Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Septicemia | Research

Peritoneal sepsis caused by Escherichia coli triggers brainstem inflammation and alters the function of sympatho-respiratory control circuits

Authors: Gjinovefa Kola, Caitlyn W. Clifford, Cara K. Campanaro, Rishi R. Dhingra, Mathias Dutschmann, Frank J. Jacono, Thomas E. Dick

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Sepsis has a high mortality rate due to multiple organ failure. However, the influence of peripheral inflammation on brainstem autonomic and respiratory circuits in sepsis is poorly understood. Our working hypothesis is that peripheral inflammation affects central autonomic circuits and consequently contributes to multiorgan failure in sepsis.

Methods

In an Escherichia coli (E. coli)–fibrin clot model of peritonitis, we first recorded ventilatory patterns using plethysmography before and 24 h after fibrin clot implantation. To assess whether peritonitis was associated with brainstem neuro-inflammation, we measured cytokine and chemokine levels in Luminex assays. To determine the effect of E. coli peritonitis on brainstem function, we assessed sympatho-respiratory nerve activities at baseline and during brief (20 s) hypoxemic ischemia challenges using in situ-perfused brainstem preparations (PBPs) from sham or infected rats. PBPs lack peripheral organs and blood, but generate vascular tone and in vivo rhythmic activities in thoracic sympathetic (tSNA), phrenic and vagal nerves.

Results

Respiratory frequency was greater (p < 0.001) at 24 h post-infection with E. coli than in the sham control. However, breath-by-breath variability and total protein in the BALF did not differ. IL-1β (p < 0.05), IL-6 (p < 0.05) and IL-17 (p < 0.04) concentrations were greater in the brainstem of infected rats. In the PBP, integrated tSNA (p < 0.05) and perfusion pressure were greater (p < 0.001), indicating a neural-mediated pathophysiological high sympathetic drive. Moreover, respiratory frequency was greater (p < 0.001) in PBPs from infected rats than from sham rats. Normalized phase durations of inspiration and expiration were greater (p < 0.009, p < 0.015, respectively), but the post-inspiratory phase (p < 0.007) and the breath-by-breath variability (p < 0.001) were less compared to sham PBPs. Hypoxemic ischemia triggered a biphasic response, respiratory augmentation followed by depression. PBPs from infected rats had weaker respiratory augmentation (p < 0.001) and depression (p < 0.001) than PBPs from sham rats. In contrast, tSNA in E. coli-treated PBPs was enhanced throughout the entire response to hypoxemic ischemia (p < 0.01), consistent with sympathetic hyperactivity.

Conclusion

We show that peripheral sepsis caused brainstem inflammation and impaired sympatho-respiratory motor control in a single day after infection. We conclude that central sympathetic hyperactivity may impact vital organ systems in sepsis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral
2.
go back to reference Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRefPubMedPubMedCentral Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRefPubMedPubMedCentral
3.
go back to reference Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:775–87.CrossRefPubMedPubMedCentral Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:775–87.CrossRefPubMedPubMedCentral
4.
go back to reference Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28.CrossRefPubMed Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28.CrossRefPubMed
6.
go back to reference Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018;320:1455–63.CrossRefPubMedPubMedCentral Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018;320:1455–63.CrossRefPubMedPubMedCentral
7.
go back to reference Steinhagen F, Schmidt SV, Schewe J-C, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis—brake or accelerate? Pharmacol Ther. 2020;208: 107476.CrossRefPubMed Steinhagen F, Schmidt SV, Schewe J-C, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis—brake or accelerate? Pharmacol Ther. 2020;208: 107476.CrossRefPubMed
8.
go back to reference David S, Bode C, Putensen C, Welte T, Stahl K, Busch M, et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021;47:352–4.CrossRefPubMedPubMedCentral David S, Bode C, Putensen C, Welte T, Stahl K, Busch M, et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021;47:352–4.CrossRefPubMedPubMedCentral
9.
go back to reference Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49: e1063.CrossRefPubMed Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49: e1063.CrossRefPubMed
10.
go back to reference Lelubre C, Vincent J-L. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14:417–27.CrossRefPubMed Lelubre C, Vincent J-L. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14:417–27.CrossRefPubMed
11.
go back to reference Caraballo C, Jaimes F. Organ dysfunction in sepsis: an ominous trajectory from infection to death. Yale J Biol Med. 2019;92:629–40.PubMedPubMedCentral Caraballo C, Jaimes F. Organ dysfunction in sepsis: an ominous trajectory from infection to death. Yale J Biol Med. 2019;92:629–40.PubMedPubMedCentral
12.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefPubMed Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefPubMed
13.
go back to reference Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics. 2020;17:392–403.CrossRefPubMedPubMedCentral Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics. 2020;17:392–403.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Carrara M, Ferrario M, Bollen Pinto B, Herpain A. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. 2021;11:80.CrossRefPubMedPubMedCentral Carrara M, Ferrario M, Bollen Pinto B, Herpain A. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. 2021;11:80.CrossRefPubMedPubMedCentral
16.
go back to reference Hedley KE, Callister RJ, Callister R, Horvat JC, Tadros MA. Alterations in brainstem respiratory centers following peripheral inflammation: a systematic review. J Neuroimmunol. 2022;369: 577903.CrossRefPubMed Hedley KE, Callister RJ, Callister R, Horvat JC, Tadros MA. Alterations in brainstem respiratory centers following peripheral inflammation: a systematic review. J Neuroimmunol. 2022;369: 577903.CrossRefPubMed
17.
go back to reference Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.CrossRefPubMed Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.CrossRefPubMed
19.
go back to reference Campanaro CK, Nethery DE, Guo F, Kaffashi F, Loparo KA, Jacono FJ, et al. Dynamics of ventilatory pattern variability and cardioventilatory coupling during systemic inflammation in rats. Front Netw Physiol. 2023;3:1038531.CrossRefPubMedPubMedCentral Campanaro CK, Nethery DE, Guo F, Kaffashi F, Loparo KA, Jacono FJ, et al. Dynamics of ventilatory pattern variability and cardioventilatory coupling during systemic inflammation in rats. Front Netw Physiol. 2023;3:1038531.CrossRefPubMedPubMedCentral
20.
go back to reference Hsieh Y-H, Litvin DG, Zaylor AR, Nethery DE, Dick TE, Jacono FJ. Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. J Physiol. 2020;598:2791–811.CrossRefPubMed Hsieh Y-H, Litvin DG, Zaylor AR, Nethery DE, Dick TE, Jacono FJ. Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. J Physiol. 2020;598:2791–811.CrossRefPubMed
21.
go back to reference Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, et al. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun. 2020;87:610–33.CrossRefPubMedPubMedCentral Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, et al. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun. 2020;87:610–33.CrossRefPubMedPubMedCentral
22.
go back to reference Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun. 2018;70:398–422.CrossRefPubMedPubMedCentral Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun. 2018;70:398–422.CrossRefPubMedPubMedCentral
23.
go back to reference Namas RA, Namas R, Lagoa C, Barclay D, Mi Q, Zamora R, et al. Hemoadsorption reprograms inflammation in experimental gram-negative septic peritonitis: Insights from in vivo and in silico studies. Mol Med. 2012;18:1366–74.CrossRefPubMedPubMedCentral Namas RA, Namas R, Lagoa C, Barclay D, Mi Q, Zamora R, et al. Hemoadsorption reprograms inflammation in experimental gram-negative septic peritonitis: Insights from in vivo and in silico studies. Mol Med. 2012;18:1366–74.CrossRefPubMedPubMedCentral
24.
25.
26.
go back to reference Paton JFR, Machado BH, Moraes DJA, Zoccal DB, Abdala AP, Smith JC, et al. Advancing respiratory–cardiovascular physiology with the working heart–brainstem preparation over 25 years. J Physiol. 2022;600:2049–75.CrossRefPubMed Paton JFR, Machado BH, Moraes DJA, Zoccal DB, Abdala AP, Smith JC, et al. Advancing respiratory–cardiovascular physiology with the working heart–brainstem preparation over 25 years. J Physiol. 2022;600:2049–75.CrossRefPubMed
27.
go back to reference Dutschmann M, Paton JFR. Inhibitory synaptic mechanisms regulating upper airway patency. Respir Physiol Neurobiol. 2002;131:57–63.CrossRefPubMed Dutschmann M, Paton JFR. Inhibitory synaptic mechanisms regulating upper airway patency. Respir Physiol Neurobiol. 2002;131:57–63.CrossRefPubMed
28.
go back to reference Dhingra RR, Jacono FJ, Fishman M, Loparo KA, Rybak IA, Dick TE. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats. J Appl Physiol. 2011;111:272–84.CrossRefPubMedPubMedCentral Dhingra RR, Jacono FJ, Fishman M, Loparo KA, Rybak IA, Dick TE. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats. J Appl Physiol. 2011;111:272–84.CrossRefPubMedPubMedCentral
29.
31.
go back to reference Simms AE, Paton JFR, Pickering AE. Hierarchical recruitment of the sympathetic and parasympathetic limbs of the baroreflex in normotensive and spontaneously hypertensive rats. J Physiol. 2007;579:473–86.CrossRefPubMed Simms AE, Paton JFR, Pickering AE. Hierarchical recruitment of the sympathetic and parasympathetic limbs of the baroreflex in normotensive and spontaneously hypertensive rats. J Physiol. 2007;579:473–86.CrossRefPubMed
32.
go back to reference Fisher JP, Paton JFR. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26:463–75.CrossRefPubMed Fisher JP, Paton JFR. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26:463–75.CrossRefPubMed
33.
go back to reference Waki H, Gouraud SS, Maeda M, Paton JFR. Gene expression profiles of major cytokines in the nucleus tractus solitarii of the spontaneously hypertensive rat. Auton Neurosci. 2008;142:40–4.CrossRefPubMed Waki H, Gouraud SS, Maeda M, Paton JFR. Gene expression profiles of major cytokines in the nucleus tractus solitarii of the spontaneously hypertensive rat. Auton Neurosci. 2008;142:40–4.CrossRefPubMed
34.
go back to reference Takagishi M, Waki H, Bhuiyan MER, Gouraud SS, Kohsaka A, Cui H, et al. IL-6 microinjected in the nucleus tractus solitarii attenuates cardiac baroreceptor reflex function in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R183–90.CrossRefPubMed Takagishi M, Waki H, Bhuiyan MER, Gouraud SS, Kohsaka A, Cui H, et al. IL-6 microinjected in the nucleus tractus solitarii attenuates cardiac baroreceptor reflex function in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R183–90.CrossRefPubMed
35.
go back to reference Niijima A, Hori T, Aou S, Oomura Y. The effects of interleukin-1β on the activity of adrenal, splenic and renal sympathetic nerves in the rat. J Auton Nerv Syst. 1991;36:183–92.CrossRefPubMed Niijima A, Hori T, Aou S, Oomura Y. The effects of interleukin-1β on the activity of adrenal, splenic and renal sympathetic nerves in the rat. J Auton Nerv Syst. 1991;36:183–92.CrossRefPubMed
36.
go back to reference Helwig BG, Craig RA, Fels RJ, Blecha F, Kenney MJ. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation. Auton Neurosci. 2008;141:104–11.CrossRefPubMedPubMedCentral Helwig BG, Craig RA, Fels RJ, Blecha F, Kenney MJ. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation. Auton Neurosci. 2008;141:104–11.CrossRefPubMedPubMedCentral
37.
go back to reference Leone M, Einav S, Antonucci E, Depret F, Lakbar I, Martin-Loeches I, et al. Multimodal strategy to counteract vasodilation in septic shock. Anaesth Crit Care Pain Med. 2023;42: 101193.CrossRefPubMed Leone M, Einav S, Antonucci E, Depret F, Lakbar I, Martin-Loeches I, et al. Multimodal strategy to counteract vasodilation in septic shock. Anaesth Crit Care Pain Med. 2023;42: 101193.CrossRefPubMed
38.
go back to reference Rossaint J, Zarbock A. Pathogenesis of multiple organ failure in sepsis. CRI. 2015;35. Rossaint J, Zarbock A. Pathogenesis of multiple organ failure in sepsis. CRI. 2015;35.
39.
40.
41.
go back to reference Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci. 2020;43:95–117.CrossRefPubMed Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci. 2020;43:95–117.CrossRefPubMed
42.
go back to reference Dutschmann M, Bautista TG, Mörschel M, Dick TE. Learning to breathe: habituation of Hering-Breuer inflation reflex emerges with postnatal brainstem maturation. Respir Physiol Neurobiol. 2014;195:44–9.CrossRefPubMedPubMedCentral Dutschmann M, Bautista TG, Mörschel M, Dick TE. Learning to breathe: habituation of Hering-Breuer inflation reflex emerges with postnatal brainstem maturation. Respir Physiol Neurobiol. 2014;195:44–9.CrossRefPubMedPubMedCentral
43.
go back to reference Dutschmann M, Mörschel M, Rybak IA, Dick TE. Learning to breathe: control of the inspiratory–expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats. J Physiol. 2009;587:4931–48.CrossRefPubMedPubMedCentral Dutschmann M, Mörschel M, Rybak IA, Dick TE. Learning to breathe: control of the inspiratory–expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats. J Physiol. 2009;587:4931–48.CrossRefPubMedPubMedCentral
Metadata
Title
Peritoneal sepsis caused by Escherichia coli triggers brainstem inflammation and alters the function of sympatho-respiratory control circuits
Authors
Gjinovefa Kola
Caitlyn W. Clifford
Cara K. Campanaro
Rishi R. Dhingra
Mathias Dutschmann
Frank J. Jacono
Thomas E. Dick
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03025-7

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue