypes in vitro. Farmaco 2004;59:785–92.PubMedCrossRef Deuther-Conrad W, Patt JT, Feuerbach D, Wegner F, Brust P, Steinbach J. Norchloro-fluoro-homoepibatidine: specificity to neuronal nicotinic acetylcholine receptor subtypes in vitro. Farmaco 2004;59:785–92.PubMedCrossRef
130.
go back to reference Abreo MA, Lin NH, Garvey DS, Gunn DE, Hettinger AM, Wasicak JT, et al. Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 1996;39:817–25.PubMedCrossRef Abreo MA, Lin NH, Garvey DS, Gunn DE, Hettinger AM, Wasicak JT, et al. Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 1996;39:817–25.PubMedCrossRef
131.
go back to reference Xiao Y, Kellar KJ. The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004;310:98–107.PubMedCrossRef Xiao Y, Kellar KJ. The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004;310:98–107.PubMedCrossRef
132.
go back to reference Kulak JM, Sum J, Musachio JL, McIntosh JM, Quik M. 5-Iodo-A-85380 binds to alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors (nAChRs) as well as alpha 4 beta 2*subtypes. J Neurochem 2002;81:403–6.PubMedCrossRef Kulak JM, Sum J, Musachio JL, McIntosh JM, Quik M. 5-Iodo-A-85380 binds to alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors (nAChRs) as well as alpha 4 beta 2*subtypes. J Neurochem 2002;81:403–6.PubMedCrossRef
133.
go back to reference Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005;48:4705–45.PubMedCrossRef Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005;48:4705–45.PubMedCrossRef
134.
go back to reference Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindström JM, Fan H, et al. Long-term nicotine treatment decreases striatal α6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 2005;67:1639–47.PubMedCrossRef Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindström JM, Fan H, et al. Long-term nicotine treatment decreases striatal α6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 2005;67:1639–47.PubMedCrossRef
135.
go back to reference Deuther-Conrad W, Patt JT, Lockman PR, Allen DD, Patt M, Schildan A, et al. Norchloro-fluoro-homoepibatidine (NCFHEB)—a promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. Eur Neuropsychopharmacol 2008;18:222–29.PubMedCrossRef Deuther-Conrad W, Patt JT, Lockman PR, Allen DD, Patt M, Schildan A, et al. Norchloro-fluoro-homoepibatidine (NCFHEB)—a promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. Eur Neuropsychopharmacol 2008;18:222–29.PubMedCrossRef
136.
go back to reference Vaupel DB, Tella SR, Huso DL, Wagner VO, Mukhin AG, Chefer SI, et al. Pharmacological and toxicological evaluation of 2-fluoro-3(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 2005;312:355–65.PubMedCrossRef Vaupel DB, Tella SR, Huso DL, Wagner VO, Mukhin AG, Chefer SI, et al. Pharmacological and toxicological evaluation of 2-fluoro-3(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 2005;312:355–65.PubMedCrossRef
137.
go back to reference Deuther-Conrad W, Wevers A, Becker G, Schildan A, Patt M, Sabri O, et al. Autoradiography of 2[F-18]F-A-85380 on nicotinic acetylcholine receptors in the porcine brain in vitro. Synapse 2006;59:201–10.PubMedCrossRef Deuther-Conrad W, Wevers A, Becker G, Schildan A, Patt M, Sabri O, et al. Autoradiography of 2[F-18]F-A-85380 on nicotinic acetylcholine receptors in the porcine brain in vitro. Synapse 2006;59:201–10.PubMedCrossRef
138.
go back to reference London ED, Scheffel U, Kimes AS, Kellar KJ. In-Vivo Labeling of Nicotinic Acetylcholine-Receptors in Brain with [H-3] Epibatidine. Eur J Pharmacol 1995;278:R1–2.PubMedCrossRef London ED, Scheffel U, Kimes AS, Kellar KJ. In-Vivo Labeling of Nicotinic Acetylcholine-Receptors in Brain with [H-3] Epibatidine. Eur J Pharmacol 1995;278:R1–2.PubMedCrossRef
139.
go back to reference Musachio JL, Villemagne VL, Scheffel U, Stathis M, Finley P, Horti A, et al. [I-125/123]IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors. Synapse 1997;26:392–9.PubMedCrossRef Musachio JL, Villemagne VL, Scheffel U, Stathis M, Finley P, Horti A, et al. [I-125/123]IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors. Synapse 1997;26:392–9.PubMedCrossRef
140.
go back to reference Iida Y, Ogawa M, Ueda M, Tominaga A, Kawashima H, Magata Y, et al. Evaluation of 5-C-11-methyl-A-85380 as an imaging agent for PET invesvigations of brain nicotinic acetylcholine receptors. J Nucl Med 2004;45:878–84.PubMed Iida Y, Ogawa M, Ueda M, Tominaga A, Kawashima H, Magata Y, et al. Evaluation of 5-C-11-methyl-A-85380 as an imaging agent for PET invesvigations of brain nicotinic acetylcholine receptors. J Nucl Med 2004;45:878–84.PubMed
141.
go back to reference Zhang Y, Pavlova OA, Chefer SI, Hall AW, Kurian V, Brown LL, et al. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for α4β2 nicotinic acetylcholine receptor and wide range of lipophilicity: Potential probes for imaging with positron emission tomography. J Med Chem 2004;47:2453–65.PubMedCrossRef Zhang Y, Pavlova OA, Chefer SI, Hall AW, Kurian V, Brown LL, et al. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for α4β2 nicotinic acetylcholine receptor and wide range of lipophilicity: Potential probes for imaging with positron emission tomography. J Med Chem 2004;47:2453–65.PubMedCrossRef
142.
go back to reference Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003;5:376–89.PubMedCrossRef Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003;5:376–89.PubMedCrossRef
143.
go back to reference Allen DD, Lockman PR, Roder KE, Dwoskin LP, Crooks PA. Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter. J Pharmacol Exp Ther 2003;304:1268–74.PubMedCrossRef Allen DD, Lockman PR, Roder KE, Dwoskin LP, Crooks PA. Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter. J Pharmacol Exp Ther 2003;304:1268–74.PubMedCrossRef
144.
go back to reference Allen DD, Lockman PR. The blood–brain barrier choline transporter as a brain drug delivery vector. Life Sci 2003;73:1609–15.PubMedCrossRef Allen DD, Lockman PR. The blood–brain barrier choline transporter as a brain drug delivery vector. Life Sci 2003;73:1609–15.PubMedCrossRef
145.
go back to reference Friedrich A, George RL, Bridges CC, Prasad PD, Ganapathy V. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim Biophys Acta Biomembr 2001;1512:299–307.CrossRef Friedrich A, George RL, Bridges CC, Prasad PD, Ganapathy V. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim Biophys Acta Biomembr 2001;1512:299–307.CrossRef
146.
go back to reference Brust P, Jordan K. Effects of the nootropic AWD 52-39 on the blood–brain transfer of leucine, choline and glucose in rats after 14-D exposure to ethanol. Pharmazie 1992;47:616–20.PubMed Brust P, Jordan K. Effects of the nootropic AWD 52-39 on the blood–brain transfer of leucine, choline and glucose in rats after 14-D exposure to ethanol. Pharmazie 1992;47:616–20.PubMed
147.
go back to reference Cornford EM, Cornford ME. Nutrient transport and the blood–brain-barrier in developing animals. Fed Proc 1986;45:2065–72.PubMed Cornford EM, Cornford ME. Nutrient transport and the blood–brain-barrier in developing animals. Fed Proc 1986;45:2065–72.PubMed
148.
go back to reference Kassiou M, Bottlaender M, Loc, h C, Dolle F, Musachio JL, Coulon C, et al. Pharmacological evaluation of a Br-76 analog of epibatidine: a potent ligand for studying brain nicotinic acetylcholine receptors. Synapse 2002;45:95–104.PubMedCrossRef Kassiou M, Bottlaender M, Loc, h C, Dolle F, Musachio JL, Coulon C, et al. Pharmacological evaluation of a Br-76 analog of epibatidine: a potent ligand for studying brain nicotinic acetylcholine receptors. Synapse 2002;45:95–104.PubMedCrossRef
149.
go back to reference Ding YS, Kil KE, Lin KS, Ma W, Yokota Y, Carroll IF. A novel nicotinic acetylcholine receptor antagonist radioligand for PET studies. Bioorg Med Chem Lett 2006;16:1049–53.PubMedCrossRef Ding YS, Kil KE, Lin KS, Ma W, Yokota Y, Carroll IF. A novel nicotinic acetylcholine receptor antagonist radioligand for PET studies. Bioorg Med Chem Lett 2006;16:1049–53.PubMedCrossRef
150.
go back to reference Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000;61:75–111.PubMedCrossRef Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000;61:75–111.PubMedCrossRef
151.
go back to reference Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine (NCFHEB). Synapse 2008;62:205–18.PubMedCrossRef Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine (NCFHEB). Synapse 2008;62:205–18.PubMedCrossRef
152.
go back to reference Mitkovski S, Villemagne VL, Novakovic KE, O, Keefe G, Tochon-Danguy H, Mulligan RS, et al. Simplified quantification of nicotinic receptors with 2[F-18]F-A-85380 PET. Nucl Med Biol 2005;32:585–91.PubMedCrossRef Mitkovski S, Villemagne VL, Novakovic KE, O, Keefe G, Tochon-Danguy H, Mulligan RS, et al. Simplified quantification of nicotinic receptors with 2[F-18]F-A-85380 PET. Nucl Med Biol 2005;32:585–91.PubMedCrossRef
153.
go back to reference Dart MJ, Wasicak JT, Ryther KB, Schrimpf MR, Kim KH, Anderson DJ, et al. Structural aspects of high affinity ligands for the α4β2 neuronal nicotinic receptor. Pharm Acta Helv 2000;74:115–23.PubMedCrossRef Dart MJ, Wasicak JT, Ryther KB, Schrimpf MR, Kim KH, Anderson DJ, et al. Structural aspects of high affinity ligands for the α4β2 neuronal nicotinic receptor. Pharm Acta Helv 2000;74:115–23.PubMedCrossRef
154.
go back to reference Grinevich VP, Letchworth SR, Lindenberger KA, Menager J, Mary V, Sadieva KA, et al. Heterologous expression of human α6β4β3α5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the alpha 5 subunit. J Pharmacol Exp Ther 2005;312:619–26.PubMedCrossRef Grinevich VP, Letchworth SR, Lindenberger KA, Menager J, Mary V, Sadieva KA, et al. Heterologous expression of human α6β4β3α5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the alpha 5 subunit. J Pharmacol Exp Ther 2005;312:619–26.PubMedCrossRef
155.
go back to reference Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, et al. Measurement of the α4β2*nicotinic acetylcholine receptor ligand 2-[F-18]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 2007;34:331–42.PubMedCrossRef Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, et al. Measurement of the α4β2*nicotinic acetylcholine receptor ligand 2-[F-18]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 2007;34:331–42.PubMedCrossRef
Metadata
Title
Acetylcholine receptors in dementia and mild cognitive impairment
Authors
Osama Sabri
Kai Kendziorra
Henrike Wolf
Hermann-Josef Gertz
Peter Brust
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0701-1

Other articles of this Special Issue 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Go to the issue