Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Bone-derived PDGF-BB enhances hippocampal non-specific transcytosis through microglia-endothelial crosstalk in HFD-induced metabolic syndrome

Authors: Guanqiao Liu, Wen Shu, Yingqi Chen, Yong Fu, Shuai Fang, Haonan Zheng, Weike Cheng, Qingrong Lin, Yanjun Hu, Nan Jiang, Bin Yu

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge.

Main body

Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1β (IL-1β) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells.

Conclusion

Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sethuraman A, Rao P, Pranay A, Xu K, LaManna JC, Puchowicz MA. Chronic ketosis modulates HIF1alpha-Mediated inflammatory response in rat brain. Adv Exp Med Biol. 2021;1269:3–7.PubMedCrossRef Sethuraman A, Rao P, Pranay A, Xu K, LaManna JC, Puchowicz MA. Chronic ketosis modulates HIF1alpha-Mediated inflammatory response in rat brain. Adv Exp Med Biol. 2021;1269:3–7.PubMedCrossRef
3.
go back to reference Nakandakari S, Munoz VR, Kuga GK, Gaspar RC, Sant’Ana MR, Pavan ICB, da Silva LGS, Morelli AP, Simabuco FM, da Silva ASR, et al. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun. 2019;79:284–93.PubMedCrossRef Nakandakari S, Munoz VR, Kuga GK, Gaspar RC, Sant’Ana MR, Pavan ICB, da Silva LGS, Morelli AP, Simabuco FM, da Silva ASR, et al. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun. 2019;79:284–93.PubMedCrossRef
4.
go back to reference Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner. J Neuroinflammation. 2022;19:110.PubMedPubMedCentralCrossRef Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner. J Neuroinflammation. 2022;19:110.PubMedPubMedCentralCrossRef
5.
go back to reference Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:499–508.PubMedCrossRef Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:499–508.PubMedCrossRef
6.
go back to reference Liu G, Wang J, Wei Z, Fang CL, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, et al. Elevated PDGF-BB from bone impairs hippocampal vasculature by inducing PDGFRbeta shedding from Pericytes. Adv Sci (Weinh). 2023;10:e2206938.PubMedCrossRef Liu G, Wang J, Wei Z, Fang CL, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, et al. Elevated PDGF-BB from bone impairs hippocampal vasculature by inducing PDGFRbeta shedding from Pericytes. Adv Sci (Weinh). 2023;10:e2206938.PubMedCrossRef
7.
go back to reference Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021, 131. Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021, 131.
8.
go back to reference Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8:359.PubMedPubMedCentralCrossRef Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8:359.PubMedPubMedCentralCrossRef
9.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169:1276–e12901217.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169:1276–e12901217.PubMedCrossRef
10.
go back to reference Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song A, Liu P, Lin JP, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.PubMedPubMedCentralCrossRef Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song A, Liu P, Lin JP, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.PubMedPubMedCentralCrossRef
11.
go back to reference Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931–8.PubMedPubMedCentralCrossRef Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931–8.PubMedPubMedCentralCrossRef
12.
go back to reference Yu Z, Fang X, Liu W, Sun R, Zhou J, Pu Y, Zhao M, Sun D, Xiang Z, Liu P, et al. Microglia regulate blood-brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. Adv Sci (Weinh). 2022;9:e2105442.PubMedCrossRef Yu Z, Fang X, Liu W, Sun R, Zhou J, Pu Y, Zhao M, Sun D, Xiang Z, Liu P, et al. Microglia regulate blood-brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. Adv Sci (Weinh). 2022;9:e2105442.PubMedCrossRef
13.
go back to reference Zhong G, Long H, Zhou T, Liu Y, Zhao J, Han J, Yang X, Yu Y, Chen F, Shi S. Blood-brain barrier permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials. 2022;288:121690.PubMedCrossRef Zhong G, Long H, Zhou T, Liu Y, Zhao J, Han J, Yang X, Yu Y, Chen F, Shi S. Blood-brain barrier permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials. 2022;288:121690.PubMedCrossRef
15.
go back to reference Thurgur H, Pinteaux E. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after Central Nervous System disorders. Neuroscience. 2019;405:55–67.PubMedCrossRef Thurgur H, Pinteaux E. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after Central Nervous System disorders. Neuroscience. 2019;405:55–67.PubMedCrossRef
16.
go back to reference Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J Cell Sci. 1993;104(Pt 2):521–32.PubMedCrossRef Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J Cell Sci. 1993;104(Pt 2):521–32.PubMedCrossRef
17.
go back to reference Duffy KR, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1987;420:32–8.PubMedCrossRef Duffy KR, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1987;420:32–8.PubMedCrossRef
19.
go back to reference Zhou M, Shi SX, Liu N, Jiang Y, Karim MS, Vodovoz SJ, Wang X, Zhang B, Dumont AS. Caveolae-mediated endothelial transcytosis across the blood-brain barrier in Acute ischemic stroke. J Clin Med 2021, 10. Zhou M, Shi SX, Liu N, Jiang Y, Karim MS, Vodovoz SJ, Wang X, Zhang B, Dumont AS. Caveolae-mediated endothelial transcytosis across the blood-brain barrier in Acute ischemic stroke. J Clin Med 2021, 10.
20.
go back to reference Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 2020;583:425–30.PubMedPubMedCentralCrossRef Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 2020;583:425–30.PubMedPubMedCentralCrossRef
21.
go back to reference Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17:47.PubMedPubMedCentralCrossRef Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17:47.PubMedPubMedCentralCrossRef
22.
go back to reference Zuchero YJ, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, Zhang S, Hoyte K, Luk W, Huntley MA, et al. Discovery of Novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82.PubMedCrossRef Zuchero YJ, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, Zhang S, Hoyte K, Luk W, Huntley MA, et al. Discovery of Novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82.PubMedCrossRef
23.
go back to reference Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.PubMedPubMedCentralCrossRef Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.PubMedPubMedCentralCrossRef
24.
go back to reference Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, Zandstra J, Berber E, Lehallier B, Mathur V, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25:988–1000.PubMedPubMedCentralCrossRef Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, Zandstra J, Berber E, Lehallier B, Mathur V, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25:988–1000.PubMedPubMedCentralCrossRef
25.
go back to reference Bieri G, Schroer AB, Villeda SA. Blood-to-brain communication in aging and rejuvenation. Nat Neurosci. 2023;26:379–93.PubMed Bieri G, Schroer AB, Villeda SA. Blood-to-brain communication in aging and rejuvenation. Nat Neurosci. 2023;26:379–93.PubMed
26.
go back to reference Su W, Liu G, Mohajer B, Wang J, Shen A, Zhang W, Liu B, Guermazi A, Gao P, Cao X et al. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. Elife 2022, 11. Su W, Liu G, Mohajer B, Wang J, Shen A, Zhang W, Liu B, Guermazi A, Gao P, Cao X et al. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. Elife 2022, 11.
27.
go back to reference Li Q, Zhao Y, Guo H, Li Q, Yan C, Li Y, He S, Wang N, Wang Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023:1–18. Li Q, Zhao Y, Guo H, Li Q, Yan C, Li Y, He S, Wang N, Wang Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023:1–18.
29.
go back to reference Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20:1270–8.PubMedPubMedCentralCrossRef Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20:1270–8.PubMedPubMedCentralCrossRef
30.
go back to reference Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, et al. FGF21 attenuates high-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and anti-inflammation of obese mice. Mol Neurobiol. 2018;55:4702–17.PubMedCrossRef Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, et al. FGF21 attenuates high-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and anti-inflammation of obese mice. Mol Neurobiol. 2018;55:4702–17.PubMedCrossRef
31.
go back to reference Masayuki Hata EMMAA, Maki Hata R, Diaz-Marin F, Crespo-Garcia S, Blot G, Juneau RFrédérique, Dejda PA, Guber V, Heckel E, Daneault C. Virginie Calderon, Christine Des Rosiers, Heather J Melichar, Thomas Langmann, Jean-Sebastien Joyal, Ariel M Wilson, Przemyslaw Sapieha Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 2023, 379:45–62. Masayuki Hata EMMAA, Maki Hata R, Diaz-Marin F, Crespo-Garcia S, Blot G, Juneau RFrédérique, Dejda PA, Guber V, Heckel E, Daneault C. Virginie Calderon, Christine Des Rosiers, Heather J Melichar, Thomas Langmann, Jean-Sebastien Joyal, Ariel M Wilson, Przemyslaw Sapieha Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 2023, 379:45–62.
33.
go back to reference Masliah E, Alford MMM, Deteresa R, Saitoh T. PDGF is associated with neuronal and glial alterations of Alzheimer’s disease. Neurobiol Aging 1995, 16. Masliah E, Alford MMM, Deteresa R, Saitoh T. PDGF is associated with neuronal and glial alterations of Alzheimer’s disease. Neurobiol Aging 1995, 16.
34.
go back to reference Bjorkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS ONE. 2012;7:e29868.PubMedPubMedCentralCrossRef Bjorkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS ONE. 2012;7:e29868.PubMedPubMedCentralCrossRef
35.
go back to reference Bessueille L, Briolay A, Como J, Mebarek S, Mansouri C, Gleizes M, El Jamal A, Buchet R, Dumontet C, Matera EL, et al. Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone. 2020;133:115262.PubMedPubMedCentralCrossRef Bessueille L, Briolay A, Como J, Mebarek S, Mansouri C, Gleizes M, El Jamal A, Buchet R, Dumontet C, Matera EL, et al. Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone. 2020;133:115262.PubMedPubMedCentralCrossRef
36.
go back to reference Lama A, Pirozzi C, Severi I, Morgese MG, Senzacqua M, Annunziata C, Comella F, Del Piano F, Schiavone S, Petrosino S, et al. Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain Behav Immun. 2022;102:110–23.PubMedPubMedCentralCrossRef Lama A, Pirozzi C, Severi I, Morgese MG, Senzacqua M, Annunziata C, Comella F, Del Piano F, Schiavone S, Petrosino S, et al. Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain Behav Immun. 2022;102:110–23.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022;1788:147937.PubMedCrossRef Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022;1788:147937.PubMedCrossRef
39.
go back to reference Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.PubMedPubMedCentralCrossRef Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.PubMedPubMedCentralCrossRef
40.
go back to reference Irina M, Conboy MJC, Amy J, Wagers ER, Girma, Irving L, Weissman, Thomas A, Rando. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.CrossRef Irina M, Conboy MJC, Amy J, Wagers ER, Girma, Irving L, Weissman, Thomas A, Rando. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.CrossRef
41.
go back to reference ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke. 2011;42:3238–44.PubMedCrossRef ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke. 2011;42:3238–44.PubMedCrossRef
42.
go back to reference Li C, Shi L, Wang Y, Peng C, Wu L, Zhang Y, Du Z. High-fat diet exacerbates lead-induced blood-brain barrier disruption by disrupting tight junction integrity. Environ Toxicol. 2021;36:1412–21.PubMedCrossRef Li C, Shi L, Wang Y, Peng C, Wu L, Zhang Y, Du Z. High-fat diet exacerbates lead-induced blood-brain barrier disruption by disrupting tight junction integrity. Environ Toxicol. 2021;36:1412–21.PubMedCrossRef
43.
go back to reference Vidali S, Aminzadeh S, Lambert B, Rutherford T, Sperl W, Kofler B, Feichtinger RG. Mitochondria: the ketogenic diet–A metabolism-based therapy. Int J Biochem Cell Biol. 2015;63:55–9.PubMedCrossRef Vidali S, Aminzadeh S, Lambert B, Rutherford T, Sperl W, Kofler B, Feichtinger RG. Mitochondria: the ketogenic diet–A metabolism-based therapy. Int J Biochem Cell Biol. 2015;63:55–9.PubMedCrossRef
44.
go back to reference Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garcia-Canaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al. Obesity shapes metabolism in the Tumor Microenvironment to suppress Anti-tumor Immunity. Cell. 2020;183:1848–e18661826.PubMedPubMedCentralCrossRef Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garcia-Canaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al. Obesity shapes metabolism in the Tumor Microenvironment to suppress Anti-tumor Immunity. Cell. 2020;183:1848–e18661826.PubMedPubMedCentralCrossRef
45.
46.
go back to reference Xu K, Sun X, Eroku BO, Tsipis CP, Puchowicz MA, LaManna JC. Diet-induced ketosis improves cognitive performance in aged rats. Adv Exp Med Biol. 2010;662:71–5.PubMedPubMedCentralCrossRef Xu K, Sun X, Eroku BO, Tsipis CP, Puchowicz MA, LaManna JC. Diet-induced ketosis improves cognitive performance in aged rats. Adv Exp Med Biol. 2010;662:71–5.PubMedPubMedCentralCrossRef
47.
go back to reference Li Y, Cheng Y, Zhou Y, Du H, Zhang C, Zhao Z, Chen Y, Zhou Z, Mei J, Wu W, Chen M. High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy. Exp Neurol. 2022;348:113949.PubMedCrossRef Li Y, Cheng Y, Zhou Y, Du H, Zhang C, Zhao Z, Chen Y, Zhou Z, Mei J, Wu W, Chen M. High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy. Exp Neurol. 2022;348:113949.PubMedCrossRef
48.
go back to reference Chang HC, Tai YT, Cherng YG, Lin JW, Liu SH, Chen TL, Chen RM. Resveratrol attenuates high-fat diet-induced disruption of the blood-brain barrier and protects brain neurons from apoptotic insults. J Agric Food Chem. 2014;62:3466–75.PubMedCrossRef Chang HC, Tai YT, Cherng YG, Lin JW, Liu SH, Chen TL, Chen RM. Resveratrol attenuates high-fat diet-induced disruption of the blood-brain barrier and protects brain neurons from apoptotic insults. J Agric Food Chem. 2014;62:3466–75.PubMedCrossRef
49.
go back to reference Wang L, Gong Z, Zhang X, Zhu F, Liu Y, Jin C, Du X, Xu C, Chen Y, Cai W, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes. 2020;12:1–20.PubMedCrossRef Wang L, Gong Z, Zhang X, Zhu F, Liu Y, Jin C, Du X, Xu C, Chen Y, Cai W, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes. 2020;12:1–20.PubMedCrossRef
50.
go back to reference Wang X, Yu C, Liu X, Yang J, Feng Y, Wu Y, Xu Y, Zhu Y, Li W. Fenofibrate ameliorated systemic and retinal inflammation and modulated gut microbiota in High-Fat Diet-Induced mice. Front Cell Infect Microbiol. 2022;12:839592.PubMedPubMedCentralCrossRef Wang X, Yu C, Liu X, Yang J, Feng Y, Wu Y, Xu Y, Zhu Y, Li W. Fenofibrate ameliorated systemic and retinal inflammation and modulated gut microbiota in High-Fat Diet-Induced mice. Front Cell Infect Microbiol. 2022;12:839592.PubMedPubMedCentralCrossRef
51.
go back to reference Gogiraju R, Witzler C, Shahneh F, Hubert A, Renner L, Bochenek ML, Zifkos K, Becker C, Thati M, Schafer K. Deletion of endothelial leptin receptors in mice promotes diet-induced obesity. Sci Rep. 2023;13:8276.PubMedPubMedCentralCrossRef Gogiraju R, Witzler C, Shahneh F, Hubert A, Renner L, Bochenek ML, Zifkos K, Becker C, Thati M, Schafer K. Deletion of endothelial leptin receptors in mice promotes diet-induced obesity. Sci Rep. 2023;13:8276.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020, 5. Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020, 5.
54.
go back to reference Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17:1835–40.PubMedPubMedCentralCrossRef Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17:1835–40.PubMedPubMedCentralCrossRef
55.
go back to reference Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994;8:1888–96.PubMedCrossRef Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994;8:1888–96.PubMedCrossRef
56.
go back to reference Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003;1:E52.PubMedPubMedCentralCrossRef Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003;1:E52.PubMedPubMedCentralCrossRef
57.
go back to reference Zaidi M, Lizneva D, Yuen T. The role of PDGF-BB in the bone-vascular relationship during aging. J Clin Invest 2021, 131. Zaidi M, Lizneva D, Yuen T. The role of PDGF-BB in the bone-vascular relationship during aging. J Clin Invest 2021, 131.
58.
go back to reference Pernilla Lång MS, Andersson Göran. Expression and distribution of tartrate-resistant Purple Acid phosphatase in the rat nervous system. J Histochem Cytochem 2001, 49. Pernilla Lång MS, Andersson Göran. Expression and distribution of tartrate-resistant Purple Acid phosphatase in the rat nervous system. J Histochem Cytochem 2001, 49.
59.
go back to reference Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023, 133. Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023, 133.
60.
go back to reference Munk AS, Wang W, Bechet NB, Eltanahy AM, Cheng AX, Sigurdsson B, Benraiss A, Mae MA, Kress BT, Kelley DH, et al. PDGF-B is required for development of the Glymphatic System. Cell Rep. 2019;26:2955–e29692953.PubMedPubMedCentralCrossRef Munk AS, Wang W, Bechet NB, Eltanahy AM, Cheng AX, Sigurdsson B, Benraiss A, Mae MA, Kress BT, Kelley DH, et al. PDGF-B is required for development of the Glymphatic System. Cell Rep. 2019;26:2955–e29692953.PubMedPubMedCentralCrossRef
61.
go back to reference Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schioler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep. 2023;13:4137.PubMedPubMedCentralCrossRef Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schioler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep. 2023;13:4137.PubMedPubMedCentralCrossRef
62.
go back to reference Yang AC, Vest RT, Kern F, Lee DP, Agam M, Maat CA, Losada PM, Chen MB, Schaum N, Khoury N, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603:885–92.PubMedPubMedCentralCrossRef Yang AC, Vest RT, Kern F, Lee DP, Agam M, Maat CA, Losada PM, Chen MB, Schaum N, Khoury N, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603:885–92.PubMedPubMedCentralCrossRef
Metadata
Title
Bone-derived PDGF-BB enhances hippocampal non-specific transcytosis through microglia-endothelial crosstalk in HFD-induced metabolic syndrome
Authors
Guanqiao Liu
Wen Shu
Yingqi Chen
Yong Fu
Shuai Fang
Haonan Zheng
Weike Cheng
Qingrong Lin
Yanjun Hu
Nan Jiang
Bin Yu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03097-5

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue