Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008 | NON-THEMATIC REVIEW

Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development

Authors: Samir Kumar Patra, Aditi Patra, Federica Rizzi, Tapash Chandra Ghosh, Saverio Bettuzzi

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Cancer cells and tissues exhibit genome wide hypomethylation and regional hypermethylation. CpG-methylation of DNA (MeCpG-DNA) is defined as the formation of a C–C covalent bond between the 5′-C of cytosine and the –CH3 group of S-adenosylmethionine. Removal of the sole –CH3 group from the methylated cytosine of DNA is one of the many ways of DNA-demethylation, which contributes to activation of transcription. The mechanism of demethylation, the candidate enzyme(s) exhibiting direct demethylase activity and associated cofactors are not firmly established. Genome-wide hypomethylation can be obtained in several ways by inactivation of DNMT enzyme activity, including covalent trapping of DNMT by cytosine base analogues. Removal of methyl layer could also be occurred by excision of the 5-methyl cytosine base by DNA glycosylases. The importance of truly chemically defined direct demethylation of intact DNA in regulation of gene expression, development, cell differentiation and transformation are discussed in this contribution.
Literature
1.
go back to reference Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093.PubMedCrossRef Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093.PubMedCrossRef
3.
go back to reference Judson, H., Hayward, B. E., Sheridan, E., & Bonthron, D. T. (2002). A global disorder of imprinting in the human female germ line. Nature, 416, 539–542.PubMedCrossRef Judson, H., Hayward, B. E., Sheridan, E., & Bonthron, D. T. (2002). A global disorder of imprinting in the human female germ line. Nature, 416, 539–542.PubMedCrossRef
4.
go back to reference Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.PubMed Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.PubMed
5.
go back to reference Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–2539.PubMedCrossRef Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–2539.PubMedCrossRef
6.
go back to reference McLay, D. W., & Clarke, H.J. (2003). Remodelling the paternal chromatin at fertilization in mammals. Reproduction, 125, 625–633.PubMedCrossRef McLay, D. W., & Clarke, H.J. (2003). Remodelling the paternal chromatin at fertilization in mammals. Reproduction, 125, 625–633.PubMedCrossRef
7.
go back to reference Haaf, T. (2006). Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Current Topics in Microbiology and Immunology, 310, 13–22.PubMedCrossRef Haaf, T. (2006). Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Current Topics in Microbiology and Immunology, 310, 13–22.PubMedCrossRef
8.
go back to reference Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–177.PubMedCrossRef Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–177.PubMedCrossRef
11.
go back to reference Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. New York: Macmillan. Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. New York: Macmillan.
12.
go back to reference Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. Journal of Biological Chemistry, 175, 315–332.PubMed Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. Journal of Biological Chemistry, 175, 315–332.PubMed
13.
go back to reference Smith, S. S. (2000). Gilbert’s conjecture: The search for DNA (Cytosine-5) demethylase and the emergence of new functions for eukaryotic DNA (Cytosine-5) methyltransferases. Journal of Molecular Biology, 302, 1–7.PubMedCrossRef Smith, S. S. (2000). Gilbert’s conjecture: The search for DNA (Cytosine-5) demethylase and the emergence of new functions for eukaryotic DNA (Cytosine-5) methyltransferases. Journal of Molecular Biology, 302, 1–7.PubMedCrossRef
14.
go back to reference Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.PubMedCrossRef Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.PubMedCrossRef
15.
go back to reference Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33, 163–171.PubMedCrossRef Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33, 163–171.PubMedCrossRef
16.
go back to reference Patra, S. K., Patra, A., Zhao, H., Carroll, P., & Dahiya, R. (2003). Methyl-CpG-DNA binding proteins in human prostate cancer: expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2. Biochemical and Biophysical Research Communications, 302, 759–766.PubMedCrossRef Patra, S. K., Patra, A., Zhao, H., Carroll, P., & Dahiya, R. (2003). Methyl-CpG-DNA binding proteins in human prostate cancer: expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2. Biochemical and Biophysical Research Communications, 302, 759–766.PubMedCrossRef
17.
go back to reference Patra, S. K., Patra, A., & Dahiya, R. (2001). Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochemical and Biophysical Research Communications, 287, 705–713.PubMedCrossRef Patra, S. K., Patra, A., & Dahiya, R. (2001). Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochemical and Biophysical Research Communications, 287, 705–713.PubMedCrossRef
18.
go back to reference Bhattacharya, S. K., Ramchandani, S., Cervoni, N., & Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397, 579–783.PubMedCrossRef Bhattacharya, S. K., Ramchandani, S., Cervoni, N., & Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397, 579–783.PubMedCrossRef
19.
go back to reference Ramchandani, S., Bhattacharya, S. K., Cervoni, N., & Szyf, M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences of the USA, 96, 6107–6112.PubMedCrossRef Ramchandani, S., Bhattacharya, S. K., Cervoni, N., & Szyf, M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences of the USA, 96, 6107–6112.PubMedCrossRef
20.
go back to reference Goel, A., Mathupala, S. P., & Pedersen, P. L. (2003). Glucose metabolism in cancer: Evidence that demethylation events play a role in activating type II hexokinase gene expression. Journal of Biological Chemistry, 278, 15333–15340.PubMedCrossRef Goel, A., Mathupala, S. P., & Pedersen, P. L. (2003). Glucose metabolism in cancer: Evidence that demethylation events play a role in activating type II hexokinase gene expression. Journal of Biological Chemistry, 278, 15333–15340.PubMedCrossRef
21.
go back to reference Cervoni, N., & Szyf, M. (2001). Demethylase activity is directed by histone acetylation. Journal of Biological Chemistry, 276, 40778–40787.PubMedCrossRef Cervoni, N., & Szyf, M. (2001). Demethylase activity is directed by histone acetylation. Journal of Biological Chemistry, 276, 40778–40787.PubMedCrossRef
22.
go back to reference Cervoni, N., Bhattacharya, S. K., & Szyf, M. (1999). DNA demethylase is a processive enzyme. Journal of Biological Chemistry, 274, 8363–8366.PubMedCrossRef Cervoni, N., Bhattacharya, S. K., & Szyf, M. (1999). DNA demethylase is a processive enzyme. Journal of Biological Chemistry, 274, 8363–8366.PubMedCrossRef
23.
go back to reference Guo, Y., Pakneshan, P., Gladu, J., Slak, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer—Effect on the urokinase-type plasminogen activator gene production and tumor invasion. Journal of Biological Chemistry, 277, 41571–41579.PubMedCrossRef Guo, Y., Pakneshan, P., Gladu, J., Slak, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer—Effect on the urokinase-type plasminogen activator gene production and tumor invasion. Journal of Biological Chemistry, 277, 41571–41579.PubMedCrossRef
24.
go back to reference Wade, P. A., Gregonne, A., Jones, P. L., Ballester, E., Aubry, F., & Wolf, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 61–66. Wade, P. A., Gregonne, A., Jones, P. L., Ballester, E., Aubry, F., & Wolf, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 61–66.
25.
go back to reference Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., & Bird, A. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 23, 58–61.PubMed Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., & Bird, A. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 23, 58–61.PubMed
26.
go back to reference Fujita, H., Fuji, R., Aratani, S., Amano, T., Fukamizu, A., & Nakajima, T. (2003). Antithetic effects of MBD2a on gene regulation. Molecular and Cellular Biology, 23, 2645–2657.PubMedCrossRef Fujita, H., Fuji, R., Aratani, S., Amano, T., Fukamizu, A., & Nakajima, T. (2003). Antithetic effects of MBD2a on gene regulation. Molecular and Cellular Biology, 23, 2645–2657.PubMedCrossRef
27.
go back to reference Kress, C., Thomassin, H., & Grange, T. (2006). Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proceedings of the National Academy of Sciences of the USA, 103, 11112–11117.PubMedCrossRef Kress, C., Thomassin, H., & Grange, T. (2006). Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proceedings of the National Academy of Sciences of the USA, 103, 11112–11117.PubMedCrossRef
28.
go back to reference Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., et al. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445, 671–675.PubMedCrossRef Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., et al. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445, 671–675.PubMedCrossRef
29.
go back to reference Thomassin, H., Flavin, M., Espinas, M.-L., & Grange, T. (2001). Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO Journal, 20, 1974–1983.PubMedCrossRef Thomassin, H., Flavin, M., Espinas, M.-L., & Grange, T. (2001). Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO Journal, 20, 1974–1983.PubMedCrossRef
30.
go back to reference Kress, C., Thomassin, H., & Grange, T. (2001). Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Letters, 494, 135–140.PubMedCrossRef Kress, C., Thomassin, H., & Grange, T. (2001). Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Letters, 494, 135–140.PubMedCrossRef
31.
go back to reference Jost, J.-P., Thiry, S., & Sigman, M. (2002). 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Letters, 519, 128–134.PubMedCrossRef Jost, J.-P., Thiry, S., & Sigman, M. (2002). 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Letters, 519, 128–134.PubMedCrossRef
32.
go back to reference Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414, 122–128.PubMedCrossRef Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414, 122–128.PubMedCrossRef
33.
go back to reference Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.PubMed Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.PubMed
34.
go back to reference Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews (Genetics), 3, 416–428. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews (Genetics), 3, 416–428.
35.
go back to reference Hendrich, B., & Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology, 18, 6538–6547.PubMed Hendrich, B., & Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology, 18, 6538–6547.PubMed
36.
go back to reference Tan, C. P., & Nakielny, S. (2006). Control of the DNA methylation system component MBD2 by protein arginine methylation. Molecular and Cellular Biology, 26, 7224–7235.PubMedCrossRef Tan, C. P., & Nakielny, S. (2006). Control of the DNA methylation system component MBD2 by protein arginine methylation. Molecular and Cellular Biology, 26, 7224–7235.PubMedCrossRef
37.
go back to reference Wade, P. A. (2001). Methyl CpG-binding proteins and transcriptional repression. BioEssays, 23, 1131–1137.PubMedCrossRef Wade, P. A. (2001). Methyl CpG-binding proteins and transcriptional repression. BioEssays, 23, 1131–1137.PubMedCrossRef
38.
go back to reference Lee, J.-H., Voo, K. S., & Skalnik, D. G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. Journal of Biological Chemistry, 276, 44669–44676.PubMedCrossRef Lee, J.-H., Voo, K. S., & Skalnik, D. G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. Journal of Biological Chemistry, 276, 44669–44676.PubMedCrossRef
39.
go back to reference Feng, Q., & Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & Development, 15, 827–832. Feng, Q., & Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & Development, 15, 827–832.
40.
go back to reference Lopez-Serra, L., Ballestar, E., Fraga, M. F., Alaminos, M., Setien, F., & Esteller, M. (2006). A profile of Methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG-islands of tumor suppressor genes in human cancer. Cancer Research, 66, 8342–8346.PubMedCrossRef Lopez-Serra, L., Ballestar, E., Fraga, M. F., Alaminos, M., Setien, F., & Esteller, M. (2006). A profile of Methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG-islands of tumor suppressor genes in human cancer. Cancer Research, 66, 8342–8346.PubMedCrossRef
41.
go back to reference Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C. B., et al. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and Cellular Biology, 23, 1656–1665.PubMedCrossRef Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C. B., et al. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and Cellular Biology, 23, 1656–1665.PubMedCrossRef
42.
go back to reference Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941–953.PubMedCrossRef Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941–953.PubMedCrossRef
43.
44.
go back to reference Ehrlich, M. (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Current Topics in Microbiology and Immunology, 310, 251–274.PubMedCrossRef Ehrlich, M. (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Current Topics in Microbiology and Immunology, 310, 251–274.PubMedCrossRef
45.
go back to reference Rodriguez, J., Frigola, J., Vendrell, E., Risques, R. A., Fraga, M. F., Morales, C., et al. (2006). Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Research, 66, 8462–9468.PubMedCrossRef Rodriguez, J., Frigola, J., Vendrell, E., Risques, R. A., Fraga, M. F., Morales, C., et al. (2006). Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Research, 66, 8462–9468.PubMedCrossRef
46.
go back to reference Bruniquel, D., & Schwartz, R. H. (2003). Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature Immunology, 4, 235–240.PubMedCrossRef Bruniquel, D., & Schwartz, R. H. (2003). Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature Immunology, 4, 235–240.PubMedCrossRef
47.
go back to reference Santos, F., Hendrich, B., Reik, W., & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Developments in Biologicals, 241, 172–182.CrossRef Santos, F., Hendrich, B., Reik, W., & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Developments in Biologicals, 241, 172–182.CrossRef
48.
go back to reference Li, E., Bestor, T. H., & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.PubMedCrossRef Li, E., Bestor, T. H., & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.PubMedCrossRef
49.
go back to reference Lewin, B. (1995). GENE-V. In B.Lewin (Ed.) Systems that safeguard DNA (pp. 605–629). Oxford, NY: Oxford University Press. Lewin, B. (1995). GENE-V. In B.Lewin (Ed.) Systems that safeguard DNA (pp. 605–629). Oxford, NY: Oxford University Press.
50.
go back to reference Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.PubMedCrossRef Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.PubMedCrossRef
51.
go back to reference Richmond, T. H., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423, 145–150.PubMedCrossRef Richmond, T. H., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423, 145–150.PubMedCrossRef
52.
go back to reference Horn, P. J., & Peterson, C. L. (2002). Chromatin higher order folding: Wrapping up transcription. Science, 297, 1824–1827.PubMedCrossRef Horn, P. J., & Peterson, C. L. (2002). Chromatin higher order folding: Wrapping up transcription. Science, 297, 1824–1827.PubMedCrossRef
53.
go back to reference Quina, A. S., Buschbeck, M., & Di Croce, L. (2006). Chromatin structure and epigenetics. Biochemical Pharmacology, 72, 1563–1569.PubMedCrossRef Quina, A. S., Buschbeck, M., & Di Croce, L. (2006). Chromatin structure and epigenetics. Biochemical Pharmacology, 72, 1563–1569.PubMedCrossRef
54.
go back to reference Vargason, J. M., Eichman, B. F., & Ho, P. S. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.PubMedCrossRef Vargason, J. M., Eichman, B. F., & Ho, P. S. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.PubMedCrossRef
55.
go back to reference Mayer-Jung, C., Moras, D., & Timsit, Y. (1998). Hydration and recognition of methylated CpG steps in DNA. EMBO Journal, 17, 2709–2718.PubMedCrossRef Mayer-Jung, C., Moras, D., & Timsit, Y. (1998). Hydration and recognition of methylated CpG steps in DNA. EMBO Journal, 17, 2709–2718.PubMedCrossRef
56.
go back to reference Schübeler, D., Lorincz, M. C., Cimbora, D. M., Telling, A., Feng, Y.-Q., Bouhassira, E. E., et al. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Molecular and Cellular Biology, 20, 9103–9112.PubMedCrossRef Schübeler, D., Lorincz, M. C., Cimbora, D. M., Telling, A., Feng, Y.-Q., Bouhassira, E. E., et al. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Molecular and Cellular Biology, 20, 9103–9112.PubMedCrossRef
57.
go back to reference Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., & Ceder, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nature Genetics, 34, 187–192.PubMedCrossRef Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., & Ceder, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nature Genetics, 34, 187–192.PubMedCrossRef
58.
go back to reference Okitsu, C. Y., & Hsieh, C. L. (2007). DNA methylation dictates histone H3K4 methylation. Molecular and Cellular Biology, 27, 2746–2757.PubMedCrossRef Okitsu, C. Y., & Hsieh, C. L. (2007). DNA methylation dictates histone H3K4 methylation. Molecular and Cellular Biology, 27, 2746–2757.PubMedCrossRef
59.
go back to reference Irvine, R. A., Lin, I. G., & Hsieh, C.-L. (2002). DNA methylation has a local effect on transcription and histone acetylation. Molecular and Cellular Biology, 22, 6689–6696.PubMedCrossRef Irvine, R. A., Lin, I. G., & Hsieh, C.-L. (2002). DNA methylation has a local effect on transcription and histone acetylation. Molecular and Cellular Biology, 22, 6689–6696.PubMedCrossRef
60.
go back to reference Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.PubMedCrossRef Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.PubMedCrossRef
61.
go back to reference Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181.PubMedCrossRef Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181.PubMedCrossRef
62.
go back to reference Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., et al. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proceedings of the National Academy of Sciences of the USA, 101, 7357–7362.PubMedCrossRef Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., et al. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proceedings of the National Academy of Sciences of the USA, 101, 7357–7362.PubMedCrossRef
63.
go back to reference Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.PubMedCrossRef Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.PubMedCrossRef
64.
go back to reference Schneider, R. A., Bannister, J., Myers, F. A., Thorne, A. W., Crane-Robinson, C., et al. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 6, 73–77.PubMedCrossRef Schneider, R. A., Bannister, J., Myers, F. A., Thorne, A. W., Crane-Robinson, C., et al. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 6, 73–77.PubMedCrossRef
65.
go back to reference Christensen, J., Agger, K., Cloos, P. A., Pasini, D., Rose, S., Sennels, L., et al. (2007). RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell, 128, 1063–1076.PubMedCrossRef Christensen, J., Agger, K., Cloos, P. A., Pasini, D., Rose, S., Sennels, L., et al. (2007). RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell, 128, 1063–1076.PubMedCrossRef
66.
go back to reference Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural Molecular Biology, 11, 1068–1075.PubMedCrossRef Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural Molecular Biology, 11, 1068–1075.PubMedCrossRef
67.
go back to reference Schübeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Development, 18, 1263–1271.PubMedCrossRef Schübeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Development, 18, 1263–1271.PubMedCrossRef
68.
go back to reference Parnell, T. J., & Geyer, P. K. (2000). Differences in insulator properties revealed by enhancer blocking assays on episomes. EMBO Journal, 19, 5864–5874.PubMedCrossRef Parnell, T. J., & Geyer, P. K. (2000). Differences in insulator properties revealed by enhancer blocking assays on episomes. EMBO Journal, 19, 5864–5874.PubMedCrossRef
69.
go back to reference Cook, P. R. (2003). Nongenic transcription, gene regulation and action at a distance. Cell Science, 116, 4483–4491.CrossRef Cook, P. R. (2003). Nongenic transcription, gene regulation and action at a distance. Cell Science, 116, 4483–4491.CrossRef
70.
go back to reference Blanton, J., Gaszner, M., & Schedl, P. (2003). Protein–protein interactions and the pairing of boundary elements in vivo. Genes and Development, 17, 664–675.PubMedCrossRef Blanton, J., Gaszner, M., & Schedl, P. (2003). Protein–protein interactions and the pairing of boundary elements in vivo. Genes and Development, 17, 664–675.PubMedCrossRef
71.
go back to reference Zhao, K., Hart, C. M., & Laemmli, U. K. (1995). Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell, 81, 879–889.PubMedCrossRef Zhao, K., Hart, C. M., & Laemmli, U. K. (1995). Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell, 81, 879–889.PubMedCrossRef
72.
go back to reference Cai, H., & Levine, M. (1995). Modulation of enhancer–promoter interactions by insulators in the Drosophila embryo. Nature, 376, 533–536.PubMedCrossRef Cai, H., & Levine, M. (1995). Modulation of enhancer–promoter interactions by insulators in the Drosophila embryo. Nature, 376, 533–536.PubMedCrossRef
73.
go back to reference Ghosh, D., Gerasimova, T. I., & Corces, V. G. (2001). Interactions between the Su(Hw) and mod(mdg4) proteins required for gypsy insulator function. EMBO Journal, 20, 2518–2527.PubMedCrossRef Ghosh, D., Gerasimova, T. I., & Corces, V. G. (2001). Interactions between the Su(Hw) and mod(mdg4) proteins required for gypsy insulator function. EMBO Journal, 20, 2518–2527.PubMedCrossRef
74.
go back to reference Kellum, R., & Schedl, P. (1991). A position-effect assay for boundaries of higher order chromosomal domains. Cell, 64, 941–950.PubMedCrossRef Kellum, R., & Schedl, P. (1991). A position-effect assay for boundaries of higher order chromosomal domains. Cell, 64, 941–950.PubMedCrossRef
75.
go back to reference Reither, S., Li, F., Gowher, H., & Jeltsch, A. (2003). Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: Covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. Journal of Molecular Biology, 329, 675–684.PubMedCrossRef Reither, S., Li, F., Gowher, H., & Jeltsch, A. (2003). Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: Covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. Journal of Molecular Biology, 329, 675–684.PubMedCrossRef
76.
go back to reference Christman, J. K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5491.PubMedCrossRef Christman, J. K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5491.PubMedCrossRef
77.
go back to reference Cedar, H., & Verdine, G. L. (1999). Gene expression: the amazing demethylase. Nature, 397, 568–569.PubMedCrossRef Cedar, H., & Verdine, G. L. (1999). Gene expression: the amazing demethylase. Nature, 397, 568–569.PubMedCrossRef
78.
go back to reference Cervoni, N., Detich, N., Seo, S. B., Chakravarti, D., & Szyf, M. (2002). The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. Journal of Biological Chemistry, 277, 25026–25031.PubMedCrossRef Cervoni, N., Detich, N., Seo, S. B., Chakravarti, D., & Szyf, M. (2002). The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. Journal of Biological Chemistry, 277, 25026–25031.PubMedCrossRef
79.
go back to reference Weiss, A., & Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells, 2, 481–486.PubMedCrossRef Weiss, A., & Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells, 2, 481–486.PubMedCrossRef
80.
81.
go back to reference Kapoor, A., Agius, F., & Zhu, J.-K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Letters, 579, 5889–5898.PubMedCrossRef Kapoor, A., Agius, F., & Zhu, J.-K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Letters, 579, 5889–5898.PubMedCrossRef
82.
go back to reference Jost, J. P., & Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in Nucleic Acid Research and Molecular Biology, 57, 217–248.PubMedCrossRef Jost, J. P., & Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in Nucleic Acid Research and Molecular Biology, 57, 217–248.PubMedCrossRef
83.
go back to reference Jost, J. P., Siegmann, M., Sun, L. J., & Leung, R. (1995). Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA glycosylase. Journal of Biological Chemistry, 270, 9734–9739.PubMedCrossRef Jost, J. P., Siegmann, M., Sun, L. J., & Leung, R. (1995). Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA glycosylase. Journal of Biological Chemistry, 270, 9734–9739.PubMedCrossRef
84.
go back to reference Weiss, A., Keshet, I., Razin, A., & Cedar, H. (1996). DNA demethylation in vitro: Involvement of RNA. Cell, 86, 709–718.PubMedCrossRef Weiss, A., Keshet, I., Razin, A., & Cedar, H. (1996). DNA demethylation in vitro: Involvement of RNA. Cell, 86, 709–718.PubMedCrossRef
85.
go back to reference Swisher, J. F. A., Rand, E., Cedar, H., & Pyle, A. M. (1998). Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research, 26, 5573–5580.PubMedCrossRef Swisher, J. F. A., Rand, E., Cedar, H., & Pyle, A. M. (1998). Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research, 26, 5573–5580.PubMedCrossRef
86.
go back to reference Zhu, B., Zheng, Y., Angliker, H., Schwarz, S., Siegmann, M., Thiry, S., et al. (2000). 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Research, 28, 4157–4165.PubMedCrossRef Zhu, B., Zheng, Y., Angliker, H., Schwarz, S., Siegmann, M., Thiry, S., et al. (2000). 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Research, 28, 4157–4165.PubMedCrossRef
87.
go back to reference Zhu, B., Zheng, Y., Hess, D., Angliker, H., Schwarz, S., Siegmann, M., et al. (2000). 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proceedings of the National Academy of Sciences of the USA, 97, 5135–5139.PubMedCrossRef Zhu, B., Zheng, Y., Hess, D., Angliker, H., Schwarz, S., Siegmann, M., et al. (2000). 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proceedings of the National Academy of Sciences of the USA, 97, 5135–5139.PubMedCrossRef
88.
go back to reference Zhu, B., Benjamin, D., Zheng, Y., Angliker, H., Thiry, S., Siegmann, M., et al. (2001). Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proceedings of the National Academy of Sciences of the USA, 98, 5031–5036.PubMedCrossRef Zhu, B., Benjamin, D., Zheng, Y., Angliker, H., Thiry, S., Siegmann, M., et al. (2001). Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proceedings of the National Academy of Sciences of the USA, 98, 5031–5036.PubMedCrossRef
89.
go back to reference Jost, J. P. (1993). Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proceedings of the National Academy of Sciences of the USA, 90, 4684–4688.PubMedCrossRef Jost, J. P. (1993). Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proceedings of the National Academy of Sciences of the USA, 90, 4684–4688.PubMedCrossRef
90.
go back to reference Jost, J. P., Schwarz, S., Hess, D., Angliker, H., Fuller-Pace, F. V., Stahl, H. S., et al. (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein–RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Research, 27, 3245–3252.PubMedCrossRef Jost, J. P., Schwarz, S., Hess, D., Angliker, H., Fuller-Pace, F. V., Stahl, H. S., et al. (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein–RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Research, 27, 3245–3252.PubMedCrossRef
91.
go back to reference Vairapandi, M., & Duker, N. J. (1993). Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Research, 21, 5323–5327.PubMedCrossRef Vairapandi, M., & Duker, N. J. (1993). Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Research, 21, 5323–5327.PubMedCrossRef
92.
go back to reference Vairapandi, M., Liebermann, D. A., Hoffman, B., & Duker, N. J. (2000). Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA. Journal of Cellular Biochemistry, 79, 249–260.PubMedCrossRef Vairapandi, M., Liebermann, D. A., Hoffman, B., & Duker, N. J. (2000). Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA. Journal of Cellular Biochemistry, 79, 249–260.PubMedCrossRef
93.
go back to reference Maga, G., & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of Cell Science, 116, 3051–3060.PubMedCrossRef Maga, G., & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of Cell Science, 116, 3051–3060.PubMedCrossRef
94.
go back to reference Hsieh, C. L. (1999). Evidence that protein binding specifies sites of DNA demethylation. Molecular and Cellular Biology, 19, 46–56.PubMed Hsieh, C. L. (1999). Evidence that protein binding specifies sites of DNA demethylation. Molecular and Cellular Biology, 19, 46–56.PubMed
95.
go back to reference Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.PubMedCrossRef Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.PubMedCrossRef
96.
go back to reference Gaudet, F., Hodgson, J. G., Eden, A., Jakson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300, 489–492.PubMedCrossRef Gaudet, F., Hodgson, J. G., Eden, A., Jakson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300, 489–492.PubMedCrossRef
97.
go back to reference Gjerset, R. A., & Martin Jr., D. W. (1982). Presence of DNA demethylating activity in the nucleus of murine erythroleukemic cells. Journal of Biological Chemistry, 257, 8581–8583.PubMed Gjerset, R. A., & Martin Jr., D. W. (1982). Presence of DNA demethylating activity in the nucleus of murine erythroleukemic cells. Journal of Biological Chemistry, 257, 8581–8583.PubMed
98.
go back to reference Ghoshal, K., Majumder, S., Datta, J., Motiwala, T., Bai, S., Sharma, S. M., et al. (2004). Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. Journal of Biological Chemistry, 279, 6783–6793.PubMedCrossRef Ghoshal, K., Majumder, S., Datta, J., Motiwala, T., Bai, S., Sharma, S. M., et al. (2004). Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. Journal of Biological Chemistry, 279, 6783–6793.PubMedCrossRef
99.
go back to reference Zhu, Y., Brown, H. N., Zhang, Y., Holford, T. R., & Zheng, T. (2005). Genotypes and haplotypes of the methyl-CpG-binding domain 2 modify breast cancer risk dependent upon menopausal status. Breast Cancer Research, 7, R745–R752.PubMedCrossRef Zhu, Y., Brown, H. N., Zhang, Y., Holford, T. R., & Zheng, T. (2005). Genotypes and haplotypes of the methyl-CpG-binding domain 2 modify breast cancer risk dependent upon menopausal status. Breast Cancer Research, 7, R745–R752.PubMedCrossRef
100.
go back to reference Fang, J. Y., Cheng, Z. H., Chen, Y. X., Lu, R., Yang, L., Zhu, H. Y., et al. (2004). Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World Journal of Gastroenterologist, 10, 3394–3398. Fang, J. Y., Cheng, Z. H., Chen, Y. X., Lu, R., Yang, L., Zhu, H. Y., et al. (2004). Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World Journal of Gastroenterologist, 10, 3394–3398.
101.
go back to reference Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34, 145–147 (also, see supplementary data).PubMedCrossRef Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34, 145–147 (also, see supplementary data).PubMedCrossRef
102.
go back to reference Berger, J., Sansom, O., Clarke, A., & Bird, A. (2007). MBD2 is required for correct spatial gene expression in the gut. Molecular and Cellular Biology, 27, 4049–4057.PubMedCrossRef Berger, J., Sansom, O., Clarke, A., & Bird, A. (2007). MBD2 is required for correct spatial gene expression in the gut. Molecular and Cellular Biology, 27, 4049–4057.PubMedCrossRef
103.
go back to reference Galetzka, D., Weis, E., Tralau, T., Seidmann, L., & Haaf, T. (2007). Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Molecular Reproduction and Development, 74, 233–241.PubMedCrossRef Galetzka, D., Weis, E., Tralau, T., Seidmann, L., & Haaf, T. (2007). Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Molecular Reproduction and Development, 74, 233–241.PubMedCrossRef
104.
go back to reference Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403, 501–502.PubMedCrossRef Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403, 501–502.PubMedCrossRef
105.
go back to reference Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., et al. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA, 98, 13734–13738.PubMedCrossRef Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., et al. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA, 98, 13734–13738.PubMedCrossRef
106.
go back to reference Beaujean, N., Taylor, J. E., McGarry, M., Gardner, J. O., Wilmut, I., Loi, P., et al. (2004). The effect of interspecific oocytes on demethylation of sperm DNA. Proceedings of the National Academy of Sciences of the USA, 101, 7636–7640.PubMedCrossRef Beaujean, N., Taylor, J. E., McGarry, M., Gardner, J. O., Wilmut, I., Loi, P., et al. (2004). The effect of interspecific oocytes on demethylation of sperm DNA. Proceedings of the National Academy of Sciences of the USA, 101, 7636–7640.PubMedCrossRef
107.
go back to reference Kang, Y. K., Koo, D., Park, J. S., Choi, Y., Lee, K., & Han, Y. (2001). Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Letters, 499, 55–58.PubMedCrossRef Kang, Y. K., Koo, D., Park, J. S., Choi, Y., Lee, K., & Han, Y. (2001). Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Letters, 499, 55–58.PubMedCrossRef
108.
go back to reference Wischnewski, F., Friese, O., Pantel, K., & Schwarzenbach, H. (2007). Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Molecular Cancer Research, 5, 749–759.PubMedCrossRef Wischnewski, F., Friese, O., Pantel, K., & Schwarzenbach, H. (2007). Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Molecular Cancer Research, 5, 749–759.PubMedCrossRef
109.
go back to reference Bird, A. (2003). IL2 transcription unleashed by active DNA demethylation. Nature Immunology, 4, 208–209.PubMedCrossRef Bird, A. (2003). IL2 transcription unleashed by active DNA demethylation. Nature Immunology, 4, 208–209.PubMedCrossRef
110.
go back to reference Erlanson, D., Dhen, L., & Verdin, G. L. (1993). Enzymatic DNA methylation through a locally unpaired intermediate. Journal of the American Chemical Society, 115, 12583–12584.CrossRef Erlanson, D., Dhen, L., & Verdin, G. L. (1993). Enzymatic DNA methylation through a locally unpaired intermediate. Journal of the American Chemical Society, 115, 12583–12584.CrossRef
111.
go back to reference Chen, L., MacMillan, A. M., Cheng, W., Ezaz-Nikpay, K., Lane, W. S., & Verdin, G. L. (1991). Direct identification of the active site nucleophile in a DNA (cytosine-5-methyltransferase). Biochemistry, 30, 11018–11025.PubMedCrossRef Chen, L., MacMillan, A. M., Cheng, W., Ezaz-Nikpay, K., Lane, W. S., & Verdin, G. L. (1991). Direct identification of the active site nucleophile in a DNA (cytosine-5-methyltransferase). Biochemistry, 30, 11018–11025.PubMedCrossRef
112.
go back to reference Santi, D. V., Garrett, C. E., & Barr, P. J. (1983). On the mechanism of inhibition of DNA-cytosine methyltransferase by cytosine analogs. Cell, 33, 9–10.PubMedCrossRef Santi, D. V., Garrett, C. E., & Barr, P. J. (1983). On the mechanism of inhibition of DNA-cytosine methyltransferase by cytosine analogs. Cell, 33, 9–10.PubMedCrossRef
113.
go back to reference Wilson, V. L., & Jones, P. A. (1983). Inhibition of DNA methylation by chemical carcinogens in vitro. Cell, 32, 239–246.PubMedCrossRef Wilson, V. L., & Jones, P. A. (1983). Inhibition of DNA methylation by chemical carcinogens in vitro. Cell, 32, 239–246.PubMedCrossRef
114.
go back to reference Klimasauskas, S., Kumar, S., Robert, R. J., & Cheng, X. (1994). HhaI methyltransferase flips its target base out of the DNA helix. Cell, 76, 357–369.PubMedCrossRef Klimasauskas, S., Kumar, S., Robert, R. J., & Cheng, X. (1994). HhaI methyltransferase flips its target base out of the DNA helix. Cell, 76, 357–369.PubMedCrossRef
115.
go back to reference Wu, P., Qiu, C., Sohail, A., Zhang, X., Bhagwat, A. S., & Cheng, X. (2003). Mismatch repair in methylated DNA: Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. Journal of Biological Chemistry, 278, 5285–5291.PubMedCrossRef Wu, P., Qiu, C., Sohail, A., Zhang, X., Bhagwat, A. S., & Cheng, X. (2003). Mismatch repair in methylated DNA: Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. Journal of Biological Chemistry, 278, 5285–5291.PubMedCrossRef
116.
go back to reference Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857–869.PubMedCrossRef Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857–869.PubMedCrossRef
117.
go back to reference Claus, R., Almstedt, M., & Lubbert, M. (2005). Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Seminars in Oncology, 32, 511–520.PubMedCrossRef Claus, R., Almstedt, M., & Lubbert, M. (2005). Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Seminars in Oncology, 32, 511–520.PubMedCrossRef
118.
go back to reference Wijermans, P., Lubbert, M., Verhoef, G., Bosly, A., Ravoet, C., Andre, M., et al. (2000). Low-Dose 5-Aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicenter phase II study in elderly patients. Journal of Clinical Oncology, 18, 956–965.PubMed Wijermans, P., Lubbert, M., Verhoef, G., Bosly, A., Ravoet, C., Andre, M., et al. (2000). Low-Dose 5-Aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicenter phase II study in elderly patients. Journal of Clinical Oncology, 18, 956–965.PubMed
119.
go back to reference Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5, 37–50.PubMedCrossRef Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5, 37–50.PubMedCrossRef
120.
go back to reference Mihich, E., & Jaenisch, R. (2004). Sixteenth annual pezcoller symposium: Stem cells and epigenesis in cancer. Cancer Research, 64, 8474–8477.PubMedCrossRef Mihich, E., & Jaenisch, R. (2004). Sixteenth annual pezcoller symposium: Stem cells and epigenesis in cancer. Cancer Research, 64, 8474–8477.PubMedCrossRef
121.
go back to reference Sato, N., Maehara, N., Su, G. H., & Goggins, M. (2003). Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. Journal of the National Cancer Institute, 95, 327–330.PubMedCrossRef Sato, N., Maehara, N., Su, G. H., & Goggins, M. (2003). Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. Journal of the National Cancer Institute, 95, 327–330.PubMedCrossRef
122.
go back to reference Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67, 930–939.PubMedCrossRef Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67, 930–939.PubMedCrossRef
123.
go back to reference Lucarelli, M., Fuso, A., Strom, R., & Scarpa, S. (2001). The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. Journal of Biological Chemistry, 276, 7500–7506.PubMedCrossRef Lucarelli, M., Fuso, A., Strom, R., & Scarpa, S. (2001). The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. Journal of Biological Chemistry, 276, 7500–7506.PubMedCrossRef
124.
go back to reference El Kharroubi, A., Piras, G., & Stewart, C. L. (2001). DNA demethylation reactivates a subset of imprinted genes in uni-parental mouse embryonic fibroblasts. Journal of Biological Chemistry, 276, 8674–8680.PubMedCrossRef El Kharroubi, A., Piras, G., & Stewart, C. L. (2001). DNA demethylation reactivates a subset of imprinted genes in uni-parental mouse embryonic fibroblasts. Journal of Biological Chemistry, 276, 8674–8680.PubMedCrossRef
125.
go back to reference Santoso, B., Ortiz, B. D., & Winoto, A. (2000). Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. Journal of Biological Chemistry, 275, 1952–1858.PubMedCrossRef Santoso, B., Ortiz, B. D., & Winoto, A. (2000). Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. Journal of Biological Chemistry, 275, 1952–1858.PubMedCrossRef
126.
go back to reference Ferguson, A. T., Vertino, P. M., Spitzner, J. R., Baylin, S. B., Muller, M. T., & Davidson, N. E. (1997). Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine induced cytotoxicity in human breast cancer cells. Journal of Biological Chemistry, 272, 32260–32266.PubMedCrossRef Ferguson, A. T., Vertino, P. M., Spitzner, J. R., Baylin, S. B., Muller, M. T., & Davidson, N. E. (1997). Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine induced cytotoxicity in human breast cancer cells. Journal of Biological Chemistry, 272, 32260–32266.PubMedCrossRef
127.
go back to reference Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase DNMT1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.PubMedCrossRef Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase DNMT1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.PubMedCrossRef
128.
go back to reference Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., et al. (1999). A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Molecular Cell, 4, 123–128.PubMedCrossRef Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., et al. (1999). A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Molecular Cell, 4, 123–128.PubMedCrossRef
129.
go back to reference Scaltriti, M., Belloni, L., Caporali, A., Davalli, P., Remondini, D., Rizzi, F., et al. (2006). Molecular classification of green tea catechin-sensitive and green tea catechin-resistant prostate cancer in the TRAMP mice model by quantitative real-time PCR gene profiling. Carcinogenesis, 27, 1047–1053.PubMedCrossRef Scaltriti, M., Belloni, L., Caporali, A., Davalli, P., Remondini, D., Rizzi, F., et al. (2006). Molecular classification of green tea catechin-sensitive and green tea catechin-resistant prostate cancer in the TRAMP mice model by quantitative real-time PCR gene profiling. Carcinogenesis, 27, 1047–1053.PubMedCrossRef
130.
go back to reference Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25, 4890–4903.PubMedCrossRef Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25, 4890–4903.PubMedCrossRef
131.
go back to reference Kundu, T. K., & Rao, M. R. S. (1999). CpG islands in chromatin organization and gene expression. Journal of Biochemistry, 125, 217–222.PubMed Kundu, T. K., & Rao, M. R. S. (1999). CpG islands in chromatin organization and gene expression. Journal of Biochemistry, 125, 217–222.PubMed
132.
go back to reference Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., & Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2, e26. doi:10.1371/journal.pgen.0020026.PubMedCrossRef Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., & Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2, e26. doi:10.​1371/​journal.​pgen.​0020026.PubMedCrossRef
133.
go back to reference Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., et al. (2006). Computational prediction of methylation status in human genomic sequences. Proceedings of the National Academy of Sciences of the USA, 103, 10713–10716.PubMedCrossRef Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., et al. (2006). Computational prediction of methylation status in human genomic sequences. Proceedings of the National Academy of Sciences of the USA, 103, 10713–10716.PubMedCrossRef
134.
go back to reference Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16, 157–163.PubMedCrossRef Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16, 157–163.PubMedCrossRef
135.
go back to reference Salisbury, C. M., & Cravatt, B. E. (2007). Activity based probes for profiling of histone deacetylase complexes. Proceedings of the National Academy of Sciences of the USA, 104, 1171–1176.PubMedCrossRef Salisbury, C. M., & Cravatt, B. E. (2007). Activity based probes for profiling of histone deacetylase complexes. Proceedings of the National Academy of Sciences of the USA, 104, 1171–1176.PubMedCrossRef
136.
go back to reference Delaval, K., Govin, J., Cerqueira, F., Rousseaux, S., Khochbin, S., & Feil, R. (2007). Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 26, 720–729.PubMedCrossRef Delaval, K., Govin, J., Cerqueira, F., Rousseaux, S., Khochbin, S., & Feil, R. (2007). Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 26, 720–729.PubMedCrossRef
137.
go back to reference Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., & Ceder, H. (1991). Demethylation of CpG islands in embryonic cells. Nature, 351, 239–241.PubMedCrossRef Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., & Ceder, H. (1991). Demethylation of CpG islands in embryonic cells. Nature, 351, 239–241.PubMedCrossRef
138.
go back to reference Paroush, Z., Keshet, I., Yisraeli, J., & Ceder, H. (1990). Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell, 63, 1229–1237.PubMedCrossRef Paroush, Z., Keshet, I., Yisraeli, J., & Ceder, H. (1990). Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell, 63, 1229–1237.PubMedCrossRef
139.
go back to reference Wiechen, K., Diatchenko, L., Agoulink, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down regulated in human ovarian carcinoma and Acts as candidate tumour suppressor gene. American Journal of Pathology, 159, 1635–1643.PubMed Wiechen, K., Diatchenko, L., Agoulink, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down regulated in human ovarian carcinoma and Acts as candidate tumour suppressor gene. American Journal of Pathology, 159, 1635–1643.PubMed
140.
go back to reference Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate, 46, 249–256.PubMedCrossRef Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate, 46, 249–256.PubMedCrossRef
141.
go back to reference Liu, J., Ikeguchi, M., Nakamura, S., & Kaibara, N. (2002). Re-expression of the Cadherin–Catenin complex in lymph nodes with metastasis in advanced gastric cancer: the relationship with patient survival. Journal of Experimental and Clinical Cancer Research, 21, 65–71. Liu, J., Ikeguchi, M., Nakamura, S., & Kaibara, N. (2002). Re-expression of the Cadherin–Catenin complex in lymph nodes with metastasis in advanced gastric cancer: the relationship with patient survival. Journal of Experimental and Clinical Cancer Research, 21, 65–71.
142.
go back to reference Foger, N., Marhaba, R., & Zoller, M. (2000). Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. Journal of Cell Science, 114, 1169–1178. Foger, N., Marhaba, R., & Zoller, M. (2000). Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. Journal of Cell Science, 114, 1169–1178.
143.
go back to reference Kito, H., Suzuki, H., Ichikawa, T., Sekita, N., Kamia, N., Akakura, K., et al. (2001). Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate, 49, 110–115.PubMedCrossRef Kito, H., Suzuki, H., Ichikawa, T., Sekita, N., Kamia, N., Akakura, K., et al. (2001). Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate, 49, 110–115.PubMedCrossRef
144.
go back to reference Lou, W., Krill, D., Dhir, R., Becich, M. J., Dong, J.-T., Frierson Jr., H. F., et al. (1999). Methylation of CD44 metastasis suppressor gene in human prostate cancer. Cancer Research, 59, 2329–2331.PubMed Lou, W., Krill, D., Dhir, R., Becich, M. J., Dong, J.-T., Frierson Jr., H. F., et al. (1999). Methylation of CD44 metastasis suppressor gene in human prostate cancer. Cancer Research, 59, 2329–2331.PubMed
145.
go back to reference Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21, 4231–4236.PubMedCrossRef Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21, 4231–4236.PubMedCrossRef
146.
go back to reference Hyman, R. (2002). Lack of a consistent relationship between demethylation of the CD44 promoter and CD44 expression. Immunogenetics, 53, 914–924.PubMedCrossRef Hyman, R. (2002). Lack of a consistent relationship between demethylation of the CD44 promoter and CD44 expression. Immunogenetics, 53, 914–924.PubMedCrossRef
147.
go back to reference Shiras, A., Bhosale, A., Patekar, A., Shepal, V., & Shastry, P. (2002). Differential expression of CD44(s) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clinical & Experimental Metastasis, 19, 445–455.CrossRef Shiras, A., Bhosale, A., Patekar, A., Shepal, V., & Shastry, P. (2002). Differential expression of CD44(s) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clinical & Experimental Metastasis, 19, 445–455.CrossRef
148.
go back to reference Bankfalvi, A., KraBort, M., Buchwalow, I. B., Vegh, A., Felszeghy, E., & Piffko, J. (2002). Gains and loses of adhesion molecules (CD44, E-Cadherin, and b-Catenin) during oral carcinogenesis and tumour progression. Journal of Pathology, 198, 343–351.PubMedCrossRef Bankfalvi, A., KraBort, M., Buchwalow, I. B., Vegh, A., Felszeghy, E., & Piffko, J. (2002). Gains and loses of adhesion molecules (CD44, E-Cadherin, and b-Catenin) during oral carcinogenesis and tumour progression. Journal of Pathology, 198, 343–351.PubMedCrossRef
149.
go back to reference Weber, G. F., Bronson, R. T., Ilagan, J., Cantor, H., Schmits, R., & Mak, T. W. (2002). Absence of the CD44 gene prevents sarcoma metastasis. Cancer Research, 62, 2281–2286.PubMed Weber, G. F., Bronson, R. T., Ilagan, J., Cantor, H., Schmits, R., & Mak, T. W. (2002). Absence of the CD44 gene prevents sarcoma metastasis. Cancer Research, 62, 2281–2286.PubMed
150.
go back to reference Verkaik, N. S., Trapman, J., Romijn, J. C., Van Der Kwast, T. H., & Van Steenbrugge, G. J. (1999). Down regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. International Journal of Cancer, 80, 439–443.CrossRef Verkaik, N. S., Trapman, J., Romijn, J. C., Van Der Kwast, T. H., & Van Steenbrugge, G. J. (1999). Down regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. International Journal of Cancer, 80, 439–443.CrossRef
151.
go back to reference Kogerman, P., Sy, M.-S., & Culp, L. A. (1997). Counter-selection for over expressed human CD44s primary tumour versus lung metastases in mouse fibrosarcoma model. Oncogene, 15, 1407–1416.PubMedCrossRef Kogerman, P., Sy, M.-S., & Culp, L. A. (1997). Counter-selection for over expressed human CD44s primary tumour versus lung metastases in mouse fibrosarcoma model. Oncogene, 15, 1407–1416.PubMedCrossRef
152.
go back to reference Shiratori, H., Koshino, T., Uesugi, M., Nitto, H., & Saito, T. (2001). Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice. Cancer Letters, 170, 177–182.PubMedCrossRef Shiratori, H., Koshino, T., Uesugi, M., Nitto, H., & Saito, T. (2001). Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice. Cancer Letters, 170, 177–182.PubMedCrossRef
153.
go back to reference Ribeiro-Filho, L. A., Franks, J., Sasaki, M., Shiina, H., Li, L.-C., Nojima, D., et al. (2002). CpG hypermethylation of promoter region and Inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 34, 187–198.PubMedCrossRef Ribeiro-Filho, L. A., Franks, J., Sasaki, M., Shiina, H., Li, L.-C., Nojima, D., et al. (2002). CpG hypermethylation of promoter region and Inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 34, 187–198.PubMedCrossRef
154.
go back to reference Karube, H., Masuda, H., Ishii, Y., & Takayama, T. (2002). E-Cadherin expression is inversely proportional to tumour size in experimental liver metastasis. Journal of Surgical Research, 106, 173–178.PubMedCrossRef Karube, H., Masuda, H., Ishii, Y., & Takayama, T. (2002). E-Cadherin expression is inversely proportional to tumour size in experimental liver metastasis. Journal of Surgical Research, 106, 173–178.PubMedCrossRef
155.
go back to reference Alpaugh, M. L., Tomlinson, J. S., Kasraeian, S., & Barsky, S. H. (2002). Cooperative role of E-Cadherin sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumour emboli in inflammatory breast carcinoma. Oncogene, 21, 3631–3643.PubMedCrossRef Alpaugh, M. L., Tomlinson, J. S., Kasraeian, S., & Barsky, S. H. (2002). Cooperative role of E-Cadherin sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumour emboli in inflammatory breast carcinoma. Oncogene, 21, 3631–3643.PubMedCrossRef
156.
go back to reference Ikeguchi, M., Makino, M., & Kaibara, N. (2001). Clinical significance of E-Cadherin–Cateninn complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Research, 77, 201–207. Ikeguchi, M., Makino, M., & Kaibara, N. (2001). Clinical significance of E-Cadherin–Cateninn complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Research, 77, 201–207.
157.
go back to reference Kase, S., Sugio, K., Yamazaki, K., Okamoto, T., Yano, T., & Sugimachi, K. (2000). Expression of E-Cadherin and b-Catenin in human non-small cell lung cancer and the clinical significance. Clinical Cancer Research, 6, 4784–4796. Kase, S., Sugio, K., Yamazaki, K., Okamoto, T., Yano, T., & Sugimachi, K. (2000). Expression of E-Cadherin and b-Catenin in human non-small cell lung cancer and the clinical significance. Clinical Cancer Research, 6, 4784–4796.
158.
go back to reference Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistant E-Cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistant E-Cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef
159.
go back to reference Jiang, W. G., & Mansel, R. E. (2000). E-cadherin complex and its abnormalities in human breast cancer. Surgical Oncology, 9, 151–171.PubMedCrossRef Jiang, W. G., & Mansel, R. E. (2000). E-cadherin complex and its abnormalities in human breast cancer. Surgical Oncology, 9, 151–171.PubMedCrossRef
160.
go back to reference Cavalli, L. R., Urban, C. A., Dai, D., de Assis, S., Tavares, D. C., Rone, J. D., et al. (2003). Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genetics and Cytogenetics, 146, 33–40.PubMedCrossRef Cavalli, L. R., Urban, C. A., Dai, D., de Assis, S., Tavares, D. C., Rone, J. D., et al. (2003). Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genetics and Cytogenetics, 146, 33–40.PubMedCrossRef
161.
162.
go back to reference Dong, E., Guidotti, A., Grayson, D. R., & Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proceedings of the National Academy of Sciences of the USA, 104, 4676–4681.PubMedCrossRef Dong, E., Guidotti, A., Grayson, D. R., & Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proceedings of the National Academy of Sciences of the USA, 104, 4676–4681.PubMedCrossRef
163.
go back to reference Wong, I. H. (2001). Methylation profiling of human cancers in blood: molecular monitoring and prognostication (Review). International Journal of Oncology, 19, 1319–1324.PubMed Wong, I. H. (2001). Methylation profiling of human cancers in blood: molecular monitoring and prognostication (Review). International Journal of Oncology, 19, 1319–1324.PubMed
164.
go back to reference Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction. Nature Reviews, Cancer, 6, 107–116.CrossRef Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction. Nature Reviews, Cancer, 6, 107–116.CrossRef
165.
166.
go back to reference Zhu, X., Leav, I., Leung, Y. K., Wu, M., Liu, Q., Gao, Y., et al. (2004). Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. American Journal of Pathology, 164, 2003–2012.PubMed Zhu, X., Leav, I., Leung, Y. K., Wu, M., Liu, Q., Gao, Y., et al. (2004). Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. American Journal of Pathology, 164, 2003–2012.PubMed
167.
go back to reference Zhu, J., & Yao, X. (2007). Use of DNA methylation for cancer detection and molecular classification. Journal of Biochemistry and Molecular Biology, 40, 135–141.PubMed Zhu, J., & Yao, X. (2007). Use of DNA methylation for cancer detection and molecular classification. Journal of Biochemistry and Molecular Biology, 40, 135–141.PubMed
168.
go back to reference Li, L. C., Okino, S. T., & Dahiya, R. (2004). DNA methylation in prostate cancer (Review). Biochimica et Biophysica Acta, 1704, 87–102.PubMed Li, L. C., Okino, S. T., & Dahiya, R. (2004). DNA methylation in prostate cancer (Review). Biochimica et Biophysica Acta, 1704, 87–102.PubMed
169.
go back to reference Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., et al. (2003). Tea polyphenol Epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer Cell lines. Cancer Research, 63, 7563–7570.PubMed Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., et al. (2003). Tea polyphenol Epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer Cell lines. Cancer Research, 63, 7563–7570.PubMed
170.
go back to reference Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. Journal of Biological Chemistry, 279, 31735–31744.PubMedCrossRef Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. Journal of Biological Chemistry, 279, 31735–31744.PubMedCrossRef
171.
go back to reference Peterson, C. L., & Logie, C. (2000). Recruitment of chromatin remodeling machines. Journal of Cellular Biochemistry, 78, 179–185.PubMedCrossRef Peterson, C. L., & Logie, C. (2000). Recruitment of chromatin remodeling machines. Journal of Cellular Biochemistry, 78, 179–185.PubMedCrossRef
172.
go back to reference Rhee, I., Jair, K.-W., Yen, R.-W. C., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMedCrossRef Rhee, I., Jair, K.-W., Yen, R.-W. C., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMedCrossRef
173.
go back to reference Razin, A., Cedar, H., & Riggs, A. D. (1984). DNA methylation, biochemistry, and biological significance. New York: Springer. Razin, A., Cedar, H., & Riggs, A. D. (1984). DNA methylation, biochemistry, and biological significance. New York: Springer.
174.
go back to reference Adams, R. L. P., & Burdon, R. H. (1985). Molecular biology of DNA methylation. New York: Springer. Adams, R. L. P., & Burdon, R. H. (1985). Molecular biology of DNA methylation. New York: Springer.
175.
go back to reference Jost, J.-P., & Saluz, H. P. (1993). DNA methylation: Molecular biology and biological significance. Berlin: Birkhäuser. Jost, J.-P., & Saluz, H. P. (1993). DNA methylation: Molecular biology and biological significance. Berlin: Birkhäuser.
176.
go back to reference Shell, S., Park, S. M., Radjabi, A. R., Schickel, R., Kistner, E. O., Jewell, D. A., et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the USA, 104, 11400–11405.PubMedCrossRef Shell, S., Park, S. M., Radjabi, A. R., Schickel, R., Kistner, E. O., Jewell, D. A., et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the USA, 104, 11400–11405.PubMedCrossRef
Metadata
Title
Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development
Authors
Samir Kumar Patra
Aditi Patra
Federica Rizzi
Tapash Chandra Ghosh
Saverio Bettuzzi
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9118-y

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine