Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

Targeting PTPs with small molecule inhibitors in cancer treatment

Authors: Zhong-Xing Jiang, Zhong-Yin Zhang

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Protein tyrosine phosphorylation plays a major role in cellular signaling. The level of tyrosine phosphorylation is controlled by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Disturbance of the normal balance between PTK and PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. A number of PTPs have been implicated in oncogenesis and tumor progression and therefore are potential drug targets for cancer chemotherapy. These include PTP1B, which may augment signaling downstream of HER2/Neu; SHP2, which is the first oncogene in the PTP superfamily and is essential for growth factor-mediated signaling; the Cdc25 phosphatases, which are positive regulators of cell cycle progression; and the phosphatase of regenerating liver (PRL) phosphatases, which promote tumor metastases. As PTPs have emerged as drug targets for cancer, a number of strategies are currently been explored for the identification of various classes of PTP inhibitors. These efforts have resulted many potent, and in some cases selective, inhibitors for PTP1B, SHP2, Cdc25 and PRL phosphatases. Structural information derived from these compounds serves as a solid foundation upon which novel anti-cancer agents targeted to these PTPs can be developed.
Literature
2.
go back to reference Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7, 833–846.PubMedCrossRef Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7, 833–846.PubMedCrossRef
3.
go back to reference Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117, 699–711.PubMedCrossRef Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117, 699–711.PubMedCrossRef
4.
go back to reference Hunter, T. (1998). The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 583–605.PubMedCrossRef Hunter, T. (1998). The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 583–605.PubMedCrossRef
5.
go back to reference Zhang, Z.-Y. (2001). Protein tyrosine phosphatases: prospects for therapeutics. Current Opinion in Chemical Biology, 5, 416–423.PubMedCrossRef Zhang, Z.-Y. (2001). Protein tyrosine phosphatases: prospects for therapeutics. Current Opinion in Chemical Biology, 5, 416–423.PubMedCrossRef
6.
go back to reference Arena, S., Benvenuti, S., & Bardelli, A. (2005). Genetic analysis of the kinome and phosphatome in cancer. Cellular and Molecular Life Sciences, 62, 2092–2099.PubMedCrossRef Arena, S., Benvenuti, S., & Bardelli, A. (2005). Genetic analysis of the kinome and phosphatome in cancer. Cellular and Molecular Life Sciences, 62, 2092–2099.PubMedCrossRef
7.
go back to reference Ventura, J. J., & Nebreda, A. R. (2006). Protein kinases and phosphatases as therapeutic targets in cancer. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 8, 153–160. Ventura, J. J., & Nebreda, A. R. (2006). Protein kinases and phosphatases as therapeutic targets in cancer. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 8, 153–160.
8.
go back to reference Krause, D. S., & Van Etten, R. A. (2005). Tyrosine kinases as targets for cancer therapy. New England Journal of Medicine, 353, 172–187.PubMedCrossRef Krause, D. S., & Van Etten, R. A. (2005). Tyrosine kinases as targets for cancer therapy. New England Journal of Medicine, 353, 172–187.PubMedCrossRef
9.
go back to reference Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275, 1943–1947.PubMedCrossRef Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275, 1943–1947.PubMedCrossRef
10.
go back to reference Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K. A., Lin, H., Ligon, A. H., et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23 that is mutated in multiple advanced cancers. Nature Genetics, 15, 356–362.PubMedCrossRef Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K. A., Lin, H., Ligon, A. H., et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23 that is mutated in multiple advanced cancers. Nature Genetics, 15, 356–362.PubMedCrossRef
11.
go back to reference Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304, 1164–1166.PubMedCrossRef Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304, 1164–1166.PubMedCrossRef
12.
go back to reference Zheng, X. M., Wang, Y., & Pallen, C. J. (1992). Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature, 359, 336–339.PubMedCrossRef Zheng, X. M., Wang, Y., & Pallen, C. J. (1992). Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature, 359, 336–339.PubMedCrossRef
13.
go back to reference Ponniah, S., Wang, D. Z., Lim, K. L., & Pallen, C. J. (1999). Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Current Biology, 9, 535–538.PubMedCrossRef Ponniah, S., Wang, D. Z., Lim, K. L., & Pallen, C. J. (1999). Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Current Biology, 9, 535–538.PubMedCrossRef
14.
go back to reference Su, J., Muranjan, M., & Sap, J. (1999). Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Current Biology, 9, 505–511.PubMedCrossRef Su, J., Muranjan, M., & Sap, J. (1999). Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Current Biology, 9, 505–511.PubMedCrossRef
15.
go back to reference Noguchi, T., Matozaki, T., Horita, K., Fujioka, Y., & Kasuga, M. (1994). Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Molecular and Cell Biology, 14, 6674–6682. Noguchi, T., Matozaki, T., Horita, K., Fujioka, Y., & Kasuga, M. (1994). Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Molecular and Cell Biology, 14, 6674–6682.
16.
go back to reference Tang, T. L., Freeman Jr., R. M., O’Reilly, A. M., Neel, B. G., & Sokol, S. Y. (1995). The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell, 80, 473–483.PubMedCrossRef Tang, T. L., Freeman Jr., R. M., O’Reilly, A. M., Neel, B. G., & Sokol, S. Y. (1995). The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell, 80, 473–483.PubMedCrossRef
17.
go back to reference Bennett, A. M., Hausdorff, S. F., O’Reilly, A. M., Freeman, R. M., & Neel, B. G. (1996). Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Molecular and Cell Biology, 16, 1189–1202. Bennett, A. M., Hausdorff, S. F., O’Reilly, A. M., Freeman, R. M., & Neel, B. G. (1996). Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Molecular and Cell Biology, 16, 1189–1202.
18.
go back to reference Shi, Z. Q., Yu, D. H., Park, M., Marshall, M., & Feng, G. S. (2000). Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cell Biology, 20, 1526–1536.CrossRef Shi, Z. Q., Yu, D. H., Park, M., Marshall, M., & Feng, G. S. (2000). Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cell Biology, 20, 1526–1536.CrossRef
19.
go back to reference Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP2, cause Noonan syndrome. Nature Genetics, 29, 465–468.PubMedCrossRef Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP2, cause Noonan syndrome. Nature Genetics, 29, 465–468.PubMedCrossRef
20.
go back to reference Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34, 148–150.PubMedCrossRef Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34, 148–150.PubMedCrossRef
21.
go back to reference Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64, 8816–8820.PubMedCrossRef Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64, 8816–8820.PubMedCrossRef
22.
go back to reference Stephens, B. J., Han, H., Gokhale, V., & Von Hoff, D. D. (2005). PRL phosphatases as potential molecular targets in cancer. Advanced Thailand Geographic, 4, 1653–1661. Stephens, B. J., Han, H., Gokhale, V., & Von Hoff, D. D. (2005). PRL phosphatases as potential molecular targets in cancer. Advanced Thailand Geographic, 4, 1653–1661.
23.
24.
go back to reference Druker, B. J. (2004). Imatinib as a paradigm of targeted therapies. Advanced Cancer Research, 91, 1–30.CrossRef Druker, B. J. (2004). Imatinib as a paradigm of targeted therapies. Advanced Cancer Research, 91, 1–30.CrossRef
25.
go back to reference Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350, 2129–2139.PubMedCrossRef Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350, 2129–2139.PubMedCrossRef
26.
go back to reference Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews. Nature Reviews. Cancer, 6, 307–320.PubMedCrossRef Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews. Nature Reviews. Cancer, 6, 307–320.PubMedCrossRef
27.
go back to reference Elchelby, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Lee Loy, A., et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283, 1544–1548.CrossRef Elchelby, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Lee Loy, A., et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283, 1544–1548.CrossRef
28.
go back to reference Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology, 20, 5479–5489.PubMedCrossRef Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology, 20, 5479–5489.PubMedCrossRef
29.
go back to reference Zinker, B. A., Rondinone, C. M., Trevillyan, J. M., Gum, R. J., Clampit, J. E., Waring, J. F., et al. (2002). PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 11357–11362.PubMedCrossRef Zinker, B. A., Rondinone, C. M., Trevillyan, J. M., Gum, R. J., Clampit, J. E., Waring, J. F., et al. (2002). PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 11357–11362.PubMedCrossRef
30.
go back to reference Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94, 1680–1685.PubMedCrossRef Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94, 1680–1685.PubMedCrossRef
31.
go back to reference Liu, F., & Chernoff, J. (1997). Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 327, 139–145.PubMed Liu, F., & Chernoff, J. (1997). Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 327, 139–145.PubMed
32.
go back to reference Bjorge, J. D., Pang, A., & Fujita, D. J. (2000). Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 275, 41439–41446.PubMedCrossRef Bjorge, J. D., Pang, A., & Fujita, D. J. (2000). Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 275, 41439–41446.PubMedCrossRef
33.
go back to reference Cheng, A., Bal, G. S., Kennedy, B. P., & Tremblay, M. L. (2001). Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 276, 25848–25855.PubMedCrossRef Cheng, A., Bal, G. S., Kennedy, B. P., & Tremblay, M. L. (2001). Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 276, 25848–25855.PubMedCrossRef
34.
go back to reference Liang, F., Lee, S.-Y., Liang, J., Lawrence, D. S., & Zhang, Z. Y. (2005). The role of PTP1B in integrin signaling. Journal of Biological Chemistry, 280, 24857–24863.PubMedCrossRef Liang, F., Lee, S.-Y., Liang, J., Lawrence, D. S., & Zhang, Z. Y. (2005). The role of PTP1B in integrin signaling. Journal of Biological Chemistry, 280, 24857–24863.PubMedCrossRef
35.
go back to reference Dube, N., Cheng, A., & Tremblay, M. L. (2004). The role of protein tyrosine phosphatase 1B in Ras signaling. Proceedings of the National Academy of Sciences of the United States of America, 101, 1834–1839.PubMedCrossRef Dube, N., Cheng, A., & Tremblay, M. L. (2004). The role of protein tyrosine phosphatase 1B in Ras signaling. Proceedings of the National Academy of Sciences of the United States of America, 101, 1834–1839.PubMedCrossRef
36.
go back to reference Yarden, Y. (2001). Biology of HER2 and its importance in breast cancer. Oncology, 61(Suppl 2), 1–13.PubMedCrossRef Yarden, Y. (2001). Biology of HER2 and its importance in breast cancer. Oncology, 61(Suppl 2), 1–13.PubMedCrossRef
37.
go back to reference Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews. Cancer, 5, 341–354.PubMedCrossRef Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews. Cancer, 5, 341–354.PubMedCrossRef
38.
go back to reference Zhai, Y. F., Beittenmiller, H., Wang, B., Gould, M. N., Oakley, C., Esselman, W. J., et al. (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Research, 53, 2272–2278.PubMed Zhai, Y. F., Beittenmiller, H., Wang, B., Gould, M. N., Oakley, C., Esselman, W. J., et al. (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Research, 53, 2272–2278.PubMed
39.
go back to reference Wiener, J. R., Kerns, B. J., Harvey, E. L., Conaway, M. R., Iglehart, J. D., Berchuck, A., et al. (1994). Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. Journal of the National Cancer Institute, 86, 372–378.PubMedCrossRef Wiener, J. R., Kerns, B. J., Harvey, E. L., Conaway, M. R., Iglehart, J. D., Berchuck, A., et al. (1994). Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. Journal of the National Cancer Institute, 86, 372–378.PubMedCrossRef
40.
go back to reference Julien, S. G., Dubé, N., Read, M., Penney, J., Paquet, M., Han, Y., et al. (2007). Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics, 39, 338–346.PubMedCrossRef Julien, S. G., Dubé, N., Read, M., Penney, J., Paquet, M., Han, Y., et al. (2007). Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics, 39, 338–346.PubMedCrossRef
41.
go back to reference Bentires-Alj, M., & Neel, B. G. (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Research, 67, 2420–2424.PubMedCrossRef Bentires-Alj, M., & Neel, B. G. (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Research, 67, 2420–2424.PubMedCrossRef
42.
go back to reference Zhu, S., Bjorge, J. D., & Fujita, D. J. (2007). PTP1B contributes to oncogenic properties of colon cancer cells through Src activation. Cancer Research, 67, 10129–10137.PubMedCrossRef Zhu, S., Bjorge, J. D., & Fujita, D. J. (2007). PTP1B contributes to oncogenic properties of colon cancer cells through Src activation. Cancer Research, 67, 10129–10137.PubMedCrossRef
43.
go back to reference Zhang, S., & Zhang, Z.-Y. (2007). PTP1B as a drug target: recent development in PTP1B inhibitor discovery. Drug Discovery Today, 12, 373–381.PubMedCrossRef Zhang, S., & Zhang, Z.-Y. (2007). PTP1B as a drug target: recent development in PTP1B inhibitor discovery. Drug Discovery Today, 12, 373–381.PubMedCrossRef
44.
go back to reference Shen, K., Keng, Y. F., Wu, L., Guo, X. L., Lawrence, D. S., & Zhang, Z.-Y. (2001). Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. Journal of Biological Chemistry, 276, 47311–47319.PubMedCrossRef Shen, K., Keng, Y. F., Wu, L., Guo, X. L., Lawrence, D. S., & Zhang, Z.-Y. (2001). Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. Journal of Biological Chemistry, 276, 47311–47319.PubMedCrossRef
45.
go back to reference Sun, J.-P., Fedorov, A. A., Lee, S.-Y., Guo, X.-L., Shen, K., Lawrence, D. S., et al. (2003). Crystal structure of PTP1B in complex with a potent and selective bidentate inhibitor. Journal of Biological Chemistry, 278, 12406–12414.PubMedCrossRef Sun, J.-P., Fedorov, A. A., Lee, S.-Y., Guo, X.-L., Shen, K., Lawrence, D. S., et al. (2003). Crystal structure of PTP1B in complex with a potent and selective bidentate inhibitor. Journal of Biological Chemistry, 278, 12406–12414.PubMedCrossRef
46.
go back to reference Xie, L., Lee, S.-Y., Andersen, J. N., Waters, S., Shen, K., Guo, X.-L., et al. (2003). Cellular effects of small molecule PTP1B inhibitors on insulin signalling. Biochemistry, 42, 12792–12804.PubMedCrossRef Xie, L., Lee, S.-Y., Andersen, J. N., Waters, S., Shen, K., Guo, X.-L., et al. (2003). Cellular effects of small molecule PTP1B inhibitors on insulin signalling. Biochemistry, 42, 12792–12804.PubMedCrossRef
47.
go back to reference Lee, S.-Y., Liang, F., Guo, X.-L., Xie, L., Cahill, S. M., Blumenstein, M., et al. (2005). Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor. Angewandte Chemie. International Edition, 44, 4242–4244.CrossRef Lee, S.-Y., Liang, F., Guo, X.-L., Xie, L., Cahill, S. M., Blumenstein, M., et al. (2005). Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor. Angewandte Chemie. International Edition, 44, 4242–4244.CrossRef
48.
go back to reference Boutselis, I. G., Yu, X., Zhang, Z. Y., & Borch, R. (2007). Synthesis and cell-based activity of a potent and selective PTP1B inhibitor prodrug. Journal of Medicinal Chemistry, 50, 856–864.PubMedCrossRef Boutselis, I. G., Yu, X., Zhang, Z. Y., & Borch, R. (2007). Synthesis and cell-based activity of a potent and selective PTP1B inhibitor prodrug. Journal of Medicinal Chemistry, 50, 856–864.PubMedCrossRef
49.
go back to reference Morrison, C. D., White, C. L., Wang, Z., Lee, S.-Y., Lawrence, D. S., Cefalu, W. T., et al. (2007). Increased hypothalamic PTP1B contribute to leptin resistance with age. Endocrinology, 148, 433–440.PubMedCrossRef Morrison, C. D., White, C. L., Wang, Z., Lee, S.-Y., Lawrence, D. S., Cefalu, W. T., et al. (2007). Increased hypothalamic PTP1B contribute to leptin resistance with age. Endocrinology, 148, 433–440.PubMedCrossRef
50.
go back to reference Black, E., Breed, J., Breeze, A. L., Embrey, K., Garcia, R., Gero, T. W., et al. (2005). Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 2503–2507.CrossRef Black, E., Breed, J., Breeze, A. L., Embrey, K., Garcia, R., Gero, T. W., et al. (2005). Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 2503–2507.CrossRef
51.
go back to reference Combs, A. P., Yue, E. W., Bower, M., Ala, P. J., Wayland, B., Douty, B., et al. (2005). Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. Journal of Medicinal Chemistry, 48, 6544–6548.PubMedCrossRef Combs, A. P., Yue, E. W., Bower, M., Ala, P. J., Wayland, B., Douty, B., et al. (2005). Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. Journal of Medicinal Chemistry, 48, 6544–6548.PubMedCrossRef
52.
go back to reference Yue, E. W., Wayland, B., Douty, B., Crawley, M. L., McLaughlin, E., Takvorian, A., et al. (2006). Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Bioorganic & Medicinal Chemistry, 14, 5833–5849.CrossRef Yue, E. W., Wayland, B., Douty, B., Crawley, M. L., McLaughlin, E., Takvorian, A., et al. (2006). Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Bioorganic & Medicinal Chemistry, 14, 5833–5849.CrossRef
53.
go back to reference Combs, A. P., Zhu, W., Crawley, M. L., Glass, B., Polam, P., Sparks, R. B., et al. (2006). Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. Journal of Medicinal Chemistry, 49, 3774–3789.PubMedCrossRef Combs, A. P., Zhu, W., Crawley, M. L., Glass, B., Polam, P., Sparks, R. B., et al. (2006). Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. Journal of Medicinal Chemistry, 49, 3774–3789.PubMedCrossRef
54.
55.
go back to reference Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17, 23–30.CrossRef Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17, 23–30.CrossRef
56.
go back to reference Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pyroli CagA protein. Nature Reviews. Cancer, 4, 688–694.PubMedCrossRef Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pyroli CagA protein. Nature Reviews. Cancer, 4, 688–694.PubMedCrossRef
57.
go back to reference Stommel, J. M., Kimmelman, A. C., Ying, H., Nabioullin, R., Ponugoti, A. H., Wiedemeyer, R., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 318, 287–290.PubMedCrossRef Stommel, J. M., Kimmelman, A. C., Ying, H., Nabioullin, R., Ponugoti, A. H., Wiedemeyer, R., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 318, 287–290.PubMedCrossRef
58.
go back to reference Chen, L., Sung, S. S., Yip, M. L., Lawrence, H. R., Ren, Y., Guida, W. C., et al. (2006). Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Molecular Pharmacology, 70, 562–570.PubMedCrossRef Chen, L., Sung, S. S., Yip, M. L., Lawrence, H. R., Ren, Y., Guida, W. C., et al. (2006). Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Molecular Pharmacology, 70, 562–570.PubMedCrossRef
59.
go back to reference Coleman, T. R., & Dunphy, W. G. (1994). Cdc2 regulatory factors. Current Opinion in Cell Biology, 6, 877–882.PubMedCrossRef Coleman, T. R., & Dunphy, W. G. (1994). Cdc2 regulatory factors. Current Opinion in Cell Biology, 6, 877–882.PubMedCrossRef
60.
go back to reference Hoffmann, I., & Karsenti, E. (1994). The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle. Journal of Cell Science. Supplement, 18, 75–79.PubMed Hoffmann, I., & Karsenti, E. (1994). The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle. Journal of Cell Science. Supplement, 18, 75–79.PubMed
61.
go back to reference Nilsson, I., & Hoffmann, I. (2000). Cell cycle regulation by the Cdc25 phosphatase family. Progress in Cell Cycle Research, 4, 107–114.PubMed Nilsson, I., & Hoffmann, I. (2000). Cell cycle regulation by the Cdc25 phosphatase family. Progress in Cell Cycle Research, 4, 107–114.PubMed
62.
go back to reference Ma, Z. Q., Chua, S. S., DeMayo, F. J., & Tsai, S. Y. (1999). Induction of mammary gland hyperplasia in transgenic mice over-expressing human Cdc25B. Oncogene, 18, 4564−4576.PubMed Ma, Z. Q., Chua, S. S., DeMayo, F. J., & Tsai, S. Y. (1999). Induction of mammary gland hyperplasia in transgenic mice over-expressing human Cdc25B. Oncogene, 18, 4564−4576.PubMed
63.
go back to reference Yao, Y., Slosberg, E. D., Wang, L., Hibshoosh, H., Zhang, Y.-J., Xing, W.-Q., et al. (1999). Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene, 18, 5159−5166.PubMed Yao, Y., Slosberg, E. D., Wang, L., Hibshoosh, H., Zhang, Y.-J., Xing, W.-Q., et al. (1999). Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene, 18, 5159−5166.PubMed
64.
go back to reference Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). Cdc25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.PubMedCrossRef Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). Cdc25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.PubMedCrossRef
65.
go back to reference Cangi, M. G., Cukor, B., Soung, P., Signoretti, S., Moreira Jr., G., Ranashinge, M., et al. (2000). Role of the Cdc25A phosphatase in human breast cancer. Journal of Clinical Investigation, 106, 753–761.PubMedCrossRef Cangi, M. G., Cukor, B., Soung, P., Signoretti, S., Moreira Jr., G., Ranashinge, M., et al. (2000). Role of the Cdc25A phosphatase in human breast cancer. Journal of Clinical Investigation, 106, 753–761.PubMedCrossRef
66.
go back to reference Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature reviews. Nature reviews. Drug discovery, 1, 961–976.PubMedCrossRef Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature reviews. Nature reviews. Drug discovery, 1, 961–976.PubMedCrossRef
67.
go back to reference Ducruet, A. P., Vogt, A., Wipf, P., & Lazo, J. S. (2005). Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Annual Review of Pharmacology and Toxicology, 45, 725–750.PubMedCrossRef Ducruet, A. P., Vogt, A., Wipf, P., & Lazo, J. S. (2005). Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Annual Review of Pharmacology and Toxicology, 45, 725–750.PubMedCrossRef
68.
go back to reference Gunasekera, S. P., McCarty, P. J., Kelly-Borges, M., Lobkovsky, E., & Clardy, J. (1996). Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. Journal of the American Chemical Society, 118, 8759–8760.CrossRef Gunasekera, S. P., McCarty, P. J., Kelly-Borges, M., Lobkovsky, E., & Clardy, J. (1996). Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. Journal of the American Chemical Society, 118, 8759–8760.CrossRef
69.
go back to reference Dodo, K., Takahashi, M., Yamada, Y., Sugimoto, Y., Hashimoto, Y., & Shirai, R. (2000). Synthesis of a novel class of cdc25A inhibitors from vitamin D3. Bioorganic & Medicinal Chemistry Letters, 10, 615–617.CrossRef Dodo, K., Takahashi, M., Yamada, Y., Sugimoto, Y., Hashimoto, Y., & Shirai, R. (2000). Synthesis of a novel class of cdc25A inhibitors from vitamin D3. Bioorganic & Medicinal Chemistry Letters, 10, 615–617.CrossRef
70.
go back to reference Horiguchi, T., Nishi, K., Hakoda, S., Tanida, S., Nagata, A., & Okayama, H. (1994). Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochemical Pharmacology, 48, 2139–2141.PubMedCrossRef Horiguchi, T., Nishi, K., Hakoda, S., Tanida, S., Nagata, A., & Okayama, H. (1994). Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochemical Pharmacology, 48, 2139–2141.PubMedCrossRef
71.
go back to reference Loukaci, A., Le Saout, I., Samadi, M., Leclerc, S., Damiens, E., Meijer, L., et al. (2001). Coscinosulfate, a CDC25 phosphatase inhibitor from the sponge Coscinoderma mathewsi. Bioorganic & Medicinal Chemistry, 9, 3049–3054.CrossRef Loukaci, A., Le Saout, I., Samadi, M., Leclerc, S., Damiens, E., Meijer, L., et al. (2001). Coscinosulfate, a CDC25 phosphatase inhibitor from the sponge Coscinoderma mathewsi. Bioorganic & Medicinal Chemistry, 9, 3049–3054.CrossRef
72.
go back to reference Ham, S. W., Park, H. J., & Lim, D. H. (1997). Studies on menadione as an inhibitor of the cdc25 phosphatase. Bioorganic Chemistry, 25, 33–36.CrossRef Ham, S. W., Park, H. J., & Lim, D. H. (1997). Studies on menadione as an inhibitor of the cdc25 phosphatase. Bioorganic Chemistry, 25, 33–36.CrossRef
73.
go back to reference Lazo, J. S., Nemoto, K., Pestell, K. E., Cooley, K., Southwick, E. C., Mitchell, D. A., et al. (2002). Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular Pharmacology, 61, 720–728.PubMedCrossRef Lazo, J. S., Nemoto, K., Pestell, K. E., Cooley, K., Southwick, E. C., Mitchell, D. A., et al. (2002). Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular Pharmacology, 61, 720–728.PubMedCrossRef
74.
go back to reference Contour-Galcera, M. O., Sidhu, A., Prevost, G., Bigg, D., & Ducommun, B. (2007). What’s new on Cdc25 phosphatase inhibitors. Pharmacology & Therapeutics, 115, 1–12.CrossRef Contour-Galcera, M. O., Sidhu, A., Prevost, G., Bigg, D., & Ducommun, B. (2007). What’s new on Cdc25 phosphatase inhibitors. Pharmacology & Therapeutics, 115, 1–12.CrossRef
75.
go back to reference Sohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C. et al. (2003). Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones. Journal of Medicinal Chemistry, 46, 2580–2588.PubMedCrossRef Sohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C. et al. (2003). Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones. Journal of Medicinal Chemistry, 46, 2580–2588.PubMedCrossRef
76.
go back to reference Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed
77.
go back to reference Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef
78.
go back to reference Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatase. Cancer Letters, 110, 49–55.PubMedCrossRef Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatase. Cancer Letters, 110, 49–55.PubMedCrossRef
79.
go back to reference Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef
80.
go back to reference Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed
81.
go back to reference Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef
82.
go back to reference Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef
83.
go back to reference Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed
84.
go back to reference Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef
85.
go back to reference Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef
86.
go back to reference Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef
87.
go back to reference Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef
88.
go back to reference Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Clinical Cancer Research, 5, 219–229. Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Clinical Cancer Research, 5, 219–229.
89.
go back to reference Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed
90.
go back to reference Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 2996–2999.CrossRef Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 2996–2999.CrossRef
91.
go back to reference Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef
92.
go back to reference Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef
93.
go back to reference Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef
94.
go back to reference Sun, J.-P., Luo, Y., Yu, X., Wang, W.-Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for the PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef Sun, J.-P., Luo, Y., Yu, X., Wang, W.-Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for the PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef
Metadata
Title
Targeting PTPs with small molecule inhibitors in cancer treatment
Authors
Zhong-Xing Jiang
Zhong-Yin Zhang
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9113-3

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine