Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

PTP1B and TC-PTP: regulators of transformation and tumorigenesis

Authors: Matthew Stuible, Karen M. Doody, Michel L. Tremblay

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

PTP1B and T cell PTP (TC-PTP) are protein tyrosine phosphatases (PTPs) that share high sequence and structural homology yet play distinct physiological roles. While PTP1B plays a central role in metabolism and is an attractive drug target for obesity and type 2 diabetes, TC-PTP is necessary for the control of inflammation. In this review, we will discuss the growing evidence for the involvement of PTP1B in cancer, while proposing a role for TC-PTP in inflammation-induced tumorigenesis. Given the challenge of developing inhibitors specific for PTP1B alone, it is necessary to consider both enzymes and their roles in various cancer models.
Literature
1.
2.
go back to reference Dankort, D. L., & Muller, W. J. (2000). Signal transduction in mammary tumorigenesis: A transgenic perspective. Oncogene, 19(8), 1038–1044.PubMedCrossRef Dankort, D. L., & Muller, W. J. (2000). Signal transduction in mammary tumorigenesis: A transgenic perspective. Oncogene, 19(8), 1038–1044.PubMedCrossRef
3.
go back to reference Tartaglia, M., Niemeyer, C. M., Shannon, K. M., & Loh, M. L. (2004). SHP-2 and myeloid malignancies. Current Opinion in Hematology, 11(1), 44–50.PubMedCrossRef Tartaglia, M., Niemeyer, C. M., Shannon, K. M., & Loh, M. L. (2004). SHP-2 and myeloid malignancies. Current Opinion in Hematology, 11(1), 44–50.PubMedCrossRef
4.
go back to reference Tonks, N. K., Diltz, C. D., & Fischer, E. H. (1988). Purification of the major protein-tyrosine-phosphatases of human placenta. Journal of Biological Chemistry, 263(14), 6722–6730.PubMed Tonks, N. K., Diltz, C. D., & Fischer, E. H. (1988). Purification of the major protein-tyrosine-phosphatases of human placenta. Journal of Biological Chemistry, 263(14), 6722–6730.PubMed
5.
go back to reference Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283(5407), 1544–1548.PubMedCrossRef Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283(5407), 1544–1548.PubMedCrossRef
6.
go back to reference Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology, 20(15), 5479–5489.PubMedCrossRef Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology, 20(15), 5479–5489.PubMedCrossRef
7.
go back to reference Bence, K. K., Delibegovic, M., Xue, B., Gorgun, C. Z., Hotamisligil, G. S., Neel, B. G., et al. (2006). Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature Medicine, 12(8), 917–924.PubMedCrossRef Bence, K. K., Delibegovic, M., Xue, B., Gorgun, C. Z., Hotamisligil, G. S., Neel, B. G., et al. (2006). Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature Medicine, 12(8), 917–924.PubMedCrossRef
8.
go back to reference Dube, N., Cheng, A., & Tremblay, M. L. (2004). The role of protein tyrosine phosphatase 1B in Ras signaling. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 1834–1839.PubMedCrossRef Dube, N., Cheng, A., & Tremblay, M. L. (2004). The role of protein tyrosine phosphatase 1B in Ras signaling. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 1834–1839.PubMedCrossRef
9.
go back to reference Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D., & Neel, B. G. (2003). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 278(2), 739–744.PubMedCrossRef Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D., & Neel, B. G. (2003). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 278(2), 739–744.PubMedCrossRef
10.
go back to reference Julien, S. G., Dube, N., Read, M., Penney, J., Paquet, M., Han, Y., et al. (2007). Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics, 39(3), 338–346.PubMedCrossRef Julien, S. G., Dube, N., Read, M., Penney, J., Paquet, M., Han, Y., et al. (2007). Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics, 39(3), 338–346.PubMedCrossRef
11.
go back to reference Bentires-Alj, M., & Neel, B. G. (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Research, 67(6), 2420–2424.PubMedCrossRef Bentires-Alj, M., & Neel, B. G. (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Research, 67(6), 2420–2424.PubMedCrossRef
12.
go back to reference Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedCrossRef Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedCrossRef
13.
go back to reference Anderie, I., Schulz, I., & Schmid, A. (2007). Characterization of the C-terminal ER membrane anchor of PTP1B. Experimental Cell Research, 313(15), 3189–3197.PubMedCrossRef Anderie, I., Schulz, I., & Schmid, A. (2007). Characterization of the C-terminal ER membrane anchor of PTP1B. Experimental Cell Research, 313(15), 3189–3197.PubMedCrossRef
14.
go back to reference Frangioni, J. V., Heahm, P. H., Shifrin, V., Jost, C. A., & Neel, B. G. (1992). The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid c-terminal sequence. Cell, 68, 545–560.PubMedCrossRef Frangioni, J. V., Heahm, P. H., Shifrin, V., Jost, C. A., & Neel, B. G. (1992). The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid c-terminal sequence. Cell, 68, 545–560.PubMedCrossRef
15.
go back to reference Woodford-Thomas, T. A., Rhodes, J. D., & Dixon, J. E. (1992). Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. Journal of Cell Biology, 117(2), 401–414.PubMedCrossRef Woodford-Thomas, T. A., Rhodes, J. D., & Dixon, J. E. (1992). Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. Journal of Cell Biology, 117(2), 401–414.PubMedCrossRef
16.
go back to reference Liu, F., Hill, D. E., & Chernoff, J. (1996). Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). Journal of Biological Chemistry, 271(49), 31290–31295.PubMedCrossRef Liu, F., Hill, D. E., & Chernoff, J. (1996). Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). Journal of Biological Chemistry, 271(49), 31290–31295.PubMedCrossRef
17.
go back to reference Picha, K. M., Patel, S. S., Mandiyan, S., Koehn, J., & Wennogle, L. P. (2007). The role of the C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity and substrate binding. Journal of Biological Chemistry, 282(5), 2911–2917.PubMedCrossRef Picha, K. M., Patel, S. S., Mandiyan, S., Koehn, J., & Wennogle, L. P. (2007). The role of the C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity and substrate binding. Journal of Biological Chemistry, 282(5), 2911–2917.PubMedCrossRef
18.
go back to reference Frangioni, J. V., Oda, A., Smith, M., Salzman, E. W., & Neel, B. G. (1993). Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO Journal, 12(12), 4843–4856.PubMed Frangioni, J. V., Oda, A., Smith, M., Salzman, E. W., & Neel, B. G. (1993). Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO Journal, 12(12), 4843–4856.PubMed
19.
go back to reference Flint, A. J., Gebbink, M. F., Franza Jr., B. R., Hill, D. E., & Tonks, N. K. (1993). Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO Journal, 12(5), 1937–1946.PubMed Flint, A. J., Gebbink, M. F., Franza Jr., B. R., Hill, D. E., & Tonks, N. K. (1993). Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO Journal, 12(5), 1937–1946.PubMed
20.
go back to reference Brautigan, D. L., & Pinault, F. M. (1993). Serine phosphorylation of protein tyrosine phosphatase (PTP1B) in HeLa cells in response to analogues of cAMP or diacylglycerol plus okadaic acid. Molecular and Cellular Biochemistry, 127–128, 121–129.PubMedCrossRef Brautigan, D. L., & Pinault, F. M. (1993). Serine phosphorylation of protein tyrosine phosphatase (PTP1B) in HeLa cells in response to analogues of cAMP or diacylglycerol plus okadaic acid. Molecular and Cellular Biochemistry, 127–128, 121–129.PubMedCrossRef
21.
go back to reference Ravichandran, L. V., Chen, H., Li, Y., & Quon, M. J. (2001). Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology, 15(10), 1768–1780.PubMedCrossRef Ravichandran, L. V., Chen, H., Li, Y., & Quon, M. J. (2001). Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology, 15(10), 1768–1780.PubMedCrossRef
22.
go back to reference Tao, J., Malbon, C. C., & Wang, H. Y. (2001). Insulin stimulates tyrosine phosphorylation and inactivation of protein–tyrosine phosphatase 1B in vivo. Journal of Biological Chemistry, 276(31), 29520–29525.PubMedCrossRef Tao, J., Malbon, C. C., & Wang, H. Y. (2001). Insulin stimulates tyrosine phosphorylation and inactivation of protein–tyrosine phosphatase 1B in vivo. Journal of Biological Chemistry, 276(31), 29520–29525.PubMedCrossRef
23.
go back to reference Meng, T. C., Buckley, D. A., Galic, S., Tiganis, T., & Tonks, N. K. (2004). Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. Journal of Biological Chemistry, 279(36), 37716–37725.PubMedCrossRef Meng, T. C., Buckley, D. A., Galic, S., Tiganis, T., & Tonks, N. K. (2004). Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. Journal of Biological Chemistry, 279(36), 37716–37725.PubMedCrossRef
24.
go back to reference Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., et al. (2007). Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biology, 9(1), 80–85.PubMedCrossRef Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., et al. (2007). Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biology, 9(1), 80–85.PubMedCrossRef
25.
go back to reference Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G., & Bastiaens, P. I. (2002). Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 295(5560), 1708–1711.PubMedCrossRef Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G., & Bastiaens, P. I. (2002). Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 295(5560), 1708–1711.PubMedCrossRef
26.
go back to reference Romsicki, Y., Reece, M., Gauthier, J. Y., Asante-Appiah, E., & Kennedy, B. P. (2004). Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. Journal of Biological Chemistry, 279(13), 12868–12875.PubMedCrossRef Romsicki, Y., Reece, M., Gauthier, J. Y., Asante-Appiah, E., & Kennedy, B. P. (2004). Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. Journal of Biological Chemistry, 279(13), 12868–12875.PubMedCrossRef
27.
go back to reference Anderie, I., Schulz, I., & Schmid, A. (2007). Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cellular Signalling, 19(3), 582–592.PubMedCrossRef Anderie, I., Schulz, I., & Schmid, A. (2007). Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cellular Signalling, 19(3), 582–592.PubMedCrossRef
28.
go back to reference Boute, N., Boubekeur, S., Lacasa, D., & Issad, T. (2003). Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Reports, 4(3), 313–319.PubMedCrossRef Boute, N., Boubekeur, S., Lacasa, D., & Issad, T. (2003). Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Reports, 4(3), 313–319.PubMedCrossRef
29.
go back to reference Kuchay, S. M., Kim, N., Grunz, E. A., Fay, W. P., & Chishti, A. H. (2007). Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Molecular and Cellular Biology, 27(17), 6038–6052.PubMedCrossRef Kuchay, S. M., Kim, N., Grunz, E. A., Fay, W. P., & Chishti, A. H. (2007). Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Molecular and Cellular Biology, 27(17), 6038–6052.PubMedCrossRef
30.
go back to reference Gulati, P., Markova, B., Gottlicher, M., Bohmer, F. D., & Herrlich, P. A. (2004). UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation. EMBO Reports, 5(8), 812–817.PubMedCrossRef Gulati, P., Markova, B., Gottlicher, M., Bohmer, F. D., & Herrlich, P. A. (2004). UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation. EMBO Reports, 5(8), 812–817.PubMedCrossRef
31.
go back to reference Akasaki, Y., Liu, G., Matundan, H. H., Ng, H., Yuan, X., Zeng, Z., et al. (2006). A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. Journal of Biological Chemistry, 281(10), 6165–6174.PubMedCrossRef Akasaki, Y., Liu, G., Matundan, H. H., Ng, H., Yuan, X., Zeng, Z., et al. (2006). A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. Journal of Biological Chemistry, 281(10), 6165–6174.PubMedCrossRef
32.
go back to reference Cool, D. E., Tonks, N. K., Charbonneau, H., Walsh, K. A., Fischer, E. H., & Krebs, E. G. (1989). cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5257–5261.PubMedCrossRef Cool, D. E., Tonks, N. K., Charbonneau, H., Walsh, K. A., Fischer, E. H., & Krebs, E. G. (1989). cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5257–5261.PubMedCrossRef
33.
go back to reference Champion-Arnaud, P., Gesnel, M. C., Foulkes, N., Ronsin, C., Sassone-Corsi, P., & Breathnach, R. (1991). Activation of transcription via AP-1 or CREB regulatory sites is blocked by protein tyrosine phosphatases. Oncogene, 6(7), 1203–1209.PubMed Champion-Arnaud, P., Gesnel, M. C., Foulkes, N., Ronsin, C., Sassone-Corsi, P., & Breathnach, R. (1991). Activation of transcription via AP-1 or CREB regulatory sites is blocked by protein tyrosine phosphatases. Oncogene, 6(7), 1203–1209.PubMed
34.
go back to reference Mosinger Jr., B., Tillmann, U., Westphal, H., & Tremblay, M. L. (1992). Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 89(2), 499–503.PubMedCrossRef Mosinger Jr., B., Tillmann, U., Westphal, H., & Tremblay, M. L. (1992). Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 89(2), 499–503.PubMedCrossRef
35.
go back to reference Lorenzen, J. A., Dadabay, C. Y., & Fischer, E. H. (1995). COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. Journal of Cell Biology, 131(3), 631–643.PubMedCrossRef Lorenzen, J. A., Dadabay, C. Y., & Fischer, E. H. (1995). COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. Journal of Cell Biology, 131(3), 631–643.PubMedCrossRef
36.
go back to reference Tiganis, T., Flint, A. J., Adam, S. A., & Tonks, N. K. (1997). Association of the T-cell protein tyrosine phosphatase with nuclear import factor p97. Journal of Biological Chemistry, 272(34), 21548–21557.PubMedCrossRef Tiganis, T., Flint, A. J., Adam, S. A., & Tonks, N. K. (1997). Association of the T-cell protein tyrosine phosphatase with nuclear import factor p97. Journal of Biological Chemistry, 272(34), 21548–21557.PubMedCrossRef
37.
go back to reference Lam, M. H., Michell, B. J., Fodero-Tavoletti, M. T., Kemp, B. E., Tonks, N. K., & Tiganis, T. (2001). Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. Journal of Biological Chemistry, 276(40), 37700–37707.PubMedCrossRef Lam, M. H., Michell, B. J., Fodero-Tavoletti, M. T., Kemp, B. E., Tonks, N. K., & Tiganis, T. (2001). Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. Journal of Biological Chemistry, 276(40), 37700–37707.PubMedCrossRef
38.
go back to reference Tillmann, U., Wagner, J., Boerboom, D., Westphal, H., & Tremblay, M. L. (1994). Nuclear localization and cell cycle regulation of a murine protein tyrosine phosphatase. Molecular and Cellular Biology, 14(5), 3030–3040.PubMed Tillmann, U., Wagner, J., Boerboom, D., Westphal, H., & Tremblay, M. L. (1994). Nuclear localization and cell cycle regulation of a murine protein tyrosine phosphatase. Molecular and Cellular Biology, 14(5), 3030–3040.PubMed
39.
go back to reference Wee, C., Muise, E. S., Coquelet, O., Ennis, M., Wagner, J., Lemieux, N., et al. (1999). Promoter analysis of the murine T-cell protein tyrosine phosphatase gene. Gene, 237(2), 351–360.PubMedCrossRef Wee, C., Muise, E. S., Coquelet, O., Ennis, M., Wagner, J., Lemieux, N., et al. (1999). Promoter analysis of the murine T-cell protein tyrosine phosphatase gene. Gene, 237(2), 351–360.PubMedCrossRef
40.
go back to reference Bukczynska, P., Klingler-Hoffmann, M., Mitchelhill, K. I., Lam, M. H., Ciccomancini, M., Tonks, N. K., et al. (2004). The T-cell protein tyrosine phosphatase is phosphorylated on Ser-304 by cyclin-dependent protein kinases in mitosis. Biochemical Journal, 380(Pt 3), 939–949.PubMedCrossRef Bukczynska, P., Klingler-Hoffmann, M., Mitchelhill, K. I., Lam, M. H., Ciccomancini, M., Tonks, N. K., et al. (2004). The T-cell protein tyrosine phosphatase is phosphorylated on Ser-304 by cyclin-dependent protein kinases in mitosis. Biochemical Journal, 380(Pt 3), 939–949.PubMedCrossRef
41.
go back to reference Ibarra-Sanchez, M. J., Wagner, J., Ong, M. T., Lampron, C., & Tremblay, M. L. (2001). Murine embryonic fibroblasts lacking TC-PTP display delayed G1 phase through defective NF-kappaB activation. Oncogene, 20(34), 4728–4739.PubMedCrossRef Ibarra-Sanchez, M. J., Wagner, J., Ong, M. T., Lampron, C., & Tremblay, M. L. (2001). Murine embryonic fibroblasts lacking TC-PTP display delayed G1 phase through defective NF-kappaB activation. Oncogene, 20(34), 4728–4739.PubMedCrossRef
42.
go back to reference Wang, S., Raven, J. F., Baltzis, D., Kazemi, S., Brunet, D. V., Hatzoglou, M., et al. (2006). The catalytic activity of the eukaryotic initiation factor-2alpha kinase PKR is required to negatively regulate Stat1 and Stat3 via activation of the T-cell protein-tyrosine phosphatase. Journal of Biological Chemistry, 281(14), 9439–9449.PubMedCrossRef Wang, S., Raven, J. F., Baltzis, D., Kazemi, S., Brunet, D. V., Hatzoglou, M., et al. (2006). The catalytic activity of the eukaryotic initiation factor-2alpha kinase PKR is required to negatively regulate Stat1 and Stat3 via activation of the T-cell protein-tyrosine phosphatase. Journal of Biological Chemistry, 281(14), 9439–9449.PubMedCrossRef
43.
go back to reference Cicirelli, M. F., Tonks, N. K., Diltz, C. D., Weiel, J. E., Fischer, E. H., & Krebs, E. G. (1990). Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5514–5518.PubMedCrossRef Cicirelli, M. F., Tonks, N. K., Diltz, C. D., Weiel, J. E., Fischer, E. H., & Krebs, E. G. (1990). Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5514–5518.PubMedCrossRef
44.
go back to reference Lammers, R., Bossenmaier, B., Cool, D. E., Tonks, N. K., Schlessinger, J., Fischer, E. H., et al. (1993). Differential activities of protein tyrosine phosphatases in intact cells. Journal of Biological Chemistry, 268(30), 22456–22462.PubMed Lammers, R., Bossenmaier, B., Cool, D. E., Tonks, N. K., Schlessinger, J., Fischer, E. H., et al. (1993). Differential activities of protein tyrosine phosphatases in intact cells. Journal of Biological Chemistry, 268(30), 22456–22462.PubMed
45.
go back to reference Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.PubMedCrossRef Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.PubMedCrossRef
46.
go back to reference Liu, F., & Chernoff, J. (1997). Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 327(Pt 1), 139–145.PubMed Liu, F., & Chernoff, J. (1997). Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 327(Pt 1), 139–145.PubMed
47.
go back to reference Buckley, D. A., Cheng, A., Kiely, P. A., Tremblay, M. L., & O'Connor, R. (2002). Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Molecular and Cellular Biology, 22(7), 1998–2010.PubMedCrossRef Buckley, D. A., Cheng, A., Kiely, P. A., Tremblay, M. L., & O'Connor, R. (2002). Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Molecular and Cellular Biology, 22(7), 1998–2010.PubMedCrossRef
48.
go back to reference Brown-Shimer, S., Johnson, K. A., Hill, D. E., & Bruskin, A. M. (1992). Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Research, 52(2), 478–482.PubMed Brown-Shimer, S., Johnson, K. A., Hill, D. E., & Bruskin, A. M. (1992). Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Research, 52(2), 478–482.PubMed
49.
go back to reference LaMontagne Jr., K. R., Hannon, G., & Tonks, N. K. (1998). Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14094–14099.PubMedCrossRef LaMontagne Jr., K. R., Hannon, G., & Tonks, N. K. (1998). Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14094–14099.PubMedCrossRef
50.
go back to reference Liu, F., Sells, M. A., & Chernoff, J. (1998). Transformation suppression by protein tyrosine phosphatase 1B requires a functional SH3 ligand. Molecular and Cellular Biology, 18(1), 250–259.PubMed Liu, F., Sells, M. A., & Chernoff, J. (1998). Transformation suppression by protein tyrosine phosphatase 1B requires a functional SH3 ligand. Molecular and Cellular Biology, 18(1), 250–259.PubMed
51.
go back to reference Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16(5), 257–263.PubMedCrossRef Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16(5), 257–263.PubMedCrossRef
52.
go back to reference Liang, F., Lee, S. Y., Liang, J., Lawrence, D. S., & Zhang, Z. Y. (2005). The role of protein-tyrosine phosphatase 1B in integrin signaling. Journal of Biological Chemistry, 280(26), 24857–24863.PubMedCrossRef Liang, F., Lee, S. Y., Liang, J., Lawrence, D. S., & Zhang, Z. Y. (2005). The role of protein-tyrosine phosphatase 1B in integrin signaling. Journal of Biological Chemistry, 280(26), 24857–24863.PubMedCrossRef
53.
go back to reference Cheng, A., Bal, G. S., Kennedy, B. P., & Tremblay, M. L. (2001). Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 276(28), 25848–25855.PubMedCrossRef Cheng, A., Bal, G. S., Kennedy, B. P., & Tremblay, M. L. (2001). Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 276(28), 25848–25855.PubMedCrossRef
54.
go back to reference Tiganis, T., Kemp, B. E., & Tonks, N. K. (1999). The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. Journal of Biological Chemistry, 274(39), 27768–27775.PubMedCrossRef Tiganis, T., Kemp, B. E., & Tonks, N. K. (1999). The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. Journal of Biological Chemistry, 274(39), 27768–27775.PubMedCrossRef
55.
go back to reference Mattila, E., Pellinen, T., Nevo, J., Vuoriluoto, K., Arjonen, A., & Ivaska, J. (2005). Negative regulation of EGFR signalling through integrin-alpha1beta1-mediated activation of protein tyrosine phosphatase TCPTP. Nature Cell Biology, 7(1), 78–85.PubMedCrossRef Mattila, E., Pellinen, T., Nevo, J., Vuoriluoto, K., Arjonen, A., & Ivaska, J. (2005). Negative regulation of EGFR signalling through integrin-alpha1beta1-mediated activation of protein tyrosine phosphatase TCPTP. Nature Cell Biology, 7(1), 78–85.PubMedCrossRef
56.
go back to reference Maher, E. A., Furnari, F. B., Bachoo, R. M., Rowitch, D. H., Louis, D. N., Cavenee, W. K., et al. (2001). Malignant glioma: Genetics and biology of a grave matter. Genes and Development, 15(11), 1311–1333.PubMedCrossRef Maher, E. A., Furnari, F. B., Bachoo, R. M., Rowitch, D. H., Louis, D. N., Cavenee, W. K., et al. (2001). Malignant glioma: Genetics and biology of a grave matter. Genes and Development, 15(11), 1311–1333.PubMedCrossRef
57.
go back to reference Klingler-Hoffmann, M., Fodero-Tavoletti, M. T., Mishima, K., Narita, Y., Cavenee, W. K., Furnari, F. B., et al. (2001). The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. Journal of Biological Chemistry, 276(49), 46313–46318.PubMedCrossRef Klingler-Hoffmann, M., Fodero-Tavoletti, M. T., Mishima, K., Narita, Y., Cavenee, W. K., Furnari, F. B., et al. (2001). The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. Journal of Biological Chemistry, 276(49), 46313–46318.PubMedCrossRef
58.
go back to reference Zander, N. F., Cool, D. E., Diltz, C. D., Rohrschneider, L. R., Krebs, E. G., & Fischer, E. H. (1993). Suppression of v-fms-induced transformation by overexpression of a truncated T-cell protein tyrosine phosphatase. Oncogene, 8(5), 1175–1182.PubMed Zander, N. F., Cool, D. E., Diltz, C. D., Rohrschneider, L. R., Krebs, E. G., & Fischer, E. H. (1993). Suppression of v-fms-induced transformation by overexpression of a truncated T-cell protein tyrosine phosphatase. Oncogene, 8(5), 1175–1182.PubMed
59.
go back to reference Simoncic, P. D., Bourdeau, A., Lee-Loy, A., Rohrschneider, L. R., Tremblay, M. L., Stanley, E. R., et al. (2006). T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Molecular and Cellular Biology, 26(11), 4149–4160.PubMedCrossRef Simoncic, P. D., Bourdeau, A., Lee-Loy, A., Rohrschneider, L. R., Tremblay, M. L., Stanley, E. R., et al. (2006). T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Molecular and Cellular Biology, 26(11), 4149–4160.PubMedCrossRef
60.
go back to reference Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer and Metastasis Reviews, 24(2), 195–222.PubMedCrossRef Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer and Metastasis Reviews, 24(2), 195–222.PubMedCrossRef
61.
go back to reference Egan, C., Pang, A., Durda, D., Cheng, H. C., Wang, J. H., & Fujita, D. J. (1999). Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene, 18(5), 1227–1237.PubMedCrossRef Egan, C., Pang, A., Durda, D., Cheng, H. C., Wang, J. H., & Fujita, D. J. (1999). Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene, 18(5), 1227–1237.PubMedCrossRef
62.
go back to reference Bjorge, J. D., Pang, A., & Fujita, D. J. (2000). Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 275(52), 41439–41446.PubMedCrossRef Bjorge, J. D., Pang, A., & Fujita, D. J. (2000). Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 275(52), 41439–41446.PubMedCrossRef
63.
go back to reference Arregui, C. O., Balsamo, J., & Lilien, J. (1998). Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B [published erratum appears in J Cell Biol 1998 Dec 14;143(6):1761]. Journal of Cell Biology, 143(3), 861–873.PubMedCrossRef Arregui, C. O., Balsamo, J., & Lilien, J. (1998). Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B [published erratum appears in J Cell Biol 1998 Dec 14;143(6):1761]. Journal of Cell Biology, 143(3), 861–873.PubMedCrossRef
64.
go back to reference Liu, F., Sells, M. A., & Chernoff, J. (1998). Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Current Biology, 8(3), 173–176.PubMedCrossRef Liu, F., Sells, M. A., & Chernoff, J. (1998). Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Current Biology, 8(3), 173–176.PubMedCrossRef
65.
go back to reference Arias-Salgado, E. G., Haj, F., Dubois, C., Moran, B., Kasirer-Friede, A., Furie, B. C., et al. (2005). PTP-1B is an essential positive regulator of platelet integrin signaling. Journal of Cell Biology, 170(5), 837–845.PubMedCrossRef Arias-Salgado, E. G., Haj, F., Dubois, C., Moran, B., Kasirer-Friede, A., Furie, B. C., et al. (2005). PTP-1B is an essential positive regulator of platelet integrin signaling. Journal of Cell Biology, 170(5), 837–845.PubMedCrossRef
66.
go back to reference Takino, T., Tamura, M., Miyamori, H., Araki, M., Matsumoto, K., Sato, H., et al. (2003). Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. Journal of Cell Science, 116(Pt 15), 3145–3155.PubMedCrossRef Takino, T., Tamura, M., Miyamori, H., Araki, M., Matsumoto, K., Sato, H., et al. (2003). Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. Journal of Cell Science, 116(Pt 15), 3145–3155.PubMedCrossRef
67.
go back to reference Zhang, Z., Lin, S. Y., Neel, B. G., & Haimovich, B. (2006). Phosphorylated alpha-actinin and protein-tyrosine phosphatase 1B coregulate the disassembly of the focal adhesion kinase x Src complex and promote cell migration. Journal of Biological Chemistry, 281(3), 1746–1754.PubMedCrossRef Zhang, Z., Lin, S. Y., Neel, B. G., & Haimovich, B. (2006). Phosphorylated alpha-actinin and protein-tyrosine phosphatase 1B coregulate the disassembly of the focal adhesion kinase x Src complex and promote cell migration. Journal of Biological Chemistry, 281(3), 1746–1754.PubMedCrossRef
68.
go back to reference Mareel, M., & Leroy, A. (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiological Reviews, 83(2), 337–376.PubMed Mareel, M., & Leroy, A. (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiological Reviews, 83(2), 337–376.PubMed
69.
go back to reference El Sayegh, T. Y., Kapus, A., & McCulloch, C. A. (2007). Beyond the epithelium: Cadherin function in fibrous connective tissues. FEBS Letters, 581(2), 167–174.PubMedCrossRef El Sayegh, T. Y., Kapus, A., & McCulloch, C. A. (2007). Beyond the epithelium: Cadherin function in fibrous connective tissues. FEBS Letters, 581(2), 167–174.PubMedCrossRef
70.
go back to reference Balsamo, J., Arregui, C., Leung, T., & Lilien, J. (1998). The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. Journal of Cell Biology, 143(2), 523–532.PubMedCrossRef Balsamo, J., Arregui, C., Leung, T., & Lilien, J. (1998). The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. Journal of Cell Biology, 143(2), 523–532.PubMedCrossRef
71.
go back to reference Balsamo, J., Leung, T., Ernst, H., Zanin, M. K., Hoffman, S., & Lilien, J. (1996). Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. Journal of Cell Biology, 134(3), 801–813.PubMedCrossRef Balsamo, J., Leung, T., Ernst, H., Zanin, M. K., Hoffman, S., & Lilien, J. (1996). Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. Journal of Cell Biology, 134(3), 801–813.PubMedCrossRef
72.
go back to reference Xu, G., Arregui, C., Lilien, J., & Balsamo, J. (2002). PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. Journal of Biological Chemistry, 277(51), 49989–49997.PubMedCrossRef Xu, G., Arregui, C., Lilien, J., & Balsamo, J. (2002). PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. Journal of Biological Chemistry, 277(51), 49989–49997.PubMedCrossRef
73.
go back to reference Xu, G., Craig, A. W., Greer, P., Miller, M., Anastasiadis, P. Z., Lilien, J., et al. (2004). Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. Journal of Cell Science, 117(Pt 15), 3207–3219.PubMedCrossRef Xu, G., Craig, A. W., Greer, P., Miller, M., Anastasiadis, P. Z., Lilien, J., et al. (2004). Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. Journal of Cell Science, 117(Pt 15), 3207–3219.PubMedCrossRef
74.
go back to reference Rhee, J., Lilien, J., & Balsamo, J. (2001). Essential tyrosine residues for interaction of the non-receptor protein-tyrosine phosphatase PTP1B with N-cadherin. Journal of Biological Chemistry, 276(9), 6640–6644.PubMedCrossRef Rhee, J., Lilien, J., & Balsamo, J. (2001). Essential tyrosine residues for interaction of the non-receptor protein-tyrosine phosphatase PTP1B with N-cadherin. Journal of Biological Chemistry, 276(9), 6640–6644.PubMedCrossRef
76.
go back to reference Hallé, M., Tremblay, M. L., & Meng, T.-C. (2007). Protein tyrosine phosphatases: Emerging regulators of apoptosis. Cell Cycle, 6, 2773–2781.PubMed Hallé, M., Tremblay, M. L., & Meng, T.-C. (2007). Protein tyrosine phosphatases: Emerging regulators of apoptosis. Cell Cycle, 6, 2773–2781.PubMed
77.
go back to reference Sangwan, V., Paliouras, G. N., Cheng, A., Dube, N., Tremblay, M. L., & Park, M. (2006). Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. Journal of Biological Chemistry, 281(1), 221–228.PubMedCrossRef Sangwan, V., Paliouras, G. N., Cheng, A., Dube, N., Tremblay, M. L., & Park, M. (2006). Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. Journal of Biological Chemistry, 281(1), 221–228.PubMedCrossRef
78.
go back to reference Gonzalez-Rodriguez, A., Escribano, O., Alba, J., Rondinone, C. M., Benito, M., & Valverde, A. M. (2007). Levels of protein tyrosine phosphatase 1B determine susceptibility to apoptosis in serum-deprived hepatocytes. Journal of Cellular Physiology, 212(1), 76–88.PubMedCrossRef Gonzalez-Rodriguez, A., Escribano, O., Alba, J., Rondinone, C. M., Benito, M., & Valverde, A. M. (2007). Levels of protein tyrosine phosphatase 1B determine susceptibility to apoptosis in serum-deprived hepatocytes. Journal of Cellular Physiology, 212(1), 76–88.PubMedCrossRef
79.
go back to reference Gu, F., Nguyen, D. T., Stuible, M., Dube, N., Tremblay, M. L., & Chevet, E. (2004). Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. Journal of Biological Chemistry, 279(48), 49689–49693.PubMedCrossRef Gu, F., Nguyen, D. T., Stuible, M., Dube, N., Tremblay, M. L., & Chevet, E. (2004). Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. Journal of Biological Chemistry, 279(48), 49689–49693.PubMedCrossRef
80.
go back to reference Feldman, D. E., Chauhan, V., & Koong, A. C. (2005). The unfolded protein response: A novel component of the hypoxic stress response in tumors. Molecular Cancer Research, 3(11), 597–605.PubMedCrossRef Feldman, D. E., Chauhan, V., & Koong, A. C. (2005). The unfolded protein response: A novel component of the hypoxic stress response in tumors. Molecular Cancer Research, 3(11), 597–605.PubMedCrossRef
81.
go back to reference You-Ten, K. E., Muise, E. S., Itie, A., Michaliszyn, E., Wagner, J., Jothy, S., et al. (1997). Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. Journal of Experimental Medicine, 186(5), 683–693.PubMedCrossRef You-Ten, K. E., Muise, E. S., Itie, A., Michaliszyn, E., Wagner, J., Jothy, S., et al. (1997). Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. Journal of Experimental Medicine, 186(5), 683–693.PubMedCrossRef
82.
go back to reference Heinonen, K. M., Nestel, F. P., Newell, E. W., Charette, G., Seemayer, T. A., Tremblay, M. L., et al. (2004). T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood, 103(9), 3457–3464.PubMedCrossRef Heinonen, K. M., Nestel, F. P., Newell, E. W., Charette, G., Seemayer, T. A., Tremblay, M. L., et al. (2004). T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood, 103(9), 3457–3464.PubMedCrossRef
83.
go back to reference Bourdeau, A., Dube, N., Heinonen, K. M., Theberge, J. F., Doody, K. M., & Tremblay, M. L. (2007). TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-{gamma}. Blood, 109(10), 4220–4228.PubMedCrossRef Bourdeau, A., Dube, N., Heinonen, K. M., Theberge, J. F., Doody, K. M., & Tremblay, M. L. (2007). TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-{gamma}. Blood, 109(10), 4220–4228.PubMedCrossRef
84.
go back to reference Zhu, W., Mustelin, T., & David, M. (2002). Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. Journal of Biological Chemistry, 277(39), 35787–35790.PubMedCrossRef Zhu, W., Mustelin, T., & David, M. (2002). Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. Journal of Biological Chemistry, 277(39), 35787–35790.PubMedCrossRef
85.
go back to reference ten Hoeve, J., de Jesus Ibarra-Sanchez, M., Fu, Y., Zhu, W., Tremblay, M., David, M., et al. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Molecular and Cellular Biology, 22(16), 5662–5668.PubMedCrossRef ten Hoeve, J., de Jesus Ibarra-Sanchez, M., Fu, Y., Zhu, W., Tremblay, M., David, M., et al. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Molecular and Cellular Biology, 22(16), 5662–5668.PubMedCrossRef
86.
go back to reference Yamamoto, T., Sekine, Y., Kashima, K., Kubota, A., Sato, N., Aoki, N., et al. (2002). The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochemical and Biophysical Research Communications, 297(4), 811–817.PubMedCrossRef Yamamoto, T., Sekine, Y., Kashima, K., Kubota, A., Sato, N., Aoki, N., et al. (2002). The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochemical and Biophysical Research Communications, 297(4), 811–817.PubMedCrossRef
87.
go back to reference Aoki, N., & Matsuda, T. (2002). A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: Dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Molecular Endocrinology, 16(1), 58–69.PubMedCrossRef Aoki, N., & Matsuda, T. (2002). A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: Dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Molecular Endocrinology, 16(1), 58–69.PubMedCrossRef
88.
go back to reference Lu, X., Chen, J., Sasmono, R. T., Hsi, E. D., Sarosiek, K. A., Tiganis, T., et al. (2007). T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Molecular and Cellular Biology, 27(6), 2166–2179.PubMedCrossRef Lu, X., Chen, J., Sasmono, R. T., Hsi, E. D., Sarosiek, K. A., Tiganis, T., et al. (2007). T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Molecular and Cellular Biology, 27(6), 2166–2179.PubMedCrossRef
89.
go back to reference Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L., & McGlade, C. J. (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Current Biology, 12(6), 446–453.PubMedCrossRef Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L., & McGlade, C. J. (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Current Biology, 12(6), 446–453.PubMedCrossRef
90.
go back to reference Dube, N., Bourdeau, A., Heinonen, K. M., Cheng, A., Loy, A. L., & Tremblay, M. L. (2005). Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Research, 65(21), 10088–10095.PubMedCrossRef Dube, N., Bourdeau, A., Heinonen, K. M., Cheng, A., Loy, A. L., & Tremblay, M. L. (2005). Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Research, 65(21), 10088–10095.PubMedCrossRef
91.
go back to reference Myers, M. P., Andersen, J. N., Cheng, A., Tremblay, M. L., Horvath, C. M., Parisien, J. P., et al. (2001). TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. Journal of Biological Chemistry, 276(51), 47771–47774.PubMed Myers, M. P., Andersen, J. N., Cheng, A., Tremblay, M. L., Horvath, C. M., Parisien, J. P., et al. (2001). TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. Journal of Biological Chemistry, 276(51), 47771–47774.PubMed
92.
go back to reference Cheng, A., Uetani, N., Simoncic, P. D., Chaubey, V. P., Lee-Loy, A., McGlade, C. J., et al. (2002). Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Developmental Cell, 2(4), 497–503.PubMedCrossRef Cheng, A., Uetani, N., Simoncic, P. D., Chaubey, V. P., Lee-Loy, A., McGlade, C. J., et al. (2002). Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Developmental Cell, 2(4), 497–503.PubMedCrossRef
93.
go back to reference Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., et al. (2002). PTP1B regulates leptin signal transduction in vivo. Developmental Cell, 2(4), 489–495.PubMedCrossRef Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., et al. (2002). PTP1B regulates leptin signal transduction in vivo. Developmental Cell, 2(4), 489–495.PubMedCrossRef
94.
go back to reference Aoki, N., & Matsuda, T. (2000). A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. Journal of Biological Chemistry, 275(50), 39718–39726.PubMedCrossRef Aoki, N., & Matsuda, T. (2000). A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. Journal of Biological Chemistry, 275(50), 39718–39726.PubMedCrossRef
95.
go back to reference Heinonen, K. M., Dube, N., Bourdeau, A., Lapp, W. S., & Tremblay, M. L. (2006). Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2776–2781.PubMedCrossRef Heinonen, K. M., Dube, N., Bourdeau, A., Lapp, W. S., & Tremblay, M. L. (2006). Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2776–2781.PubMedCrossRef
96.
go back to reference Fukumura, D., Kashiwagi, S., & Jain, R. K. (2006). The role of nitric oxide in tumour progression. Nature Reviews. Cancer, 6(7), 521–534.PubMedCrossRef Fukumura, D., Kashiwagi, S., & Jain, R. K. (2006). The role of nitric oxide in tumour progression. Nature Reviews. Cancer, 6(7), 521–534.PubMedCrossRef
97.
go back to reference Mocellin, S., Rossi, C. R., Pilati, P., & Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine and Growth Factor Reviews, 16(1), 35–53.PubMedCrossRef Mocellin, S., Rossi, C. R., Pilati, P., & Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine and Growth Factor Reviews, 16(1), 35–53.PubMedCrossRef
98.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.PubMedCrossRef Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.PubMedCrossRef
99.
go back to reference Lamagna, C., Aurrand-Lions, M., & Imhof, B. A. (2006). Dual role of macrophages in tumor growth and angiogenesis. Journal of Leukocyte Biology, 80(4), 705–713.PubMedCrossRef Lamagna, C., Aurrand-Lions, M., & Imhof, B. A. (2006). Dual role of macrophages in tumor growth and angiogenesis. Journal of Leukocyte Biology, 80(4), 705–713.PubMedCrossRef
100.
go back to reference Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMedCrossRef Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMedCrossRef
101.
go back to reference LaMontagne Jr., K. R., Flint, A. J., Franza Jr., B. R., Pandergast, A. M., & Tonks, N. K. (1998). Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Molecular and Cellular Biology, 18(5), 2965–2975.PubMed LaMontagne Jr., K. R., Flint, A. J., Franza Jr., B. R., Pandergast, A. M., & Tonks, N. K. (1998). Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Molecular and Cellular Biology, 18(5), 2965–2975.PubMed
102.
go back to reference Donato, N. J., Wu, J. Y., Zhang, L., Kantarjian, H., & Talpaz, M. (2001). Down-regulation of interleukin-3/granulocyte-macrophage colony-stimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells: Association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood, 97(9), 2846–2853.PubMedCrossRef Donato, N. J., Wu, J. Y., Zhang, L., Kantarjian, H., & Talpaz, M. (2001). Down-regulation of interleukin-3/granulocyte-macrophage colony-stimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells: Association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood, 97(9), 2846–2853.PubMedCrossRef
103.
go back to reference Shimizu, T., Miyakawa, Y., Oda, A., Kizaki, M., & Ikeda, Y. (2003). STI571-resistant KT-1 cells are sensitive to interferon-alpha accompanied by the loss of T-cell protein tyrosine phosphatase and prolonged phosphorylation of Stat1. Experimental Hematology, 31(7), 601–608.PubMedCrossRef Shimizu, T., Miyakawa, Y., Oda, A., Kizaki, M., & Ikeda, Y. (2003). STI571-resistant KT-1 cells are sensitive to interferon-alpha accompanied by the loss of T-cell protein tyrosine phosphatase and prolonged phosphorylation of Stat1. Experimental Hematology, 31(7), 601–608.PubMedCrossRef
104.
go back to reference Sakamoto, S., Qin, J., Navarro, A., Gamero, A., Potla, R., Yi, T., et al. (2004). Cells previously desensitized to type 1 interferons display different mechanisms of activation of stat-dependent gene expression from naive cells. Journal of Biological Chemistry, 279(5), 3245–3253.PubMedCrossRef Sakamoto, S., Qin, J., Navarro, A., Gamero, A., Potla, R., Yi, T., et al. (2004). Cells previously desensitized to type 1 interferons display different mechanisms of activation of stat-dependent gene expression from naive cells. Journal of Biological Chemistry, 279(5), 3245–3253.PubMedCrossRef
105.
go back to reference Kaplan, D. H., Shankaran, V., Dighe, A. S., Stockert, E., Aguet, M., Old, L. J., et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7556–7561.PubMedCrossRef Kaplan, D. H., Shankaran, V., Dighe, A. S., Stockert, E., Aguet, M., Old, L. J., et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7556–7561.PubMedCrossRef
106.
go back to reference Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107–1111.PubMedCrossRef Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107–1111.PubMedCrossRef
107.
go back to reference Lesinski, G. B., Anghelina, M., Zimmerer, J., Bakalakos, T., Badgwell, B., Parihar, R., et al. (2003). The antitumor effects of IFN-alpha are abrogated in a STAT1-deficient mouse. Journal of Clinical Investigation, 112(2), 170–180.PubMed Lesinski, G. B., Anghelina, M., Zimmerer, J., Bakalakos, T., Badgwell, B., Parihar, R., et al. (2003). The antitumor effects of IFN-alpha are abrogated in a STAT1-deficient mouse. Journal of Clinical Investigation, 112(2), 170–180.PubMed
108.
go back to reference Badgwell, B., Lesinski, G. B., Magro, C., Abood, G., Skaf, A., & Carson 3rd., W. (2004). The antitumor effects of interferon-alpha are maintained in mice challenged with a STAT1-deficient murine melanoma cell line. Journal of Surgical Research, 116(1), 129–136.PubMedCrossRef Badgwell, B., Lesinski, G. B., Magro, C., Abood, G., Skaf, A., & Carson 3rd., W. (2004). The antitumor effects of interferon-alpha are maintained in mice challenged with a STAT1-deficient murine melanoma cell line. Journal of Surgical Research, 116(1), 129–136.PubMedCrossRef
109.
go back to reference Street, S. E., Trapani, J. A., MacGregor, D., & Smyth, M. J. (2002). Suppression of lymphoma and epithelial malignancies effected by interferon gamma. Journal of Experimental Medicine, 196(1), 129–134.PubMedCrossRef Street, S. E., Trapani, J. A., MacGregor, D., & Smyth, M. J. (2002). Suppression of lymphoma and epithelial malignancies effected by interferon gamma. Journal of Experimental Medicine, 196(1), 129–134.PubMedCrossRef
110.
go back to reference Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews. Cancer, 3(4), 276–285.PubMedCrossRef Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews. Cancer, 3(4), 276–285.PubMedCrossRef
111.
go back to reference Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.PubMedCrossRef Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.PubMedCrossRef
112.
113.
go back to reference Shacter, E., & Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park), 16(2), 217–226 229 discussion 230–212. Shacter, E., & Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park), 16(2), 217–226 229 discussion 230–212.
114.
go back to reference Fox, J. G., & Wang, T. C. (2007). Inflammation, atrophy, and gastric cancer. Journal of Clinical Investigation, 117(1), 60–69.PubMedCrossRef Fox, J. G., & Wang, T. C. (2007). Inflammation, atrophy, and gastric cancer. Journal of Clinical Investigation, 117(1), 60–69.PubMedCrossRef
115.
go back to reference Dobrovolskaia, M. A., & Kozlov, S. V. (2005). Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Current Cancer Drug Targets, 5(5), 325–344.PubMedCrossRef Dobrovolskaia, M. A., & Kozlov, S. V. (2005). Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Current Cancer Drug Targets, 5(5), 325–344.PubMedCrossRef
116.
go back to reference Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.PubMedCrossRef Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.PubMedCrossRef
117.
go back to reference Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef
118.
go back to reference Ben-Baruch, A. (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in Cancer Biology, 16(1), 38–52.PubMedCrossRef Ben-Baruch, A. (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in Cancer Biology, 16(1), 38–52.PubMedCrossRef
119.
go back to reference Smyth, M. J., Cretney, E., Kershaw, M. H., & Hayakawa, Y. (2004). Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 202, 275–293.PubMedCrossRef Smyth, M. J., Cretney, E., Kershaw, M. H., & Hayakawa, Y. (2004). Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 202, 275–293.PubMedCrossRef
120.
go back to reference The Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.CrossRef The Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.CrossRef
121.
go back to reference Kovacic, B., Stoiber, D., Moriggl, R., Weisz, E., Ott, R. G., Kreibich, R., et al. (2006). STAT1 acts as a tumor promoter for leukemia development. Cancer Cell, 10(1), 77–87.PubMedCrossRef Kovacic, B., Stoiber, D., Moriggl, R., Weisz, E., Ott, R. G., Kreibich, R., et al. (2006). STAT1 acts as a tumor promoter for leukemia development. Cancer Cell, 10(1), 77–87.PubMedCrossRef
122.
go back to reference Hanada, T., Kobayashi, T., Chinen, T., Saeki, K., Takaki, H., Koga, K., et al. (2006). IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. Journal of Experimental Medicine, 203(6), 1391–1397.PubMedCrossRef Hanada, T., Kobayashi, T., Chinen, T., Saeki, K., Takaki, H., Koga, K., et al. (2006). IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. Journal of Experimental Medicine, 203(6), 1391–1397.PubMedCrossRef
123.
go back to reference Starr, R., Metcalf, D., Elefanty, A. G., Brysha, M., Willson, T. A., Nicola, N. A., et al. (1998). Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14395–14399.PubMedCrossRef Starr, R., Metcalf, D., Elefanty, A. G., Brysha, M., Willson, T. A., Nicola, N. A., et al. (1998). Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14395–14399.PubMedCrossRef
124.
go back to reference Metcalf, D., Alexander, W. S., Elefanty, A. G., Nicola, N. A., Hilton, D. J., Starr, R., et al. (1999). Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia, 13(6), 926–934.PubMedCrossRef Metcalf, D., Alexander, W. S., Elefanty, A. G., Nicola, N. A., Hilton, D. J., Starr, R., et al. (1999). Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia, 13(6), 926–934.PubMedCrossRef
125.
go back to reference Lin, T. S., Mahajan, S., & Frank, D. A. (2000). STAT signaling in the pathogenesis and treatment of leukemias. Oncogene, 19(21), 2496–2504.PubMedCrossRef Lin, T. S., Mahajan, S., & Frank, D. A. (2000). STAT signaling in the pathogenesis and treatment of leukemias. Oncogene, 19(21), 2496–2504.PubMedCrossRef
126.
go back to reference Khwaja, A. (2006). The role of Janus kinases in haemopoiesis and haematological malignancy. British Journal of Haematology, 134(4), 366–384.PubMedCrossRef Khwaja, A. (2006). The role of Janus kinases in haemopoiesis and haematological malignancy. British Journal of Haematology, 134(4), 366–384.PubMedCrossRef
127.
go back to reference Zhai, Y. F., Beittenmiller, H., Wang, B., Gould, M. N., Oakley, C., Esselman, W. J., et al. (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Research, 53(10 Suppl), 2272–2278.PubMed Zhai, Y. F., Beittenmiller, H., Wang, B., Gould, M. N., Oakley, C., Esselman, W. J., et al. (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Research, 53(10 Suppl), 2272–2278.PubMed
128.
go back to reference LaMontagne Jr., K. R., Flint, A. J., Franza Jr., B. R., Pandergast, A. M., & Tonks, N. K. (1998). Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Molecular and Cellular Biology, 18(5), 2965–2975.PubMed LaMontagne Jr., K. R., Flint, A. J., Franza Jr., B. R., Pandergast, A. M., & Tonks, N. K. (1998). Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Molecular and Cellular Biology, 18(5), 2965–2975.PubMed
129.
go back to reference Wiener, J. R., Kerns, B. J., Harvey, E. L., Conaway, M. R., Iglehart, J. D., Berchuck, A., et al. (1994). Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. Journal of the National Cancer Institute, 86(5), 372–378.PubMedCrossRef Wiener, J. R., Kerns, B. J., Harvey, E. L., Conaway, M. R., Iglehart, J. D., Berchuck, A., et al. (1994). Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. Journal of the National Cancer Institute, 86(5), 372–378.PubMedCrossRef
130.
go back to reference Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244(4905), 707–712.PubMedCrossRef Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244(4905), 707–712.PubMedCrossRef
131.
go back to reference Wiener, J. R., Hurteau, J. A., Kerns, B. J., Whitaker, R. S., Conaway, M. R., Berchuck, A., et al. (1994). Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. American Journal of Obstetrics and Gynecology, 170(4), 1177–1183.PubMed Wiener, J. R., Hurteau, J. A., Kerns, B. J., Whitaker, R. S., Conaway, M. R., Berchuck, A., et al. (1994). Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. American Journal of Obstetrics and Gynecology, 170(4), 1177–1183.PubMed
132.
go back to reference van Haaften-Day, C., Russell, P., Boyer, C. M., Kerns, B. J., Wiener, J. R., Jensen, D. N., et al. (1996). Expression of cell regulatory proteins in ovarian borderline tumors. Cancer, 77(10), 2092–2098.PubMedCrossRef van Haaften-Day, C., Russell, P., Boyer, C. M., Kerns, B. J., Wiener, J. R., Jensen, D. N., et al. (1996). Expression of cell regulatory proteins in ovarian borderline tumors. Cancer, 77(10), 2092–2098.PubMedCrossRef
133.
go back to reference Nanney, L. B., Davidson, M. K., Gates, R. E., Kano, M., & King Jr., L. E. (1997). Altered distribution and expression of protein tyrosine phosphatases in normal human skin as compared to squamous cell carcinomas. Journal of Cutaneous Pathology, 24(9), 521–532.PubMedCrossRef Nanney, L. B., Davidson, M. K., Gates, R. E., Kano, M., & King Jr., L. E. (1997). Altered distribution and expression of protein tyrosine phosphatases in normal human skin as compared to squamous cell carcinomas. Journal of Cutaneous Pathology, 24(9), 521–532.PubMedCrossRef
134.
go back to reference Warabi, M., Nemoto, T., Ohashi, K., Kitagawa, M., & Hirokawa, K. (2000). Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Experimental and Molecular Pathology, 68(3), 187–195.PubMedCrossRef Warabi, M., Nemoto, T., Ohashi, K., Kitagawa, M., & Hirokawa, K. (2000). Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Experimental and Molecular Pathology, 68(3), 187–195.PubMedCrossRef
135.
go back to reference Fukada, T., & Tonks, N. K. (2001). The reciprocal role of Egr-1 and Sp family proteins in regulation of the PTP1B promoter in response to the p210 Bcr-Abl oncoprotein-tyrosine kinase. Journal of Biological Chemistry, 276(27), 25512–25519.PubMedCrossRef Fukada, T., & Tonks, N. K. (2001). The reciprocal role of Egr-1 and Sp family proteins in regulation of the PTP1B promoter in response to the p210 Bcr-Abl oncoprotein-tyrosine kinase. Journal of Biological Chemistry, 276(27), 25512–25519.PubMedCrossRef
136.
go back to reference Fukada, T., & Tonks, N. K. (2003). Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. EMBO Journal, 22(3), 479–493.PubMedCrossRef Fukada, T., & Tonks, N. K. (2003). Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. EMBO Journal, 22(3), 479–493.PubMedCrossRef
137.
go back to reference Lucerna, M., Pomyje, J., Mechtcheriakova, D., Kadl, A., Gruber, F., Bilban, M., et al. (2006). Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Research, 66(13), 6708–6713.PubMedCrossRef Lucerna, M., Pomyje, J., Mechtcheriakova, D., Kadl, A., Gruber, F., Bilban, M., et al. (2006). Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Research, 66(13), 6708–6713.PubMedCrossRef
138.
go back to reference Bargou, R. C., Jurchott, K., Wagener, C., Bergmann, S., Metzner, S., Bommert, K., et al. (1997). Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nature Medicine, 3(4), 447–450.PubMedCrossRef Bargou, R. C., Jurchott, K., Wagener, C., Bergmann, S., Metzner, S., Bommert, K., et al. (1997). Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nature Medicine, 3(4), 447–450.PubMedCrossRef
139.
go back to reference Wu, J., Lee, C., Yokom, D., Jiang, H., Cheang, M. C., Yorida, E., et al. (2006). Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Research, 66(9), 4872–4879.PubMedCrossRef Wu, J., Lee, C., Yokom, D., Jiang, H., Cheang, M. C., Yorida, E., et al. (2006). Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Research, 66(9), 4872–4879.PubMedCrossRef
140.
go back to reference Desai, K. V., Xiao, N., Wang, W., Gangi, L., Greene, J., Powell, J. I., et al. (2002). Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6967–6972.PubMedCrossRef Desai, K. V., Xiao, N., Wang, W., Gangi, L., Greene, J., Powell, J. I., et al. (2002). Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6967–6972.PubMedCrossRef
141.
go back to reference Blanchetot, C., Chagnon, M., Dube, N., Halle, M., & Tremblay, M. L. (2005). Substrate-trapping techniques in the identification of cellular PTP targets. Methods, 35(1), 44–53.PubMedCrossRef Blanchetot, C., Chagnon, M., Dube, N., Halle, M., & Tremblay, M. L. (2005). Substrate-trapping techniques in the identification of cellular PTP targets. Methods, 35(1), 44–53.PubMedCrossRef
142.
go back to reference von Roon, A. C., Reese, G., Teare, J., Constantinides, V., Darzi, A. W., & Tekkis, P. P. (2007). The risk of cancer in patients with Crohn’s disease. Diseases of the Colon and Rectum, 50(6), 839–855.CrossRef von Roon, A. C., Reese, G., Teare, J., Constantinides, V., Darzi, A. W., & Tekkis, P. P. (2007). The risk of cancer in patients with Crohn’s disease. Diseases of the Colon and Rectum, 50(6), 839–855.CrossRef
Metadata
Title
PTP1B and TC-PTP: regulators of transformation and tumorigenesis
Authors
Matthew Stuible
Karen M. Doody
Michel L. Tremblay
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9115-1

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine