Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2021

01-08-2021 | Sarcoidosis | Original Article

The rate of myocardial perfusion recovery after steroid therapy and its implication for cardiac events in cardiac sarcoidosis and primarily preserved left ventricular ejection fraction

Authors: Kazuhiro Koyanagawa, MD, Masanao Naya, MD, PhD, Tadao Aikawa, MD, PhD, Osamu Manabe, MD, PhD, Sho Furuya, MD, Masato Kuzume, MD, Noriko Oyama-Manabe, MD, PhD, Hiroshi Ohira, MD, PhD, Ichizo Tsujino, MD, PhD, Toshihisa Anzai, MD, PhD

Published in: Journal of Nuclear Cardiology | Issue 4/2021

Login to get access

Abstract

Background

Sarcoidosis is a multisystemic disorder of unknown cause characterized by immune granuloma formation in the involved organs. Few studies have reported on the myocardial perfusion changes by immunosuppression therapy in cardiac sarcoidosis (CS). Additionally, the relationship between myocardial perfusion changes and prognosis is unknown. Therefore, this study aimed to clarify myocardial perfusion recovery after steroid therapy and its prognostic value for major adverse cardiac events (MACE) in patients with CS.

Methods and Results

Thirty-eight consecutive patients with CS {median age, 63 [interquartile range (IQR) 51–68] years; 10 men} underwent both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (CT) and electrocardiography-gated single-photon emission CT (SPECT) pre- and post-steroid therapy. Patients with improved or preserved myocardial perfusion after post-therapy were defined as the recovery group and those with worsened myocardial perfusion as the non-recovery group. Twenty-six patients (68%) were categorized as the recovery group. MACE occurred in eight patients. The Kaplan–Meier curves revealed a significantly higher rate of MACE in the non-recovery group (17.4%/y vs 2.9%/y, P = 0.007).

Conclusions

Myocardial perfusion was recovered by steroid therapy in 61% and preserved in 8% of patients. Myocardial perfusion recovery after steroid therapy was significantly associated with a low incidence of MACE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med. 1997;336:1224–34.CrossRef Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med. 1997;336:1224–34.CrossRef
2.
go back to reference Rybicki BA, Major M, Popovich J Jr, Maliarik MJ, Iannuzzi MC. Racial differences in sarcoidosis incidence: A 5-year study in a health maintenance organization. Am J Epidemiol. 1997;145:234–41.CrossRef Rybicki BA, Major M, Popovich J Jr, Maliarik MJ, Iannuzzi MC. Racial differences in sarcoidosis incidence: A 5-year study in a health maintenance organization. Am J Epidemiol. 1997;145:234–41.CrossRef
3.
go back to reference Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357:2153–65.CrossRef Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357:2153–65.CrossRef
4.
go back to reference Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol. 2017;24:413–24.CrossRef Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol. 2017;24:413–24.CrossRef
5.
go back to reference Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in (1)(8)F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.CrossRef Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in (1)(8)F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.CrossRef
7.
go back to reference Surasi DS, Manapragada PP, Lloyd SG, Bhambhvani P. Role of multimodality imaging including Thallium-201 myocardial perfusion imaging in the diagnosis and monitoring of treatment response in cardiac sarcoidosis. J Nucl Cardiol. 2014;21:849–52.CrossRef Surasi DS, Manapragada PP, Lloyd SG, Bhambhvani P. Role of multimodality imaging including Thallium-201 myocardial perfusion imaging in the diagnosis and monitoring of treatment response in cardiac sarcoidosis. J Nucl Cardiol. 2014;21:849–52.CrossRef
8.
go back to reference Aikawa T, Oyama-Manabe N, Naya M, Ohira H, Sugimoto A, Tsujino I, et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study. Eur Radiol. 2017;27:4054–63.CrossRef Aikawa T, Oyama-Manabe N, Naya M, Ohira H, Sugimoto A, Tsujino I, et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study. Eur Radiol. 2017;27:4054–63.CrossRef
9.
go back to reference Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52.CrossRef Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52.CrossRef
10.
go back to reference Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4:1.CrossRef Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4:1.CrossRef
11.
go back to reference Ohira H, Tsujino I, Yoshinaga K. (1)(8)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2011;38:1773–83.CrossRef Ohira H, Tsujino I, Yoshinaga K. (1)(8)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2011;38:1773–83.CrossRef
12.
go back to reference Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.CrossRef Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.CrossRef
13.
go back to reference Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21:925–39.CrossRef Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21:925–39.CrossRef
14.
go back to reference Manabe O, Kroenke M, Aikawa T, Murayama A, Naya M, Masuda A, et al. Volume-based glucose metabolic analysis of FDG PET/CT: The optimum threshold and conditions to suppress physiological myocardial uptake. J Nucl Cardiol. 2019;26:909–18.CrossRef Manabe O, Kroenke M, Aikawa T, Murayama A, Naya M, Masuda A, et al. Volume-based glucose metabolic analysis of FDG PET/CT: The optimum threshold and conditions to suppress physiological myocardial uptake. J Nucl Cardiol. 2019;26:909–18.CrossRef
15.
go back to reference Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, et al. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9:e105682.CrossRef Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, et al. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9:e105682.CrossRef
16.
go back to reference Naya M, Manabe O, Koyanagawa K, Tamaki N. The role of nuclear medicine in assessments of cardiac dyssynchrony. J Nucl Cardiol. 2018;25:1980–7.CrossRef Naya M, Manabe O, Koyanagawa K, Tamaki N. The role of nuclear medicine in assessments of cardiac dyssynchrony. J Nucl Cardiol. 2018;25:1980–7.CrossRef
17.
go back to reference Okuda K, Nakajima K, Matsuo S, Kashiwaya S, Yoneyama H, Shibutani T, et al. Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT. EJNMMI Res. 2017;7:27.CrossRef Okuda K, Nakajima K, Matsuo S, Kashiwaya S, Yoneyama H, Shibutani T, et al. Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT. EJNMMI Res. 2017;7:27.CrossRef
18.
go back to reference Yuki H, Utsunomiya D, Shiraishi S, Takashio S, Sakamoto F, Tsuda N, et al. Correlation of left ventricular dyssynchrony on gated myocardial perfusion SPECT analysis with extent of late gadolinium enhancement on cardiac magnetic resonance imaging in hypertrophic cardiomyopathy. Heart Vessels. 2018;33:623–9.CrossRef Yuki H, Utsunomiya D, Shiraishi S, Takashio S, Sakamoto F, Tsuda N, et al. Correlation of left ventricular dyssynchrony on gated myocardial perfusion SPECT analysis with extent of late gadolinium enhancement on cardiac magnetic resonance imaging in hypertrophic cardiomyopathy. Heart Vessels. 2018;33:623–9.CrossRef
19.
go back to reference Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol. 2017;24:611–21.CrossRef Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol. 2017;24:611–21.CrossRef
21.
go back to reference Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.PubMed Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.PubMed
22.
go back to reference Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest. 1994;106:1675–82.CrossRef Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest. 1994;106:1675–82.CrossRef
23.
go back to reference Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24:1741–58.CrossRef Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24:1741–58.CrossRef
24.
go back to reference Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol. 2005;95:143–6.CrossRef Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol. 2005;95:143–6.CrossRef
25.
go back to reference Bengel FM, Ross TL. Emerging imaging targets for infiltrative cardiomyopathy: Inflammation and fibrosis. J Nucl Cardiol. 2019;26:208–16.CrossRef Bengel FM, Ross TL. Emerging imaging targets for infiltrative cardiomyopathy: Inflammation and fibrosis. J Nucl Cardiol. 2019;26:208–16.CrossRef
26.
go back to reference Bussinguer M, Danielian A, Sharma OP. Cardiac sarcoidosis: Diagnosis and management. Curr Treat Options Cardiovasc Med. 2012;14:652–64.CrossRef Bussinguer M, Danielian A, Sharma OP. Cardiac sarcoidosis: Diagnosis and management. Curr Treat Options Cardiovasc Med. 2012;14:652–64.CrossRef
27.
go back to reference Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88:1006–10.CrossRef Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88:1006–10.CrossRef
28.
go back to reference Gradel C, Jain D, Batsford WP, Wackers FJ, Zaret BL. Relationship of scar and ischemia to the results of programmed electrophysiological stimulation in patients with coronary artery disease. J Nucl Cardiol. 1997;4:379–86.CrossRef Gradel C, Jain D, Batsford WP, Wackers FJ, Zaret BL. Relationship of scar and ischemia to the results of programmed electrophysiological stimulation in patients with coronary artery disease. J Nucl Cardiol. 1997;4:379–86.CrossRef
Metadata
Title
The rate of myocardial perfusion recovery after steroid therapy and its implication for cardiac events in cardiac sarcoidosis and primarily preserved left ventricular ejection fraction
Authors
Kazuhiro Koyanagawa, MD
Masanao Naya, MD, PhD
Tadao Aikawa, MD, PhD
Osamu Manabe, MD, PhD
Sho Furuya, MD
Masato Kuzume, MD
Noriko Oyama-Manabe, MD, PhD
Hiroshi Ohira, MD, PhD
Ichizo Tsujino, MD, PhD
Toshihisa Anzai, MD, PhD
Publication date
01-08-2021
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2021
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-019-01916-4

Other articles of this Issue 4/2021

Journal of Nuclear Cardiology 4/2021 Go to the issue