Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias

Authors: Danilo Perrotti, Paolo Neviani

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and is involved in the regulation of cell homeostasis through the negative regulation of signaling pathways initiated by protein kinases. As several cancers are characterized by the aberrant activity of oncogenic kinases, it was not surprising that a phosphatase like PP2A has progressively been considered as a potential tumor suppressor. Indeed, multiple solid tumors (e.g. melanomas, colorectal carcinomas, lung and breast cancers) present with genetic and/or functional inactivation of different PP2A subunits and, therefore, loss of PP2A phosphatase activity towards certain substrates. Likewise, impaired PP2A phosphatase activity has been linked to B-cell chronic lymphocytic leukemia, Philadelphia-chromosome positive acute lymphoblastic leukemia and blast crisis chronic myelogenous leukemia. Remarkably, drugs such as forskolin, 1,9-dideoxy-forskolin and FTY720 which lead to PP2A activation effectively antagonize leukemogenesis in both in vitro and in vivo models of these cancers. Thus, PP2A is now in the spotlight as a highly promising drugable target for the development of a new series of anticancer agents potentially capable of overcoming drug-resistance induced in patients by continuous exposure to kinase inhibitor monotherapy. Herein, we review current knowledge of PP2A biology and function with particular emphasis on its tumor suppressor activity and possible therapeutic implications in cancer.
Literature
2.
go back to reference Todd, R., & Wong, D. T. (1999). Oncogenes. Anticancer Research, 19(6A), 4729–4746.PubMed Todd, R., & Wong, D. T. (1999). Oncogenes. Anticancer Research, 19(6A), 4729–4746.PubMed
5.
go back to reference Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80(2), 225–236.PubMedCrossRef Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80(2), 225–236.PubMedCrossRef
6.
go back to reference Levine, A. J., & Broach, J. R. (1995). Oncogenes and cell proliferation. Current Opinion in Genetics & Development, 5(1), 1–4.CrossRef Levine, A. J., & Broach, J. R. (1995). Oncogenes and cell proliferation. Current Opinion in Genetics & Development, 5(1), 1–4.CrossRef
7.
go back to reference Calabretta, B., & Perrotti, D. (2004). The biology of CML blast crisis. Blood, 103(11), 4010–4022.PubMedCrossRef Calabretta, B., & Perrotti, D. (2004). The biology of CML blast crisis. Blood, 103(11), 4010–4022.PubMedCrossRef
8.
go back to reference Westbrook, C. A., Hooberman, A. L., Spino, C., Dodge, R. K., Larson, R. A., Davey, F., et al. (1992). Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: A Cancer and Leukemia Group B Study (8762). Blood, 80(12), 2983–2990.PubMed Westbrook, C. A., Hooberman, A. L., Spino, C., Dodge, R. K., Larson, R. A., Davey, F., et al. (1992). Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: A Cancer and Leukemia Group B Study (8762). Blood, 80(12), 2983–2990.PubMed
9.
go back to reference Tonks, N. K. (2006). Protein tyrosine phosphatases: From genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833–846.PubMedCrossRef Tonks, N. K. (2006). Protein tyrosine phosphatases: From genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833–846.PubMedCrossRef
10.
go back to reference Janssens, V., Goris, J., & Van Hoof, C. (2005). PP2A: the expected tumor suppressor. Current Opinion in Genetics & Development, 15(1), 34–41.CrossRef Janssens, V., Goris, J., & Van Hoof, C. (2005). PP2A: the expected tumor suppressor. Current Opinion in Genetics & Development, 15(1), 34–41.CrossRef
11.
go back to reference Perrotti, D., & Neviani, P. (2006). ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. British Journal of Cancer, 95(7), 775–781.PubMedCrossRef Perrotti, D., & Neviani, P. (2006). ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. British Journal of Cancer, 95(7), 775–781.PubMedCrossRef
12.
go back to reference Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353(Pt 3), 417–439.PubMedCrossRef Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353(Pt 3), 417–439.PubMedCrossRef
13.
go back to reference Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letter, 170(1), 1–13.CrossRef Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letter, 170(1), 1–13.CrossRef
14.
go back to reference Lechward, K., Awotunde, O. S., Swiatek, W., & Muszynska, G. (2001). Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochimica Polonica, 48(4), 921–933.PubMed Lechward, K., Awotunde, O. S., Swiatek, W., & Muszynska, G. (2001). Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochimica Polonica, 48(4), 921–933.PubMed
15.
go back to reference Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A., & Pringle, J. R. (1991). CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: Identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Molecular and Cellular Biology, 11(11), 5767–5780.PubMed Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A., & Pringle, J. R. (1991). CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: Identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Molecular and Cellular Biology, 11(11), 5767–5780.PubMed
16.
go back to reference Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72(4), 621–633.PubMedCrossRef Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72(4), 621–633.PubMedCrossRef
17.
go back to reference Schild, A., Schmidt, K., Lim, Y. A., Ke, Y., Ittner, L. M., Hemmings, B. A., et al. (2006). Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 24(7), 437–443.PubMedCrossRef Schild, A., Schmidt, K., Lim, Y. A., Ke, Y., Ittner, L. M., Hemmings, B. A., et al. (2006). Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 24(7), 437–443.PubMedCrossRef
18.
go back to reference Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef
19.
go back to reference Voorhoeve, P. M., Hijmans, E. M., & Bernards, R. (1999). Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene, 18(2), 515–524.PubMedCrossRef Voorhoeve, P. M., Hijmans, E. M., & Bernards, R. (1999). Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene, 18(2), 515–524.PubMedCrossRef
20.
go back to reference Sontag, E. (2001). Protein phosphatase 2A: The Trojan Horse of cellular signaling. Cell Signal, 13(1), 7–16.PubMedCrossRef Sontag, E. (2001). Protein phosphatase 2A: The Trojan Horse of cellular signaling. Cell Signal, 13(1), 7–16.PubMedCrossRef
21.
go back to reference Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef
22.
go back to reference Lee, T. H., Turck, C., & Kirschner, M. W. (1994). Inhibition of cdc2 activation by INH/PP2A. Molecular Biology of the Cell, 5(3), 323–338.PubMed Lee, T. H., Turck, C., & Kirschner, M. W. (1994). Inhibition of cdc2 activation by INH/PP2A. Molecular Biology of the Cell, 5(3), 323–338.PubMed
23.
go back to reference Van Hoof, C., & Goris, J. (2003). Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochimica et Biophysica Acta, 1640(2–3), 97–104.PubMed Van Hoof, C., & Goris, J. (2003). Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochimica et Biophysica Acta, 1640(2–3), 97–104.PubMed
24.
go back to reference Yang, J., Fan, G. H., Wadzinski, B. E., Sakurai, H., & Richmond, A. (2001). Protein phosphatase 2A interacts with and directly dephosphorylates RelA. Journal of Biological Chemistry, 276(51), 47828–47833.PubMed Yang, J., Fan, G. H., Wadzinski, B. E., Sakurai, H., & Richmond, A. (2001). Protein phosphatase 2A interacts with and directly dephosphorylates RelA. Journal of Biological Chemistry, 276(51), 47828–47833.PubMed
25.
go back to reference Ivaska, J., Nissinen, L., Immonen, N., Eriksson, J. E., Kahari, V. M., & Heino, J. (2002). Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Molecular and Cellular Biology, 22(5), 1352–1359.PubMedCrossRef Ivaska, J., Nissinen, L., Immonen, N., Eriksson, J. E., Kahari, V. M., & Heino, J. (2002). Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Molecular and Cellular Biology, 22(5), 1352–1359.PubMedCrossRef
26.
go back to reference Peterson, R. T., Desai, B. N., Hardwick, J. S., & Schreiber, S. L. (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4438–4442.PubMedCrossRef Peterson, R. T., Desai, B. N., Hardwick, J. S., & Schreiber, S. L. (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4438–4442.PubMedCrossRef
27.
go back to reference Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C., & Thomas, G. (1999). Drosophila S6 kinase: a regulator of cell size. Science, 285(5436), 2126–2129.PubMedCrossRef Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C., & Thomas, G. (1999). Drosophila S6 kinase: a regulator of cell size. Science, 285(5436), 2126–2129.PubMedCrossRef
28.
go back to reference Hornstein, E., Tang, H., & Meyuhas, O. (2001). Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harbor Symposia on Quantitative Biology, 66, 477–484.PubMedCrossRef Hornstein, E., Tang, H., & Meyuhas, O. (2001). Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harbor Symposia on Quantitative Biology, 66, 477–484.PubMedCrossRef
29.
go back to reference Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. European Molecular Biology Organization Journal, 20(15), 4122–4131. Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. European Molecular Biology Organization Journal, 20(15), 4122–4131.
30.
go back to reference Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Sciences, 63(24), 2979–2991.PubMedCrossRef Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Sciences, 63(24), 2979–2991.PubMedCrossRef
31.
go back to reference Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef
32.
go back to reference Longin, S., Zwaenepoel, K., Louis, J. V., Dilworth, S., Goris, J., & Janssens, V. (2007). Selection of protein phosphatase 2A regulatory subunits is mediated by the C-terminus of the catalytic subunit. Journal of Biological Chemistry, 282, 26971–26980.PubMedCrossRef Longin, S., Zwaenepoel, K., Louis, J. V., Dilworth, S., Goris, J., & Janssens, V. (2007). Selection of protein phosphatase 2A regulatory subunits is mediated by the C-terminus of the catalytic subunit. Journal of Biological Chemistry, 282, 26971–26980.PubMedCrossRef
33.
go back to reference Li, M., & Damuni, Z. (1998). I1PP2A and I2PP2A. Two potent protein phosphatase 2A-specific inhibitor proteins. Methods in Molecular Biology, 93, 59–66.PubMed Li, M., & Damuni, Z. (1998). I1PP2A and I2PP2A. Two potent protein phosphatase 2A-specific inhibitor proteins. Methods in Molecular Biology, 93, 59–66.PubMed
34.
go back to reference Kovacech, B., Kontsekova, E., Zilka, N., Novak, P., Skrabana, R., Filipcik, P., et al. (2007). A novel monoclonal antibody DC63 reveals that inhibitor 1 of protein phosphatase 2A is preferentially nuclearly localised in human brain. Federation of European Biochemical Societies Letters, 581(4), 617–622.PubMed Kovacech, B., Kontsekova, E., Zilka, N., Novak, P., Skrabana, R., Filipcik, P., et al. (2007). A novel monoclonal antibody DC63 reveals that inhibitor 1 of protein phosphatase 2A is preferentially nuclearly localised in human brain. Federation of European Biochemical Societies Letters, 581(4), 617–622.PubMed
35.
go back to reference Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef
36.
go back to reference Adachi, Y., Pavlakis, G. N., & Copeland, T. D. (1994). Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. Journal of Biological Chemistry, 269(3), 2258–2262.PubMed Adachi, Y., Pavlakis, G. N., & Copeland, T. D. (1994). Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. Journal of Biological Chemistry, 269(3), 2258–2262.PubMed
37.
go back to reference Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef
38.
go back to reference Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S., et al. (2005). The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell, 8(5), 355–368.PubMedCrossRef Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S., et al. (2005). The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell, 8(5), 355–368.PubMedCrossRef
39.
go back to reference Neviani, P., Santhanam, R., Oaks, J. J., Eiring, A. M., Notari, M., Blaser, B. W., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. Journal of Clinical Investigation, 117(9), 2408–2421.PubMedCrossRef Neviani, P., Santhanam, R., Oaks, J. J., Eiring, A. M., Notari, M., Blaser, B. W., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. Journal of Clinical Investigation, 117(9), 2408–2421.PubMedCrossRef
40.
go back to reference Trotta, R., Ciarlariello, D., Col, J. D., Allard 2nd, J., Neviani, P., Santhanam, R., et al. (2007). The PP2A inhibitor SET regulates natural killer cell IFN-{gamma} production. Journal of Experimental Medicine, 204, 2397–2405.PubMedCrossRef Trotta, R., Ciarlariello, D., Col, J. D., Allard 2nd, J., Neviani, P., Santhanam, R., et al. (2007). The PP2A inhibitor SET regulates natural killer cell IFN-{gamma} production. Journal of Experimental Medicine, 204, 2397–2405.PubMedCrossRef
41.
go back to reference Bialojan, C., & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemical Journal, 256(1), 283–290.PubMed Bialojan, C., & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemical Journal, 256(1), 283–290.PubMed
42.
go back to reference Arroyo, J. D., & Hahn, W. C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene, 24(52), 7746–7755.PubMedCrossRef Arroyo, J. D., & Hahn, W. C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene, 24(52), 7746–7755.PubMedCrossRef
43.
go back to reference Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef
44.
go back to reference Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef
45.
go back to reference Francia, G., Poulsom, R., Hanby, A. M., Mitchell, S. D., Williams, G., McKee, P., et al. (1999). Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. International Journal of Cancer, 82(5), 709–713.CrossRef Francia, G., Poulsom, R., Hanby, A. M., Mitchell, S. D., Williams, G., McKee, P., et al. (1999). Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. International Journal of Cancer, 82(5), 709–713.CrossRef
46.
go back to reference Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. European Molecular Biology Organization Journal, 19(4), 562–571. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. European Molecular Biology Organization Journal, 19(4), 562–571.
47.
go back to reference Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5(2), 127–136.PubMedCrossRef Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5(2), 127–136.PubMedCrossRef
48.
go back to reference Ito, A., Koma, Y., Watabe, K., Nagano, T., Endo, Y., Nojima, H., et al. (2003). A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression. American Journal of Pathology, 162(1), 81–91.PubMed Ito, A., Koma, Y., Watabe, K., Nagano, T., Endo, Y., Nojima, H., et al. (2003). A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression. American Journal of Pathology, 162(1), 81–91.PubMed
49.
go back to reference Silverstein, A. M., Barrow, C. A., Davis, A. J., & Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4221–4226.PubMedCrossRef Silverstein, A. M., Barrow, C. A., Davis, A. J., & Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4221–4226.PubMedCrossRef
50.
go back to reference Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef
51.
go back to reference Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef
52.
go back to reference Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef
53.
go back to reference Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–2671.PubMedCrossRef Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–2671.PubMedCrossRef
54.
go back to reference Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef
55.
go back to reference Esplin, E. D., Ramos, P., Martinez, B., Tomlinson, G. E., Mumby, M. C., & Evans, G. A. (2006). The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer, 45(2), 182–190.PubMedCrossRef Esplin, E. D., Ramos, P., Martinez, B., Tomlinson, G. E., Mumby, M. C., & Evans, G. A. (2006). The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer, 45(2), 182–190.PubMedCrossRef
56.
go back to reference Baysal, B. E., Willett-Brozick, J. E., Taschner, P. E., Dauwerse, J. G., Devilee, P., & Devlin, B. (2001). A high-resolution integrated map spanning the SDHD gene at 11q23: A 1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. European Journal of Human Genetics, 9(2), 121–129.PubMedCrossRef Baysal, B. E., Willett-Brozick, J. E., Taschner, P. E., Dauwerse, J. G., Devilee, P., & Devlin, B. (2001). A high-resolution integrated map spanning the SDHD gene at 11q23: A 1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. European Journal of Human Genetics, 9(2), 121–129.PubMedCrossRef
57.
go back to reference Camonis, J. H., & White, M. A. (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef Camonis, J. H., & White, M. A. (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef
58.
go back to reference Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed
59.
go back to reference Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef
60.
go back to reference Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., & Pandolfi, P. P. (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 441(7092), 523–527.PubMedCrossRef Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., & Pandolfi, P. P. (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 441(7092), 523–527.PubMedCrossRef
61.
go back to reference Soo Hoo, L., Zhang, J. Y., & Chan, E. K. (2002). Cloning and characterization of a novel 90 kDa ‘companion’ auto-antigen of p62 overexpressed in cancer. Oncogene, 21(32), 5006–5015.PubMedCrossRef Soo Hoo, L., Zhang, J. Y., & Chan, E. K. (2002). Cloning and characterization of a novel 90 kDa ‘companion’ auto-antigen of p62 overexpressed in cancer. Oncogene, 21(32), 5006–5015.PubMedCrossRef
62.
go back to reference Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef
63.
go back to reference Sears, R. C. (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle, 3(9), 1133–1137.PubMed Sears, R. C. (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle, 3(9), 1133–1137.PubMed
64.
go back to reference Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef
65.
go back to reference Escamilla-Powers, J. R., & Sears, R. C. (2007). A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. Journal of Biological Chemistry, 282(8), 5432–5442.PubMedCrossRef Escamilla-Powers, J. R., & Sears, R. C. (2007). A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. Journal of Biological Chemistry, 282(8), 5432–5442.PubMedCrossRef
66.
go back to reference Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43(8), 1328–1335.PubMedCrossRef Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43(8), 1328–1335.PubMedCrossRef
67.
go back to reference Dohner, H., Stilgenbauer, S., James, M. R., Benner, A., Weilguni, T., Bentz, M., et al. (1997). 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood, 89(7), 2516–2522.PubMed Dohner, H., Stilgenbauer, S., James, M. R., Benner, A., Weilguni, T., Bentz, M., et al. (1997). 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood, 89(7), 2516–2522.PubMed
68.
go back to reference Zhu, Y., Loukola, A., Monni, O., Kuokkanen, K., Franssila, K., Elonen, E., et al. (2001). PPP2R1B gene in chronic lymphocytic leukemias and mantle cell lymphomas. Leukaemia and Lymphoma, 41(1–2), 177–183.CrossRef Zhu, Y., Loukola, A., Monni, O., Kuokkanen, K., Franssila, K., Elonen, E., et al. (2001). PPP2R1B gene in chronic lymphocytic leukemias and mantle cell lymphomas. Leukaemia and Lymphoma, 41(1–2), 177–183.CrossRef
69.
go back to reference Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., et al. (2008). FTY720 demonstrates promising pre-clinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood, 111, 275–284.PubMedCrossRef Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., et al. (2008). FTY720 demonstrates promising pre-clinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood, 111, 275–284.PubMedCrossRef
70.
go back to reference Dumont, F. J. (2005). Fingolimod. Mitsubishi Pharma/Novartis. IDrugs, 8(3), 236–253.PubMed Dumont, F. J. (2005). Fingolimod. Mitsubishi Pharma/Novartis. IDrugs, 8(3), 236–253.PubMed
71.
go back to reference Virley, D. J. (2005). Developing therapeutics for the treatment of multiple sclerosis. NeuroRx, 2(4), 638–649.PubMedCrossRef Virley, D. J. (2005). Developing therapeutics for the treatment of multiple sclerosis. NeuroRx, 2(4), 638–649.PubMedCrossRef
72.
go back to reference Budde, K., Schmouder, R. L., Brunkhorst, R., Nashan, B., Lucker, P. W., Mayer, T., et al. (2002). First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. Journal of the American Society of Nephrology, 13(4), 1073–1083.PubMed Budde, K., Schmouder, R. L., Brunkhorst, R., Nashan, B., Lucker, P. W., Mayer, T., et al. (2002). First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. Journal of the American Society of Nephrology, 13(4), 1073–1083.PubMed
73.
go back to reference Skerjanec, A., Tedesco, H., Neumayer, H. H., Cole, E., Budde, K., Hsu, C. H., et al. (2005). FTY720, a novel immunomodulator in de novo kidney transplant patients: Pharmacokinetics and exposure–response relationship. Journal of Clinical Pharmacology, 45(11), 1268–1278.PubMedCrossRef Skerjanec, A., Tedesco, H., Neumayer, H. H., Cole, E., Budde, K., Hsu, C. H., et al. (2005). FTY720, a novel immunomodulator in de novo kidney transplant patients: Pharmacokinetics and exposure–response relationship. Journal of Clinical Pharmacology, 45(11), 1268–1278.PubMedCrossRef
74.
go back to reference Brinkmann, V. (2004). FTY720: mechanism of action and potential benefit in organ transplantation. Yonsei Medical Journal, 45(6), 991–997.PubMed Brinkmann, V. (2004). FTY720: mechanism of action and potential benefit in organ transplantation. Yonsei Medical Journal, 45(6), 991–997.PubMed
75.
go back to reference Kovarik, J. M., Schmouder, R., Barilla, D., Riviere, G. J., Wang, Y., & Hunt, T. (2004). Multiple-dose FTY720: Tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. Journal of Clinical Pharmacology, 44(5), 532–537.PubMedCrossRef Kovarik, J. M., Schmouder, R., Barilla, D., Riviere, G. J., Wang, Y., & Hunt, T. (2004). Multiple-dose FTY720: Tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. Journal of Clinical Pharmacology, 44(5), 532–537.PubMedCrossRef
76.
go back to reference Iervolino, A., Santilli, G., Trotta, R., Guerzoni, C., Cesi, V., Bergamaschi, A., et al. (2002). hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Molecular and Cellular Biology, 22(7), 2255–2266.PubMedCrossRef Iervolino, A., Santilli, G., Trotta, R., Guerzoni, C., Cesi, V., Bergamaschi, A., et al. (2002). hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Molecular and Cellular Biology, 22(7), 2255–2266.PubMedCrossRef
77.
go back to reference Perrotti, D., & Neviani, P. (2007). From mRNA metabolism to cancer therapy: Chronic myelogenous leukemia shows the way. Clinical Cancer Research, 13(6), 1638–1642.PubMedCrossRef Perrotti, D., & Neviani, P. (2007). From mRNA metabolism to cancer therapy: Chronic myelogenous leukemia shows the way. Clinical Cancer Research, 13(6), 1638–1642.PubMedCrossRef
78.
go back to reference Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10832–10837.PubMedCrossRef Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10832–10837.PubMedCrossRef
79.
go back to reference Yokoyama, N., Reich, N. C., & Miller, W. T. (2001). Involvement of protein phosphatase 2A in the interleukin-3-stimulated Jak2-Stat5 signaling pathway. Journal of Interferon and Cytokine Research, 21(6), 369–378.PubMedCrossRef Yokoyama, N., Reich, N. C., & Miller, W. T. (2001). Involvement of protein phosphatase 2A in the interleukin-3-stimulated Jak2-Stat5 signaling pathway. Journal of Interferon and Cytokine Research, 21(6), 369–378.PubMedCrossRef
80.
go back to reference Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23(18), 6350–6362.PubMedCrossRef Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23(18), 6350–6362.PubMedCrossRef
81.
go back to reference Gomez, N., & Cohen, P. (1991). Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature, 353(6340), 170–173.PubMedCrossRef Gomez, N., & Cohen, P. (1991). Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature, 353(6340), 170–173.PubMedCrossRef
82.
go back to reference Avni, D., Yang, H., Martelli, F., Hofmann, F., ElShamy, W. M., Ganesan, S., et al. (2003). Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Molecular Cell, 12(3), 735–746.PubMedCrossRef Avni, D., Yang, H., Martelli, F., Hofmann, F., ElShamy, W. M., Ganesan, S., et al. (2003). Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Molecular Cell, 12(3), 735–746.PubMedCrossRef
83.
go back to reference Cortez, D., Reuther, G., & Pendergast, A. M. (1997). The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene, 15(19), 2333–2342.PubMedCrossRef Cortez, D., Reuther, G., & Pendergast, A. M. (1997). The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene, 15(19), 2333–2342.PubMedCrossRef
84.
go back to reference Feschenko, M. S., Stevenson, E., Nairn, A. C., & Sweadner, K. J. (2002). A novel cAMP-stimulated pathway in protein phosphatase 2A activation. Journal of Pharmacology and Experimental Therapeutics, 302(1), 111–118.PubMedCrossRef Feschenko, M. S., Stevenson, E., Nairn, A. C., & Sweadner, K. J. (2002). A novel cAMP-stimulated pathway in protein phosphatase 2A activation. Journal of Pharmacology and Experimental Therapeutics, 302(1), 111–118.PubMedCrossRef
85.
go back to reference Matsuoka, Y., Nagahara, Y., Ikekita, M., & Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. British Journal of Pharmacology, 138(7), 1303–1312.PubMedCrossRef Matsuoka, Y., Nagahara, Y., Ikekita, M., & Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. British Journal of Pharmacology, 138(7), 1303–1312.PubMedCrossRef
86.
go back to reference Liedtke, M., Pandey, P., Kumar, S., Kharbanda, S., & Kufe, D. (1998). Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase. Oncogene, 17(15), 1889–1892.PubMedCrossRef Liedtke, M., Pandey, P., Kumar, S., Kharbanda, S., & Kufe, D. (1998). Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase. Oncogene, 17(15), 1889–1892.PubMedCrossRef
87.
go back to reference Lim, Y. M., Wong, S., Lau, G., Witte, O. N., & Colicelli, J. (2000). BCR/ABL inhibition by an escort/phosphatase fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12233–12238.PubMedCrossRef Lim, Y. M., Wong, S., Lau, G., Witte, O. N., & Colicelli, J. (2000). BCR/ABL inhibition by an escort/phosphatase fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12233–12238.PubMedCrossRef
88.
go back to reference Chen, P., Levis, M., Brown, P., Kim, K. T., Allebach, J., & Small, D. (2005). FLT3/ITD mutation signaling includes suppression of SHP-1. Journal of Biological Chemistry, 280(7), 5361–5369.PubMedCrossRef Chen, P., Levis, M., Brown, P., Kim, K. T., Allebach, J., & Small, D. (2005). FLT3/ITD mutation signaling includes suppression of SHP-1. Journal of Biological Chemistry, 280(7), 5361–5369.PubMedCrossRef
89.
go back to reference Wu, C., Guan, Q., Wang, Y., Zhao, Z. J., & Zhou, G. W. (2003). SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. Journal of Cellular Biochemistry, 90(5), 1026–1037.PubMedCrossRef Wu, C., Guan, Q., Wang, Y., Zhao, Z. J., & Zhou, G. W. (2003). SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. Journal of Cellular Biochemistry, 90(5), 1026–1037.PubMedCrossRef
90.
go back to reference Wu, C., Sun, M., Liu, L., & Zhou, G. W. (2003). The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene, 306, 1–12.PubMedCrossRef Wu, C., Sun, M., Liu, L., & Zhou, G. W. (2003). The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene, 306, 1–12.PubMedCrossRef
91.
go back to reference Ding, X., & Staudinger, J. L. (2005). Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. Journal of Pharmacology and Experimental Therapeutics, 312(2), 849–856.PubMedCrossRef Ding, X., & Staudinger, J. L. (2005). Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. Journal of Pharmacology and Experimental Therapeutics, 312(2), 849–856.PubMedCrossRef
92.
go back to reference Seamon, K., & Daly, J. W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. Journal of Biological Chemistry, 256(19), 9799–9801.PubMed Seamon, K., & Daly, J. W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. Journal of Biological Chemistry, 256(19), 9799–9801.PubMed
Metadata
Title
Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias
Authors
Danilo Perrotti
Paolo Neviani
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9119-x

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine