Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

01-06-2017 | NON-THEMATIC REVIEW

Cleavage and phosphorylation: important post-translational modifications of galectin-3

Authors: Xiaoge Gao, Jingjie Liu, Xiangye Liu, Liantao Li, Junnian Zheng

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

As the unique chimeric member of the β-galactoside-binding protein family, galectin-3 is a multivalent and multifunctional oncogenic protein involved in multiple physiological and pathological processes, including cell growth, cell differentiation, cell adhesion, RNA splicing, cell apoptosis, and malignant transformation. Post-translational modifications can effectively increase a protein’s functional diversity, either by degradation or adding chemical modifications, thus regulating activity, localization, and ligand interaction. In order to clearly understand the functional mechanisms of galectin-3 involved in normal cell biology and pathogenesis, here, we have summarized the previously reported post-translational modifications of galectin-3, including cleavage and phosphorylation. Cleavage of galectin-3 by MMPs, PSA, and proteases from parasites generated intact carbohydrate-recognition domain and N-terminal peptides of varying lengths that retained lectin binding activity but lost multivalence. Serine and tyrosine phosphorylation of galectin-3 by c-Abl, CKI, and GSK-3β could regulate its localization and associated signal transduction. Accordingly, cleavage and phosphorylation play an important role in regulating galectin-3 function via altering its multivalence, localization, and ligand interaction.
Literature
1.
go back to reference Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate Journal, 19, 433–440.CrossRef Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate Journal, 19, 433–440.CrossRef
2.
go back to reference Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.CrossRefPubMed Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.CrossRefPubMed
3.
go back to reference Dumic, J., Dabelic, S., & Flögel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta - General Subjects, 1760, 616–635.CrossRef Dumic, J., Dabelic, S., & Flögel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta - General Subjects, 1760, 616–635.CrossRef
4.
go back to reference Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., & Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry, 268, 26712–26718.PubMed Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., & Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry, 268, 26712–26718.PubMed
5.
go back to reference Gao, X., Liu, D., Fan, Y., Li, X., Xue, H., Ma, Y., Zhou, Y., & Tai, G. (2012). The two Endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PloS One, 7, e52430.CrossRefPubMedPubMedCentral Gao, X., Liu, D., Fan, Y., Li, X., Xue, H., Ma, Y., Zhou, Y., & Tai, G. (2012). The two Endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PloS One, 7, e52430.CrossRefPubMedPubMedCentral
6.
go back to reference Ochieng, J., Furtak, V., & Lukyanov, P. (2002). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.CrossRefPubMed Ochieng, J., Furtak, V., & Lukyanov, P. (2002). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.CrossRefPubMed
7.
go back to reference Menon, R. P., & Hughes, R. C. (1999). Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. European Journal of Biochemistry, 264, 569–576.CrossRefPubMed Menon, R. P., & Hughes, R. C. (1999). Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. European Journal of Biochemistry, 264, 569–576.CrossRefPubMed
8.
go back to reference Zhu, W. Q., & Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Research, 61, 1869–1873.PubMed Zhu, W. Q., & Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Research, 61, 1869–1873.PubMed
9.
go back to reference Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B. C., Macaluso, F., & Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. Journal of Biological Chemistry, 279, 10841–10847.CrossRefPubMed Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B. C., Macaluso, F., & Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. Journal of Biological Chemistry, 279, 10841–10847.CrossRefPubMed
10.
go back to reference Lepur, A., Salomonsson, E., Nilsson, U. J., & Leffler, H. (2012). Ligand induced galectin-3 protein self-association. Journal of Biological Chemistry, 287, 21751–21756.CrossRefPubMedPubMedCentral Lepur, A., Salomonsson, E., Nilsson, U. J., & Leffler, H. (2012). Ligand induced galectin-3 protein self-association. Journal of Biological Chemistry, 287, 21751–21756.CrossRefPubMedPubMedCentral
11.
go back to reference Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.CrossRefPubMed Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.CrossRefPubMed
12.
go back to reference Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. C., & Raz, A. (1997). Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research, 57, 5272–5276.PubMed Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. C., & Raz, A. (1997). Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research, 57, 5272–5276.PubMed
13.
go back to reference Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., & Kloog, Y. (2008). K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68, 6608–6616.CrossRefPubMedPubMedCentral Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., & Kloog, Y. (2008). K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68, 6608–6616.CrossRefPubMedPubMedCentral
14.
go back to reference Liu, F. T., Patterson, R. J., & Wang, J. L. (2002). Intracellular functions of galectins. Biochimica et Biophysica Acta - General Subjects, 1572, 263–273.CrossRef Liu, F. T., Patterson, R. J., & Wang, J. L. (2002). Intracellular functions of galectins. Biochimica et Biophysica Acta - General Subjects, 1572, 263–273.CrossRef
15.
go back to reference Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 8, 33–41.CrossRefPubMed Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 8, 33–41.CrossRefPubMed
17.
go back to reference Rundhaug, J. E. (2003). Matrix Metalloproteinases, angiogenesis, and cancer. Clinical Cancer Research, 9, 551.PubMed Rundhaug, J. E. (2003). Matrix Metalloproteinases, angiogenesis, and cancer. Clinical Cancer Research, 9, 551.PubMed
18.
go back to reference Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–573.CrossRefPubMed Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–573.CrossRefPubMed
19.
go back to reference Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562.CrossRefPubMed Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562.CrossRefPubMed
20.
go back to reference Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., & Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.CrossRefPubMed Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., & Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.CrossRefPubMed
21.
go back to reference Ochieng, J., Green, B., Evans, S., James, O., & Warfield, P. (1998). Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochimica et Biophysica Acta - General Subjects, 1379, 97–106.CrossRef Ochieng, J., Green, B., Evans, S., James, O., & Warfield, P. (1998). Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochimica et Biophysica Acta - General Subjects, 1379, 97–106.CrossRef
22.
go back to reference Nangia-Makker, P., Raz, T., Tait, L., Hogan, V., Fridman, R., & Raz, A. (2007). Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Research, 67, 11760–11768.CrossRefPubMedPubMedCentral Nangia-Makker, P., Raz, T., Tait, L., Hogan, V., Fridman, R., & Raz, A. (2007). Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Research, 67, 11760–11768.CrossRefPubMedPubMedCentral
23.
go back to reference Balan, V., Nangia-Makker, P., Schwartz, A. G., Young, S. J., Tait, L., Hogan, V., Raz, T., Wang, Y., Zeng, Q. Y., Gen, S. W., Guo, Y., Li, H., Abrams, J., Couch, F. J., Lingle, W. L., Lloyd, R. V., Ethier, S. P., Tainsky, M. A., & Raz, A. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): A pilot study. Cancer Research, 68, 10045–10050.CrossRefPubMedPubMedCentral Balan, V., Nangia-Makker, P., Schwartz, A. G., Young, S. J., Tait, L., Hogan, V., Raz, T., Wang, Y., Zeng, Q. Y., Gen, S. W., Guo, Y., Li, H., Abrams, J., Couch, F. J., Lingle, W. L., Lloyd, R. V., Ethier, S. P., Tainsky, M. A., & Raz, A. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): A pilot study. Cancer Research, 68, 10045–10050.CrossRefPubMedPubMedCentral
24.
go back to reference Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., & Raz, A. (2010). Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. International Journal of Cancer. Journal International du Cancer, 127, 2530–2541.CrossRefPubMedPubMedCentral Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., & Raz, A. (2010). Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. International Journal of Cancer. Journal International du Cancer, 127, 2530–2541.CrossRefPubMedPubMedCentral
25.
go back to reference Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. W., & Werb, Z. (2005). Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during Endochondral bone formation. Molecular Biology of the Cell, 16, 3028–3039.CrossRefPubMedPubMedCentral Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. W., & Werb, Z. (2005). Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during Endochondral bone formation. Molecular Biology of the Cell, 16, 3028–3039.CrossRefPubMedPubMedCentral
26.
go back to reference Dange, M. C., Agarwal, A. K., & Kalraiya, R. D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Molecular and Cellular Biochemistry, 404, 79–86.CrossRefPubMed Dange, M. C., Agarwal, A. K., & Kalraiya, R. D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Molecular and Cellular Biochemistry, 404, 79–86.CrossRefPubMed
27.
go back to reference Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Experimental & Molecular Medicine, 44, 387–393.CrossRef Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Experimental & Molecular Medicine, 44, 387–393.CrossRef
28.
go back to reference Mauris, J., Woodward, A. M., Cao, Z., Panjwani, N., & Argueso, P. (2014). Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3. Journal of Cell Science, 127, 3141–3148.CrossRefPubMedPubMedCentral Mauris, J., Woodward, A. M., Cao, Z., Panjwani, N., & Argueso, P. (2014). Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3. Journal of Cell Science, 127, 3141–3148.CrossRefPubMedPubMedCentral
29.
go back to reference Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K. J., & Kwon, J. H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflammatory Bowel Diseases, 17, 260–267.CrossRefPubMed Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K. J., & Kwon, J. H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflammatory Bowel Diseases, 17, 260–267.CrossRefPubMed
30.
go back to reference McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., Fridman, R., & Rempel, S. A. (2007). SPARC Upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG Glioma cells. Neuroscience Letters, 419, 172–177.CrossRefPubMedPubMedCentral McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., Fridman, R., & Rempel, S. A. (2007). SPARC Upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG Glioma cells. Neuroscience Letters, 419, 172–177.CrossRefPubMedPubMedCentral
31.
go back to reference Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F., Richard, M., Fernandes, J., Pelletier, J., & Reboul, P. (2004). Galectin-3 surface expression on human adult chondrocytes: A potential substrate for collagenase-3. Annals of the Rheumatic Diseases, 63, 636–643.CrossRefPubMedPubMedCentral Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F., Richard, M., Fernandes, J., Pelletier, J., & Reboul, P. (2004). Galectin-3 surface expression on human adult chondrocytes: A potential substrate for collagenase-3. Annals of the Rheumatic Diseases, 63, 636–643.CrossRefPubMedPubMedCentral
32.
go back to reference Yokoyama, Y., Grunebach, F., Schmidt, S. M., Heine, A., Hantschel, M., Stevanovic, S., Rammensee, H. G., & Brossart, P. (2008). Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clinical Cancer Research, 14, 5503–5511.CrossRefPubMed Yokoyama, Y., Grunebach, F., Schmidt, S. M., Heine, A., Hantschel, M., Stevanovic, S., Rammensee, H. G., & Brossart, P. (2008). Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clinical Cancer Research, 14, 5503–5511.CrossRefPubMed
33.
go back to reference Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.CrossRefPubMed Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.CrossRefPubMed
34.
go back to reference Jones, J. L., Saraswati, S., Block, A. S., Lichti, C. F., Mahadevan, M., & Diekman, A. B. (2010). Galectin-3 is associated with Prostasomes in human semen. Glycoconjugate Journal, 27, 227–236.CrossRefPubMed Jones, J. L., Saraswati, S., Block, A. S., Lichti, C. F., Mahadevan, M., & Diekman, A. B. (2010). Galectin-3 is associated with Prostasomes in human semen. Glycoconjugate Journal, 27, 227–236.CrossRefPubMed
36.
go back to reference Saraswati, S., Block, A. S., Davidson, M. K., Rank, R. G., Mahadevan, M., & Diekman, A. B. (2011). Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. The Prostate, 71, 197–208.CrossRefPubMedPubMedCentral Saraswati, S., Block, A. S., Davidson, M. K., Rank, R. G., Mahadevan, M., & Diekman, A. B. (2011). Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. The Prostate, 71, 197–208.CrossRefPubMedPubMedCentral
37.
go back to reference Balan, V., Wang, Y., Nangia-Makker, P., Kho, D., Bajaj, M., Smith, D., Heilbrun, L., Raz, A., & Heath, E. (2013). Galectin-3: A possible complementary marker to the PSA blood test. Oncotarget, 4, 542–549.CrossRefPubMedPubMedCentral Balan, V., Wang, Y., Nangia-Makker, P., Kho, D., Bajaj, M., Smith, D., Heilbrun, L., Raz, A., & Heath, E. (2013). Galectin-3: A possible complementary marker to the PSA blood test. Oncotarget, 4, 542–549.CrossRefPubMedPubMedCentral
38.
go back to reference Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends in Immunology, 23, 313–320.CrossRefPubMed Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends in Immunology, 23, 313–320.CrossRefPubMed
39.
go back to reference Hsu, D. K., Chen, H. Y., & Liu, F. T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews, 230, 114–127.CrossRefPubMed Hsu, D. K., Chen, H. Y., & Liu, F. T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews, 230, 114–127.CrossRefPubMed
40.
go back to reference Debierre-Grockiego, F., Niehus, S., Coddeville, B., Elass, E., Poirier, F., Weingart, R., Schmidt, R. R., Mazurier, J., Guerardel, Y., & Schwarz, R. T. (2010). Binding of toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. Journal of Biological Chemistry, 285, 32744–32750.CrossRefPubMedPubMedCentral Debierre-Grockiego, F., Niehus, S., Coddeville, B., Elass, E., Poirier, F., Weingart, R., Schmidt, R. R., Mazurier, J., Guerardel, Y., & Schwarz, R. T. (2010). Binding of toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. Journal of Biological Chemistry, 285, 32744–32750.CrossRefPubMedPubMedCentral
41.
go back to reference Van Den Berg, T. K., Honing, H., Franke, N., Van Remoortere, A., Schiphorst, W. E. C. M., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., & Van Die, I. (2004). LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. Journal of Immunology, 173, 1902–1907.CrossRef Van Den Berg, T. K., Honing, H., Franke, N., Van Remoortere, A., Schiphorst, W. E. C. M., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., & Van Die, I. (2004). LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. Journal of Immunology, 173, 1902–1907.CrossRef
42.
go back to reference Pelletier, I., & Sato, S. (2002). Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. The Journal of Biological Chemistry, 277, 17663–17670.CrossRefPubMed Pelletier, I., & Sato, S. (2002). Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. The Journal of Biological Chemistry, 277, 17663–17670.CrossRefPubMed
43.
go back to reference Yamazaki, K., Kawai, A., Kawaguchi, M., Hibino, Y., Li, F., Sasahara, M., Tsukada, K., & Hiraga, K. (2001). Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochemical and Biophysical Research Communications, 280, 1077–1084.CrossRefPubMed Yamazaki, K., Kawai, A., Kawaguchi, M., Hibino, Y., Li, F., Sasahara, M., Tsukada, K., & Hiraga, K. (2001). Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochemical and Biophysical Research Communications, 280, 1077–1084.CrossRefPubMed
44.
go back to reference Menon, S., Kang, C. M., & Beningo, K. A. (2011). Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochemical and Biophysical Research Communications, 410, 91–96.CrossRefPubMedPubMedCentral Menon, S., Kang, C. M., & Beningo, K. A. (2011). Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochemical and Biophysical Research Communications, 410, 91–96.CrossRefPubMedPubMedCentral
45.
go back to reference Balan, V., Nangia-Makker Pratima, P., Jung, Y. S., Wang, Y., & Raz, A. (2010). Galectin-3: A novel substrate for c-Abl kinase. Biochimica et Biophysica Acta - Molecular Cell Research, 1803, 1198–1205.CrossRef Balan, V., Nangia-Makker Pratima, P., Jung, Y. S., Wang, Y., & Raz, A. (2010). Galectin-3: A novel substrate for c-Abl kinase. Biochimica et Biophysica Acta - Molecular Cell Research, 1803, 1198–1205.CrossRef
46.
go back to reference Shaul, Y. (2000). C-Abl: Activation and nuclear targets. Cell Death and Differentiation, 7, 10–16.CrossRefPubMed Shaul, Y. (2000). C-Abl: Activation and nuclear targets. Cell Death and Differentiation, 7, 10–16.CrossRefPubMed
47.
go back to reference Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., Wang, Y., Jin, Y., Zeng, J., Li, J., Song, L., Li, P., Qian, X., & Cao, C. (2010). C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death and Differentiation, 17, 1277–1287.CrossRefPubMed Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., Wang, Y., Jin, Y., Zeng, J., Li, J., Song, L., Li, P., Qian, X., & Cao, C. (2010). C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death and Differentiation, 17, 1277–1287.CrossRefPubMed
48.
go back to reference Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in Cell Biology, 3, 8–13.CrossRefPubMed Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in Cell Biology, 3, 8–13.CrossRefPubMed
49.
go back to reference Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., & Pawson, T. (1991). SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science, 252, 668–674.CrossRefPubMed Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., & Pawson, T. (1991). SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science, 252, 668–674.CrossRefPubMed
50.
go back to reference Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., & Stoter, M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 17, 675–689.CrossRefPubMed Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., & Stoter, M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 17, 675–689.CrossRefPubMed
51.
go back to reference Agrwal, N., Cowles, E. A., Anderson, R. L., & Wang, J. L. (1990). Carbohydrate-binding protein 35: Isoelectric points of the polypeptide and a phosphorylated derivative. The Journal of Biological Chemistry, 265, 17706–17712.PubMed Agrwal, N., Cowles, E. A., Anderson, R. L., & Wang, J. L. (1990). Carbohydrate-binding protein 35: Isoelectric points of the polypeptide and a phosphorylated derivative. The Journal of Biological Chemistry, 265, 17706–17712.PubMed
52.
go back to reference Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry, 275, 36311–36315.CrossRefPubMed Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry, 275, 36311–36315.CrossRefPubMed
53.
go back to reference Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R. C., & Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. Journal of Biological Chemistry, 277, 6852–6857.CrossRefPubMed Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R. C., & Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. Journal of Biological Chemistry, 277, 6852–6857.CrossRefPubMed
55.
go back to reference Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.PubMed Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.PubMed
56.
go back to reference Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Hyeong-Reh, C. K., Bresalier, R. S., & Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and Cellular Biology, 24, 4395–4406.CrossRefPubMedPubMedCentral Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Hyeong-Reh, C. K., Bresalier, R. S., & Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and Cellular Biology, 24, 4395–4406.CrossRefPubMedPubMedCentral
57.
go back to reference Chiarugi, P., & Giannoni, E. (2008). Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 76, 1352–1364.CrossRefPubMed Chiarugi, P., & Giannoni, E. (2008). Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 76, 1352–1364.CrossRefPubMed
58.
go back to reference Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., & Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 288, 21–34.CrossRefPubMed Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., & Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 288, 21–34.CrossRefPubMed
59.
go back to reference Suliman, A., Lam, A., Datta, R., & Srivastava, R. K. (2001). Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 20, 2122–2133.CrossRefPubMed Suliman, A., Lam, A., Datta, R., & Srivastava, R. K. (2001). Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 20, 2122–2133.CrossRefPubMed
60.
go back to reference Mazurek, N., Yun, J. S., Liu, K. F., Gilcrease, M. Z., Schober, W., Nangia-Makker, P., Raz, A., & Bresalier, R. S. (2007). Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. Journal of Biological Chemistry, 282, 21337–21348.CrossRefPubMed Mazurek, N., Yun, J. S., Liu, K. F., Gilcrease, M. Z., Schober, W., Nangia-Makker, P., Raz, A., & Bresalier, R. S. (2007). Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. Journal of Biological Chemistry, 282, 21337–21348.CrossRefPubMed
61.
go back to reference Mazurek, N., Sun, Y. J., Price, J. E., Ramdas, L., Schober, W., Nangia-Makker, P., Byrd, J. C., Raz, A., & Bresalier, R. S. (2005). Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes. Cancer Research, 65, 10767–10775.CrossRefPubMed Mazurek, N., Sun, Y. J., Price, J. E., Ramdas, L., Schober, W., Nangia-Makker, P., Byrd, J. C., Raz, A., & Bresalier, R. S. (2005). Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes. Cancer Research, 65, 10767–10775.CrossRefPubMed
62.
go back to reference Díez-Revuelta, N., Velasco, S., André, S., Kaltner, H., Kübler, D., Gabius, H. J., & Abad-Rodríguez, J. (2010). Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. Journal of Cell Science, 123, 671–681.CrossRefPubMed Díez-Revuelta, N., Velasco, S., André, S., Kaltner, H., Kübler, D., Gabius, H. J., & Abad-Rodríguez, J. (2010). Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. Journal of Cell Science, 123, 671–681.CrossRefPubMed
63.
go back to reference Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., & Woodgett, J. R. (1992). Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochimica et Biophysica Acta - Reviews on Cancer, 1114, 147–162.CrossRef Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., & Woodgett, J. R. (1992). Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochimica et Biophysica Acta - Reviews on Cancer, 1114, 147–162.CrossRef
64.
go back to reference Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.CrossRefPubMedPubMedCentral Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.CrossRefPubMedPubMedCentral
65.
go back to reference Rao, T. P., & Kuhl, M. (2010). An updated overview on Wnt signaling pathways: A prelude for more. Circulation Research, 106, 1798–1806.CrossRefPubMed Rao, T. P., & Kuhl, M. (2010). An updated overview on Wnt signaling pathways: A prelude for more. Circulation Research, 106, 1798–1806.CrossRefPubMed
66.
go back to reference Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., & Raz, A. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.CrossRefPubMed Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., & Raz, A. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.CrossRefPubMed
67.
go back to reference Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C., & Bresalier, R. S. (2009). Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Research, 69, 1343–1349.CrossRefPubMedPubMedCentral Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C., & Bresalier, R. S. (2009). Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Research, 69, 1343–1349.CrossRefPubMedPubMedCentral
68.
69.
go back to reference Yu, L. G., Andrews, N., Zhao, Q., McKean, D., Williams, J. F., Connor, L. J., Gerasimenko, O. V., Hilkens, J., Hirabayashi, J., Kasai, K., & Rhodes, J. M. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. Journal of Biological Chemistry, 282, 773–781.CrossRefPubMed Yu, L. G., Andrews, N., Zhao, Q., McKean, D., Williams, J. F., Connor, L. J., Gerasimenko, O. V., Hilkens, J., Hirabayashi, J., Kasai, K., & Rhodes, J. M. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. Journal of Biological Chemistry, 282, 773–781.CrossRefPubMed
70.
go back to reference Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., & Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology, 12, 329–337.CrossRefPubMed Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., & Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology, 12, 329–337.CrossRefPubMed
71.
go back to reference Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R. C., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.PubMed Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R. C., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.PubMed
72.
go back to reference Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236.CrossRefPubMed Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236.CrossRefPubMed
Metadata
Title
Cleavage and phosphorylation: important post-translational modifications of galectin-3
Authors
Xiaoge Gao
Jingjie Liu
Xiangye Liu
Liantao Li
Junnian Zheng
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9666-0

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine