Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Targeted Therapy | Review

Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma

Authors: Q. Li, S. H. Maier, P. Li, J. Peterhansl, C. Belka, J. Mayerle, U. M. Mahajan

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization.
Literature
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef
4.
go back to reference Du T, Bill KA, Ford J, et al. The diagnosis and staging of pancreatic cancer: A comparison of endoscopic ultrasound and computed tomography with pancreas protocol. Am J Surg. 2018;215:472–5.PubMedCrossRef Du T, Bill KA, Ford J, et al. The diagnosis and staging of pancreatic cancer: A comparison of endoscopic ultrasound and computed tomography with pancreas protocol. Am J Surg. 2018;215:472–5.PubMedCrossRef
5.
go back to reference Singh RR, EMJD O’R. New treatment strategies for metastatic pancreatic ductal adenocarcinoma. Drugs. 2020;80:647–69. Singh RR, EMJD O’R. New treatment strategies for metastatic pancreatic ductal adenocarcinoma. Drugs. 2020;80:647–69.
6.
go back to reference Uson Junior PLS, Rother ET, Maluf FC, et al. Meta-analysis of modified folfirinox regimens for patients with metastatic pancreatic cancer. Clin Colorectal Cancer. 2018;17:187–97.PubMedCrossRef Uson Junior PLS, Rother ET, Maluf FC, et al. Meta-analysis of modified folfirinox regimens for patients with metastatic pancreatic cancer. Clin Colorectal Cancer. 2018;17:187–97.PubMedCrossRef
7.
go back to reference Ottaiano A, Capozzi M, De Divitiis C, et al. Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: A meta-analysis of randomized phase iii trials. Acta Oncol. 2017;56:377–83.PubMedCrossRef Ottaiano A, Capozzi M, De Divitiis C, et al. Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: A meta-analysis of randomized phase iii trials. Acta Oncol. 2017;56:377–83.PubMedCrossRef
9.
go back to reference Xiong H, Yan J, Cai S, et al. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol. 2019;132:190–202.PubMedCrossRef Xiong H, Yan J, Cai S, et al. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol. 2019;132:190–202.PubMedCrossRef
10.
go back to reference Nuzzo S, Roscigno G, Affinito A, et al. Potential and challenges of aptamers as specific carriers of therapeutic oligonucleotides for precision medicine in cancer. Cancers (Basel). 2019;11. Nuzzo S, Roscigno G, Affinito A, et al. Potential and challenges of aptamers as specific carriers of therapeutic oligonucleotides for precision medicine in cancer. Cancers (Basel). 2019;11.
11.
go back to reference Tuerk C, LJs G. Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science. 1990;249:505–10. Tuerk C, LJs G. Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science. 1990;249:505–10.
12.
go back to reference Komarova N, Kuznetsov A. Inside the black box: what makes selex better? Molecules. 2019;24. Komarova N, Kuznetsov A. Inside the black box: what makes selex better? Molecules. 2019;24.
13.
go back to reference Gong S, Wang Y, Wang Z, et al. Computational methods for modeling aptamers and designing riboswitches. Int J Mol Sci. 2017;18. Gong S, Wang Y, Wang Z, et al. Computational methods for modeling aptamers and designing riboswitches. Int J Mol Sci. 2017;18.
14.
go back to reference Maimaitiyiming Y, Hong F, Yang C, et al. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol. 2019;145:797–810.PubMedCrossRef Maimaitiyiming Y, Hong F, Yang C, et al. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol. 2019;145:797–810.PubMedCrossRef
15.
go back to reference Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48:1390–419.PubMedCrossRef Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48:1390–419.PubMedCrossRef
16.
go back to reference Ghorbani F, Abbaszadeh H, Dolatabadi JEN, et al. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron. 2019;142:111484.PubMedCrossRef Ghorbani F, Abbaszadeh H, Dolatabadi JEN, et al. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron. 2019;142:111484.PubMedCrossRef
17.
go back to reference Yousefi M, Dehghani S, Nosrati R, et al. Aptasensors as a new sensing technology developed for the detection of muc1 mucin: A review. Biosens Bioelectron. 2019;130:1–19.PubMedCrossRef Yousefi M, Dehghani S, Nosrati R, et al. Aptasensors as a new sensing technology developed for the detection of muc1 mucin: A review. Biosens Bioelectron. 2019;130:1–19.PubMedCrossRef
18.
go back to reference Gu L, Yan W, Liu S, et al. Trypsin enhances aptamer screening: A novel method for targeting proteins. Anal Biochem. 2018;561–562:89–95.PubMedCrossRef Gu L, Yan W, Liu S, et al. Trypsin enhances aptamer screening: A novel method for targeting proteins. Anal Biochem. 2018;561–562:89–95.PubMedCrossRef
19.
go back to reference Meng Q, Shi S, Liang C, et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: A systematic review and meta-analysis. Onco Targets Ther. 2017;10:4591–8.PubMedPubMedCentralCrossRef Meng Q, Shi S, Liang C, et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: A systematic review and meta-analysis. Onco Targets Ther. 2017;10:4591–8.PubMedPubMedCentralCrossRef
20.
go back to reference Khanmohammadi A, Aghaie A, Vahedi E, et al. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020;206:120251.PubMedCrossRef Khanmohammadi A, Aghaie A, Vahedi E, et al. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020;206:120251.PubMedCrossRef
21.
go back to reference Xiang W, Lv Q, Shi H, et al. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716.PubMedCrossRef Xiang W, Lv Q, Shi H, et al. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716.PubMedCrossRef
22.
go back to reference Tang Z, ZJMA M. Ultrasensitive amperometric immunoassay for carcinoembryonic antigens by using a glassy carbon electrode coated with a polydopamine-pb (ii) redox system and a chitosan-gold nanocomposite. Microchim Acta. 2017;184:1135–42. Tang Z, ZJMA M. Ultrasensitive amperometric immunoassay for carcinoembryonic antigens by using a glassy carbon electrode coated with a polydopamine-pb (ii) redox system and a chitosan-gold nanocomposite. Microchim Acta. 2017;184:1135–42.
23.
go back to reference Huang JY, Zhao L, Lei W, et al. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and dnazyme-assisted signal amplification strategy. Biosens Bioelectron. 2018;99:28–33.PubMedCrossRef Huang JY, Zhao L, Lei W, et al. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and dnazyme-assisted signal amplification strategy. Biosens Bioelectron. 2018;99:28–33.PubMedCrossRef
24.
go back to reference Vainer N, Dehlendorff C, JSJO J. Systematic literature review of il-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget. 2018;9:29820. Vainer N, Dehlendorff C, JSJO J. Systematic literature review of il-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget. 2018;9:29820.
25.
go back to reference Hao Z, Pan Y, Huang C, et al. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomed Microdevices. 2019;21:65.PubMedCrossRef Hao Z, Pan Y, Huang C, et al. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomed Microdevices. 2019;21:65.PubMedCrossRef
26.
go back to reference Tertiş M, Ciui B, Suciu M, et al. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim Acta. 2017;258:1208–18. Tertiş M, Ciui B, Suciu M, et al. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim Acta. 2017;258:1208–18.
27.
go back to reference Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, et al. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: Metalloproteinase-9 as an independent prognostic factor. Pancreas. 2009;38:613–8. Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, et al. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: Metalloproteinase-9 as an independent prognostic factor. Pancreas. 2009;38:613–8.
28.
go back to reference Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (mmp-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 2020;194:112260.PubMedCrossRef Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (mmp-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 2020;194:112260.PubMedCrossRef
29.
go back to reference Scarano S, Dausse E, Crispo F, et al. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal Chim Acta. 2015;897:1–9.PubMedCrossRef Scarano S, Dausse E, Crispo F, et al. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal Chim Acta. 2015;897:1–9.PubMedCrossRef
30.
go back to reference Kunovsky L, Tesarikova P, Kala Z, et al. The use of biomarkers in early diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol. 2018;2018:5389820.PubMedPubMedCentralCrossRef Kunovsky L, Tesarikova P, Kala Z, et al. The use of biomarkers in early diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol. 2018;2018:5389820.PubMedPubMedCentralCrossRef
31.
go back to reference Ferrara N, Gerber H-P, JJNm LC. The biology of vegf and its receptors. Nat Med. 2003;9:669–76. Ferrara N, Gerber H-P, JJNm LC. The biology of vegf and its receptors. Nat Med. 2003;9:669–76.
32.
go back to reference Dehghani S, Nosrati R, Yousefi M, et al. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (vegf): A review. Biosens Bioelectron. 2018;110:23–37.PubMedCrossRef Dehghani S, Nosrati R, Yousefi M, et al. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (vegf): A review. Biosens Bioelectron. 2018;110:23–37.PubMedCrossRef
33.
go back to reference Khosravi F, Loeian SM, Panchapakesan B. Ultrasensitive label-free sensing of il-6 based on pase functionalized carbon nanotube micro-arrays with rna-aptamers as molecular recognition elements. Biosensors (Basel). 2017;7. Khosravi F, Loeian SM, Panchapakesan B. Ultrasensitive label-free sensing of il-6 based on pase functionalized carbon nanotube micro-arrays with rna-aptamers as molecular recognition elements. Biosensors (Basel). 2017;7.
34.
go back to reference Freeman R, Girsh J, Jou AF, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (vegf). Anal Chem. 2012;84:6192–8.PubMedCrossRef Freeman R, Girsh J, Jou AF, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (vegf). Anal Chem. 2012;84:6192–8.PubMedCrossRef
35.
go back to reference Zhao S, Yang W, RYJB L, et al. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron. 2011;26:2442–7. Zhao S, Yang W, RYJB L, et al. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron. 2011;26:2442–7.
36.
go back to reference Sundling KE, ACJAiap L. Circulating tumor cells: Overview and opportunities in cytology. Adv Anat Pathol. 2019;26:56–63. Sundling KE, ACJAiap L. Circulating tumor cells: Overview and opportunities in cytology. Adv Anat Pathol. 2019;26:56–63.
37.
go back to reference Safarpour H, Dehghani S, Nosrati R, et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (ctcs). Biosens Bioelectron. 2020;148:111833.PubMedCrossRef Safarpour H, Dehghani S, Nosrati R, et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (ctcs). Biosens Bioelectron. 2020;148:111833.PubMedCrossRef
38.
go back to reference Dua P, Kang HS, Hong SM, et al. Alkaline phosphatase alppl-2 is a novel pancreatic carcinoma-associated protein. Cancer Res. 2013;73:1934–45.PubMedCrossRef Dua P, Kang HS, Hong SM, et al. Alkaline phosphatase alppl-2 is a novel pancreatic carcinoma-associated protein. Cancer Res. 2013;73:1934–45.PubMedCrossRef
39.
go back to reference Shin HS, Jung SB, Park S, et al. Alppl2 is a potential diagnostic biomarker for pancreatic cancer-derived extracellular vesicles. Mol Ther Methods Clin Dev. 2019;15:204–10.PubMedPubMedCentralCrossRef Shin HS, Jung SB, Park S, et al. Alppl2 is a potential diagnostic biomarker for pancreatic cancer-derived extracellular vesicles. Mol Ther Methods Clin Dev. 2019;15:204–10.PubMedPubMedCentralCrossRef
40.
go back to reference Wu X, Zhao Z, Bai H, et al. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics. 2015;5:985–94.PubMedPubMedCentralCrossRef Wu X, Zhao Z, Bai H, et al. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics. 2015;5:985–94.PubMedPubMedCentralCrossRef
41.
go back to reference Champanhac C, Teng IT, Cansiz S, et al. Development of a panel of DNA aptamers with high affinity for pancreatic ductal adenocarcinoma. Sci Rep. 2015;5:16788.PubMedPubMedCentralCrossRef Champanhac C, Teng IT, Cansiz S, et al. Development of a panel of DNA aptamers with high affinity for pancreatic ductal adenocarcinoma. Sci Rep. 2015;5:16788.PubMedPubMedCentralCrossRef
42.
go back to reference Kim YJ, Lee HS, Jung DE, et al. The DNA aptamer binds stemness-enriched cancer cells in pancreatic cancer. J Mol Recognit. 2017;30. Kim YJ, Lee HS, Jung DE, et al. The DNA aptamer binds stemness-enriched cancer cells in pancreatic cancer. J Mol Recognit. 2017;30.
43.
go back to reference Mitra A, Mishra L, Li SJO. Emt, ctcs and cscs in tumor relapse and drug-resistance. Oncotarget. 2015;6:10697. Mitra A, Mishra L, Li SJO. Emt, ctcs and cscs in tumor relapse and drug-resistance. Oncotarget. 2015;6:10697.
44.
go back to reference Ray P, Sullenger BA, White RR. Further characterization of the target of a potential aptamer biomarker for pancreatic cancer: Cyclophilin b and its posttranslational modifications. Nucleic Acid Ther. 2013;23:435–42. Ray P, Sullenger BA, White RR. Further characterization of the target of a potential aptamer biomarker for pancreatic cancer: Cyclophilin b and its posttranslational modifications. Nucleic Acid Ther. 2013;23:435–42.
45.
go back to reference Ray P, Rialon-Guevara KL, Veras E, et al. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin b as a candidate pancreatic cancer biomarker. J Clin Invest. 2012;122:1734–41.PubMedPubMedCentralCrossRef Ray P, Rialon-Guevara KL, Veras E, et al. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin b as a candidate pancreatic cancer biomarker. J Clin Invest. 2012;122:1734–41.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang J, Li S, Liu F, et al. Selex aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS One. 2015;10:e0121920.PubMedPubMedCentralCrossRef Zhang J, Li S, Liu F, et al. Selex aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS One. 2015;10:e0121920.PubMedPubMedCentralCrossRef
47.
go back to reference Tummers WS, Willmann JK, Bonsing BA, et al. Advances in diagnostic and intraoperative molecular imaging of pancreatic cancer. Pancreas. 2018;47:675–89.PubMedPubMedCentralCrossRef Tummers WS, Willmann JK, Bonsing BA, et al. Advances in diagnostic and intraoperative molecular imaging of pancreatic cancer. Pancreas. 2018;47:675–89.PubMedPubMedCentralCrossRef
48.
go back to reference Amouzadeh Tabrizi M, Shamsipur M, Farzin L. A high sensitive electrochemical aptasensor for the determination of vegf(165) in serum of lung cancer patient. Biosens Bioelectron. 2015;74:764–9.PubMedCrossRef Amouzadeh Tabrizi M, Shamsipur M, Farzin L. A high sensitive electrochemical aptasensor for the determination of vegf(165) in serum of lung cancer patient. Biosens Bioelectron. 2015;74:764–9.PubMedCrossRef
49.
go back to reference Wang CY, Lin BL, Chen CH. An aptamer targeting shared tumor-specific peptide antigen of mage-a3 in multiple cancers. Int J Cancer. 2016;138:918–26.PubMedCrossRef Wang CY, Lin BL, Chen CH. An aptamer targeting shared tumor-specific peptide antigen of mage-a3 in multiple cancers. Int J Cancer. 2016;138:918–26.PubMedCrossRef
50.
go back to reference Kim YH, Sung HJ, Kim S, et al. An rna aptamer that specifically binds pancreatic adenocarcinoma up-regulated factor inhibits migration and growth of pancreatic cancer cells. Cancer Lett. 2011;313:76–83.PubMedCrossRef Kim YH, Sung HJ, Kim S, et al. An rna aptamer that specifically binds pancreatic adenocarcinoma up-regulated factor inhibits migration and growth of pancreatic cancer cells. Cancer Lett. 2011;313:76–83.PubMedCrossRef
51.
go back to reference Huang X, Zhong J, Ren J, et al. A DNA aptamer recognizing mmp14 for in vivo and in vitro imaging identified by cell-selex. Oncol Lett. 2019;18:265–74.PubMedPubMedCentral Huang X, Zhong J, Ren J, et al. A DNA aptamer recognizing mmp14 for in vivo and in vitro imaging identified by cell-selex. Oncol Lett. 2019;18:265–74.PubMedPubMedCentral
52.
53.
go back to reference Yoon S, Armstrong B, Habib N, et al. Blind selex approach identifies rna aptamers that regulate emt and inhibit metastasis. Mol Cancer Res. 2017;15:811–20.PubMedPubMedCentralCrossRef Yoon S, Armstrong B, Habib N, et al. Blind selex approach identifies rna aptamers that regulate emt and inhibit metastasis. Mol Cancer Res. 2017;15:811–20.PubMedPubMedCentralCrossRef
54.
go back to reference Yoon S, Huang KW, Andrikakou P, et al. Targeted delivery of c/ebpalpha-sarna by rna aptamers shows anti-tumor effects in a mouse model of advanced pdac. Mol Ther Nucleic Acids. 2019;18:142–54.PubMedPubMedCentralCrossRef Yoon S, Huang KW, Andrikakou P, et al. Targeted delivery of c/ebpalpha-sarna by rna aptamers shows anti-tumor effects in a mouse model of advanced pdac. Mol Ther Nucleic Acids. 2019;18:142–54.PubMedPubMedCentralCrossRef
55.
go back to reference Yoon S, Huang KW, Reebye V, et al. Targeted delivery of c/ebpalpha -sarna by pancreatic ductal adenocarcinoma-specific rna aptamers inhibits tumor growth in vivo. Mol Ther. 2016;24:1106–16.PubMedPubMedCentralCrossRef Yoon S, Huang KW, Reebye V, et al. Targeted delivery of c/ebpalpha -sarna by pancreatic ductal adenocarcinoma-specific rna aptamers inhibits tumor growth in vivo. Mol Ther. 2016;24:1106–16.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Yazdian-Robati R, Bayat P, Oroojalian F, et al. Therapeutic applications of as1411 aptamer, an update review. Int J Biol Macromol. 2019;155:1420-31. Yazdian-Robati R, Bayat P, Oroojalian F, et al. Therapeutic applications of as1411 aptamer, an update review. Int J Biol Macromol. 2019;155:1420-31.
58.
go back to reference Porciani D, Tedeschi L, Marchetti L, et al. Aptamer-mediated codelivery of doxorubicin and nf-kappab decoy enhances chemosensitivity of pancreatic tumor cells. Mol Ther Nucleic Acids. 2015;4:e235.PubMedPubMedCentralCrossRef Porciani D, Tedeschi L, Marchetti L, et al. Aptamer-mediated codelivery of doxorubicin and nf-kappab decoy enhances chemosensitivity of pancreatic tumor cells. Mol Ther Nucleic Acids. 2015;4:e235.PubMedPubMedCentralCrossRef
59.
go back to reference Catuogno S, Esposito CL. Aptamer cell-based selection: overview and advances. Biomedicines. 2017;5. Catuogno S, Esposito CL. Aptamer cell-based selection: overview and advances. Biomedicines. 2017;5.
60.
61.
62.
go back to reference Ludwig H, Weisel K, Petrucci MT, et al. Olaptesed pegol, an anti-cxcl12/sdf-1 spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: A phase iia study. Leukemia. 2017;31:997–1000.PubMedPubMedCentralCrossRef Ludwig H, Weisel K, Petrucci MT, et al. Olaptesed pegol, an anti-cxcl12/sdf-1 spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: A phase iia study. Leukemia. 2017;31:997–1000.PubMedPubMedCentralCrossRef
63.
go back to reference Park JY, Cho YL, Chae JR, et al. Gemcitabine-incorporated g-quadruplex aptamer for targeted drug delivery into pancreas cancer. Mol Ther Nucleic Acids. 2018;12:543–53.PubMedPubMedCentralCrossRef Park JY, Cho YL, Chae JR, et al. Gemcitabine-incorporated g-quadruplex aptamer for targeted drug delivery into pancreas cancer. Mol Ther Nucleic Acids. 2018;12:543–53.PubMedPubMedCentralCrossRef
64.
go back to reference Lale SV, GA R, Aravind A, et al. As1411 aptamer and folic acid functionalized ph-responsive atrp fabricated ppegma-pcl-ppegma polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules. 2014;15:1737–52.PubMedCrossRef Lale SV, GA R, Aravind A, et al. As1411 aptamer and folic acid functionalized ph-responsive atrp fabricated ppegma-pcl-ppegma polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules. 2014;15:1737–52.PubMedCrossRef
65.
go back to reference Dua P, Kim S, et al. Alppl2 aptamer-mediated targeted delivery of 5-fluoro-2′-deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 2015;25:180–7.PubMedCrossRef Dua P, Kim S, et al. Alppl2 aptamer-mediated targeted delivery of 5-fluoro-2′-deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 2015;25:180–7.PubMedCrossRef
66.
go back to reference Yoon S, Huang KW, Reebye V, et al. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids. 2017;6:80–8.PubMedCrossRef Yoon S, Huang KW, Reebye V, et al. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids. 2017;6:80–8.PubMedCrossRef
67.
go back to reference Halama N, Prüfer U, Froemming A, et al. Phase i/ii study with cxcl12 inhibitor nox-a12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Ann Oncol. 2019;30. Halama N, Prüfer U, Froemming A, et al. Phase i/ii study with cxcl12 inhibitor nox-a12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Ann Oncol. 2019;30.
68.
go back to reference Wu J, Wang C, Li X, et al. Identification, characterization and application of a g-quadruplex structured DNA aptamer against cancer biomarker protein anterior gradient homolog 2. PLoS One. 2012;7:e46393.PubMedPubMedCentralCrossRef Wu J, Wang C, Li X, et al. Identification, characterization and application of a g-quadruplex structured DNA aptamer against cancer biomarker protein anterior gradient homolog 2. PLoS One. 2012;7:e46393.PubMedPubMedCentralCrossRef
69.
go back to reference Wang C, Liu B, Xu X, et al. Toward targeted therapy in chemotherapy-resistant pancreatic cancer with a smart triptolide nanomedicine. Oncotarget. 2016;7:8360. Wang C, Liu B, Xu X, et al. Toward targeted therapy in chemotherapy-resistant pancreatic cancer with a smart triptolide nanomedicine. Oncotarget. 2016;7:8360.
70.
go back to reference Kratschmer C, Levy M. Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol Ther Nucleic Acids. 2018;10:227–36.PubMedCrossRef Kratschmer C, Levy M. Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol Ther Nucleic Acids. 2018;10:227–36.PubMedCrossRef
71.
go back to reference Hennequin C, Guillerm S, Quero L. Combination of chemotherapy and radiotherapy: A thirty years evolution. Cancer Radiother. 2019;23:662–5.PubMedCrossRef Hennequin C, Guillerm S, Quero L. Combination of chemotherapy and radiotherapy: A thirty years evolution. Cancer Radiother. 2019;23:662–5.PubMedCrossRef
72.
go back to reference Orth M, Metzger P, Gerum S, et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol. 2019;14:141.PubMedPubMedCentralCrossRef Orth M, Metzger P, Gerum S, et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol. 2019;14:141.PubMedPubMedCentralCrossRef
73.
go back to reference Zhang X, Peng L, Liang Z, et al. Effects of aptamer to u87-egfrviii cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol Ther Nucleic Acids. 2018;10:438–49.PubMedPubMedCentralCrossRef Zhang X, Peng L, Liang Z, et al. Effects of aptamer to u87-egfrviii cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol Ther Nucleic Acids. 2018;10:438–49.PubMedPubMedCentralCrossRef
74.
go back to reference Liu Y, Zhang P, Li F, et al. Metal-based nanoenhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8:1824–49.PubMedPubMedCentralCrossRef Liu Y, Zhang P, Li F, et al. Metal-based nanoenhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8:1824–49.PubMedPubMedCentralCrossRef
75.
go back to reference Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, et al. As1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13:2563–78. Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, et al. As1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13:2563–78.
76.
go back to reference Zhao J, Liu P, Ma J, et al. Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer as1411 for glioma irradiation therapy. Int J Nanomedicine. 2019;14:9483–96.PubMedPubMedCentralCrossRef Zhao J, Liu P, Ma J, et al. Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer as1411 for glioma irradiation therapy. Int J Nanomedicine. 2019;14:9483–96.PubMedPubMedCentralCrossRef
77.
go back to reference Alves LN, Missailidis S, Lage CAS, et al. Anti-muc1 aptamer as carrier tool of the potential radiosensitizer 1,10 phenanthroline in mcf-7 breast cancer cells. Anticancer Res. 2019;39:1859–67.PubMedCrossRef Alves LN, Missailidis S, Lage CAS, et al. Anti-muc1 aptamer as carrier tool of the potential radiosensitizer 1,10 phenanthroline in mcf-7 breast cancer cells. Anticancer Res. 2019;39:1859–67.PubMedCrossRef
78.
go back to reference Burdick MD, Harris A, Reid CJ, et al. Oligosaccharides expressed on muc1 produced by pancreatic and colon tumor cell lines. J Biol Chem. 1997;272:24198–202.PubMedCrossRef Burdick MD, Harris A, Reid CJ, et al. Oligosaccharides expressed on muc1 produced by pancreatic and colon tumor cell lines. J Biol Chem. 1997;272:24198–202.PubMedCrossRef
79.
go back to reference Ni X, Zhang Y, Ribas J, et al. Prostate-targeted radiosensitization via aptamer-shrna chimeras in human tumor xenografts. J Clin Invest. 2011;121:2383–90.PubMedPubMedCentralCrossRef Ni X, Zhang Y, Ribas J, et al. Prostate-targeted radiosensitization via aptamer-shrna chimeras in human tumor xenografts. J Clin Invest. 2011;121:2383–90.PubMedPubMedCentralCrossRef
80.
go back to reference Ni X, Zhang Y, Zennami K, et al. Systemic administration and targeted radiosensitization via chemically synthetic aptamer-sirna chimeras in human tumor xenografts. Mol Cancer Ther. 2015;14:2797–804.PubMedPubMedCentralCrossRef Ni X, Zhang Y, Zennami K, et al. Systemic administration and targeted radiosensitization via chemically synthetic aptamer-sirna chimeras in human tumor xenografts. Mol Cancer Ther. 2015;14:2797–804.PubMedPubMedCentralCrossRef
81.
go back to reference Ren H, Zhang H, Wang X, et al. Prostate-specific membrane antigen as a marker of pancreatic cancer cells. Med Oncol. 2014;31:857.PubMedCrossRef Ren H, Zhang H, Wang X, et al. Prostate-specific membrane antigen as a marker of pancreatic cancer cells. Med Oncol. 2014;31:857.PubMedCrossRef
82.
go back to reference Zhang S, Gupta S, Fitzgerald TJ, et al. Dual radiosensitization and anti-stat3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics. 2018;2:1–11.PubMedPubMedCentralCrossRef Zhang S, Gupta S, Fitzgerald TJ, et al. Dual radiosensitization and anti-stat3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics. 2018;2:1–11.PubMedPubMedCentralCrossRef
83.
go back to reference de Almeida CEB, Alves LN, Rocha HF, et al. Aptamer delivery of sirna, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm. 2017;525:334–42.PubMedCrossRef de Almeida CEB, Alves LN, Rocha HF, et al. Aptamer delivery of sirna, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm. 2017;525:334–42.PubMedCrossRef
84.
go back to reference Bandekar A, Zhu C, Jindal R, et al. Anti-prostate-specific membrane antigen liposomes loaded with 225ac for potential targeted antivascular alpha-particle therapy of cancer. J Nucl Med. 2014;55:107–14.PubMedCrossRef Bandekar A, Zhu C, Jindal R, et al. Anti-prostate-specific membrane antigen liposomes loaded with 225ac for potential targeted antivascular alpha-particle therapy of cancer. J Nucl Med. 2014;55:107–14.PubMedCrossRef
85.
go back to reference Schrand B, Verma B, Levay A, et al. Radiation-induced enhancement of antitumor t-cell immunity by vegf-targeted 4-1bb costimulation. Cancer Res. 2017;77:1310–21.PubMedPubMedCentralCrossRef Schrand B, Verma B, Levay A, et al. Radiation-induced enhancement of antitumor t-cell immunity by vegf-targeted 4-1bb costimulation. Cancer Res. 2017;77:1310–21.PubMedPubMedCentralCrossRef
86.
go back to reference Benaduce AP, Brenneman R, Schrand B, et al. 4-1bb aptamer-based immunomodulation enhances the therapeutic index of radiation therapy in murine tumor models. Int J Radiat Oncol Biol Phys. 2016;96:458–61.PubMedCrossRef Benaduce AP, Brenneman R, Schrand B, et al. 4-1bb aptamer-based immunomodulation enhances the therapeutic index of radiation therapy in murine tumor models. Int J Radiat Oncol Biol Phys. 2016;96:458–61.PubMedCrossRef
87.
go back to reference Lakhin A, Tarantul V, LJAN G. Aptamers: Problems, solutions and prospects. Acta Naturae. 2013;5:34-43. Lakhin A, Tarantul V, LJAN G. Aptamers: Problems, solutions and prospects. Acta Naturae. 2013;5:34-43.
88.
go back to reference Ni S, Yao H, Wang L, et al. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci. 2017;18. Ni S, Yao H, Wang L, et al. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci. 2017;18.
89.
go back to reference Chandola C, Neerathilingam M. Aptamers for targeted delivery: current challenges and future opportunities role of novel drug delivery vehicles in nanobiomedicine: IntechOpen; 2019;126:67-75. Chandola C, Neerathilingam M. Aptamers for targeted delivery: current challenges and future opportunities role of novel drug delivery vehicles in nanobiomedicine: IntechOpen; 2019;126:67-75.
90.
go back to reference Guo C, Su F, Song Y, et al. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and spr aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces. 2017;9:41188–99.PubMedCrossRef Guo C, Su F, Song Y, et al. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and spr aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces. 2017;9:41188–99.PubMedCrossRef
91.
go back to reference Wang D, Li Y, Lin Z, et al. Surface-enhanced electrochemiluminescence of ru@sio2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem. 2015;87:5966–72.PubMedCrossRef Wang D, Li Y, Lin Z, et al. Surface-enhanced electrochemiluminescence of ru@sio2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem. 2015;87:5966–72.PubMedCrossRef
92.
go back to reference Shi GF, Cao JT, Zhang JJ, et al. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst. 2014;139:5827–34.PubMedCrossRef Shi GF, Cao JT, Zhang JJ, et al. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst. 2014;139:5827–34.PubMedCrossRef
93.
go back to reference Wu X, Liu H, Han D, et al. Elucidation and structural modeling of cd71 as a molecular target for cell-specific aptamer binding. J Am Chem Soc. 2019;141:10760–9.PubMedPubMedCentralCrossRef Wu X, Liu H, Han D, et al. Elucidation and structural modeling of cd71 as a molecular target for cell-specific aptamer binding. J Am Chem Soc. 2019;141:10760–9.PubMedPubMedCentralCrossRef
94.
go back to reference Clawson GA, Abraham T, Pan W, et al. A cholecystokinin b receptor-specific DNA aptamer for targeting pancreatic ductal adenocarcinoma. Nucleic Acid Ther. 2017;27:23–35.PubMedPubMedCentralCrossRef Clawson GA, Abraham T, Pan W, et al. A cholecystokinin b receptor-specific DNA aptamer for targeting pancreatic ductal adenocarcinoma. Nucleic Acid Ther. 2017;27:23–35.PubMedPubMedCentralCrossRef
95.
go back to reference He X, Chen X, Liu L, et al. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic cancer therapy. Adv Sci (Weinh). 2018;5:1701070.CrossRef He X, Chen X, Liu L, et al. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic cancer therapy. Adv Sci (Weinh). 2018;5:1701070.CrossRef
Metadata
Title
Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma
Authors
Q. Li
S. H. Maier
P. Li
J. Peterhansl
C. Belka
J. Mayerle
U. M. Mahajan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01624-1

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue