Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Renal Cancer | Research

Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy

Authors: Simon Heumos, Sandra Dehn, Konstantin Bräutigam, Marius C. Codrea, Christian M. Schürch, Ulrich M. Lauer, Sven Nahnsen, Michael Schindler

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only.

Methods

To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer.

Results

For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer.

Conclusion

Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Appendix
Available only for authorised users
Literature
3.
go back to reference Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–18.PubMedCrossRef Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–18.PubMedCrossRef
5.
go back to reference Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.PubMedCrossRef Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.PubMedCrossRef
6.
8.
10.
go back to reference Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013;73(14):4372–82.PubMedPubMedCentralCrossRef Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013;73(14):4372–82.PubMedPubMedCentralCrossRef
11.
go back to reference Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, et al. The NCI transcriptional pharmacodynamics workbench: a tool to examine dynamic expression profiling of therapeutic response in the NCI-60 cell line panel. Cancer Res. 2018;78(24):6807–17.PubMedPubMedCentralCrossRef Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, et al. The NCI transcriptional pharmacodynamics workbench: a tool to examine dynamic expression profiling of therapeutic response in the NCI-60 cell line panel. Cancer Res. 2018;78(24):6807–17.PubMedPubMedCentralCrossRef
12.
go back to reference Reinhold WC, Sunshine M, Varma S, Doroshow JH, Pommier Y. Using CellMiner 1.6 for systems pharmacology and genomic analysis of the NCI-60. Clin Cancer Res. 2015;21(17):3841–52.PubMedPubMedCentralCrossRef Reinhold WC, Sunshine M, Varma S, Doroshow JH, Pommier Y. Using CellMiner 1.6 for systems pharmacology and genomic analysis of the NCI-60. Clin Cancer Res. 2015;21(17):3841–52.PubMedPubMedCentralCrossRef
13.
go back to reference Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet. 2000;24(3):236–44.PubMedCrossRef Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet. 2000;24(3):236–44.PubMedCrossRef
14.
go back to reference Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 2013;4(3):609–20.PubMedCrossRef Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 2013;4(3):609–20.PubMedCrossRef
15.
go back to reference Graessel A, Hauck SM, von Toerne C, Kloppmann E, Goldberg T, Koppensteiner H, Schindler M, Knapp B, Krause L, Dietz K, et al. A Combined omics approach to generate the surface atlas of human Naive CD4+ T cells during early T-cell receptor activation. Mol Cell Proteom. 2015;14(8):2085–102.CrossRef Graessel A, Hauck SM, von Toerne C, Kloppmann E, Goldberg T, Koppensteiner H, Schindler M, Knapp B, Krause L, Dietz K, et al. A Combined omics approach to generate the surface atlas of human Naive CD4+ T cells during early T-cell receptor activation. Mol Cell Proteom. 2015;14(8):2085–102.CrossRef
16.
go back to reference Businger R, Kivimaki S, Simeonov S, Vavouras Syrigos G, Pohlmann J, Bolz M, Muller P, Codrea MC, Templin C, Messerle M, et al. Comprehensive analysis of human cytomegalovirus- and HIV-mediated plasma membrane remodeling in macrophages. mBio. 2021;12(4):e0177021.PubMedCrossRef Businger R, Kivimaki S, Simeonov S, Vavouras Syrigos G, Pohlmann J, Bolz M, Muller P, Codrea MC, Templin C, Messerle M, et al. Comprehensive analysis of human cytomegalovirus- and HIV-mediated plasma membrane remodeling in macrophages. mBio. 2021;12(4):e0177021.PubMedCrossRef
18.
go back to reference Documentation A. Anaconda software distribution. In: 2-2.4.0 edn: Anaconda Inc.; 2020. Documentation A. Anaconda software distribution. In: 2-2.4.0 edn: Anaconda Inc.; 2020.
19.
go back to reference Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinform. 2014;15:162.CrossRef Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinform. 2014;15:162.CrossRef
20.
go back to reference Prasad VV, Gopalan RO. Continued use of MDA-MB-435, a melanoma cell line, as a model for human breast cancer, even in year, 2014. NPJ Breast Cancer. 2015;1:15002.PubMedPubMedCentralCrossRef Prasad VV, Gopalan RO. Continued use of MDA-MB-435, a melanoma cell line, as a model for human breast cancer, even in year, 2014. NPJ Breast Cancer. 2015;1:15002.PubMedPubMedCentralCrossRef
21.
go back to reference Ke W, Yu P, Wang J, Wang R, Guo C, Zhou L, Li C, Li K. MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research. Med Oncol. 2011;28(Suppl 1):135–41.CrossRef Ke W, Yu P, Wang J, Wang R, Guo C, Zhou L, Li C, Li K. MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research. Med Oncol. 2011;28(Suppl 1):135–41.CrossRef
22.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.PubMedCrossRef Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.PubMedCrossRef
23.
go back to reference Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH, Pommier Y. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther. 2009;8(7):1878–84.PubMedPubMedCentralCrossRef Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH, Pommier Y. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther. 2009;8(7):1878–84.PubMedPubMedCentralCrossRef
24.
go back to reference Giovinazzi S, Sirleto P, Aksenova V, Morozov VM, Zori R, Reinhold WC, Ishov AM. Usp7 protects genomic stability by regulating Bub3. Oncotarget. 2014;5(11):3728–42.PubMedPubMedCentralCrossRef Giovinazzi S, Sirleto P, Aksenova V, Morozov VM, Zori R, Reinhold WC, Ishov AM. Usp7 protects genomic stability by regulating Bub3. Oncotarget. 2014;5(11):3728–42.PubMedPubMedCentralCrossRef
25.
go back to reference Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS ONE. 2014;9(6):e99269.PubMedPubMedCentralCrossRef Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS ONE. 2014;9(6):e99269.PubMedPubMedCentralCrossRef
26.
go back to reference Reinhold WC, Varma S, Sunshine M, Rajapakse V, Luna A, Kohn KW, Stevenson H, Wang Y, Heyn H, Nogales V, et al. The NCI-60 methylome and its integration into CellMiner. Cancer Res. 2017;77(3):601–12.PubMedCrossRef Reinhold WC, Varma S, Sunshine M, Rajapakse V, Luna A, Kohn KW, Stevenson H, Wang Y, Heyn H, Nogales V, et al. The NCI-60 methylome and its integration into CellMiner. Cancer Res. 2017;77(3):601–12.PubMedCrossRef
27.
go back to reference Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 2009;37(Database issue):D885–90.PubMedCrossRef Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 2009;37(Database issue):D885–90.PubMedCrossRef
28.
go back to reference Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A. BioMart—biological queries made easy. BMC Genom. 2009;10:22.CrossRef Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A. BioMart—biological queries made easy. BMC Genom. 2009;10:22.CrossRef
29.
go back to reference Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.PubMedCrossRef Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.PubMedCrossRef
30.
go back to reference Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.PubMedCrossRef Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.PubMedCrossRef
31.
go back to reference Dodge Y. Spearman rank correlation coefficient. In: The concise encyclopedia of statistics. New York: Springer; 2008. p. 502–5. Dodge Y. Spearman rank correlation coefficient. In: The concise encyclopedia of statistics. New York: Springer; 2008. p. 502–5.
32.
go back to reference Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using recount. Nat Biotechnol. 2017;35(4):319–21.PubMedPubMedCentralCrossRef Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using recount. Nat Biotechnol. 2017;35(4):319–21.PubMedPubMedCentralCrossRef
34.
go back to reference Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–50.PubMedCrossRef Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–50.PubMedCrossRef
35.
go back to reference Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221.PubMedPubMedCentralCrossRef Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221.PubMedPubMedCentralCrossRef
36.
go back to reference Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, Yang JY, Broom BM, Verhaak RG, Kane DW, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods. 2013;10(11):1046–7.PubMedPubMedCentralCrossRef Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, Yang JY, Broom BM, Verhaak RG, Kane DW, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods. 2013;10(11):1046–7.PubMedPubMedCentralCrossRef
37.
go back to reference Giordano G, Febbraro A, Tomaselli E, Sarnicola ML, Parcesepe P, Parente D, Forte N, Fabozzi A, Remo A, Bonetti A, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer. J Exp Clin Cancer Res. 2015;34:108.PubMedPubMedCentralCrossRef Giordano G, Febbraro A, Tomaselli E, Sarnicola ML, Parcesepe P, Parente D, Forte N, Fabozzi A, Remo A, Bonetti A, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer. J Exp Clin Cancer Res. 2015;34:108.PubMedPubMedCentralCrossRef
38.
go back to reference Carlsen L, Huntington KE, El-Deiry WS. Immunotherapy for colorectal cancer: mechanisms and predictive biomarkers. Cancers (Basel). 2022;14(4):1028.CrossRef Carlsen L, Huntington KE, El-Deiry WS. Immunotherapy for colorectal cancer: mechanisms and predictive biomarkers. Cancers (Basel). 2022;14(4):1028.CrossRef
39.
go back to reference Jang TJ, Park JB, Lee JI. The expression of CD10 and CD15 Is Progressively increased during colorectal cancer development. Korean J Pathol. 2013;47(4):340–7.PubMedPubMedCentralCrossRef Jang TJ, Park JB, Lee JI. The expression of CD10 and CD15 Is Progressively increased during colorectal cancer development. Korean J Pathol. 2013;47(4):340–7.PubMedPubMedCentralCrossRef
40.
go back to reference Li M, Jiang X, Wang G, Zhai C, Liu Y, Li H, Zhang Y, Yu W, Zhao Z. ITGB4 is a novel prognostic factor in colon cancer. J Cancer. 2019;10(21):5223–33.PubMedPubMedCentralCrossRef Li M, Jiang X, Wang G, Zhai C, Liu Y, Li H, Zhang Y, Yu W, Zhao Z. ITGB4 is a novel prognostic factor in colon cancer. J Cancer. 2019;10(21):5223–33.PubMedPubMedCentralCrossRef
42.
go back to reference Guo L, Fu J, Sun S, Zhu M, Zhang L, Niu H, Chen Z, Zhang Y, Guo L, Wang S. MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci. 2019;110(2):805–16.PubMedPubMedCentralCrossRef Guo L, Fu J, Sun S, Zhu M, Zhang L, Niu H, Chen Z, Zhang Y, Guo L, Wang S. MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci. 2019;110(2):805–16.PubMedPubMedCentralCrossRef
43.
go back to reference Haraguchi N, Ishii H, Mimori K, Ohta K, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Yamamoto H, et al. CD49f-positive cell population efficiently enriches colon cancer-initiating cells. Int J Oncol. 2013;43(2):425–30.PubMedCrossRef Haraguchi N, Ishii H, Mimori K, Ohta K, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Yamamoto H, et al. CD49f-positive cell population efficiently enriches colon cancer-initiating cells. Int J Oncol. 2013;43(2):425–30.PubMedCrossRef
44.
go back to reference Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Pepe S, Bianco AR, Agrawal S, Mendelsohn J, Tortora G. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J Natl Cancer Inst. 1998;90(14):1087–94.PubMedCrossRef Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Pepe S, Bianco AR, Agrawal S, Mendelsohn J, Tortora G. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J Natl Cancer Inst. 1998;90(14):1087–94.PubMedCrossRef
45.
go back to reference Zhang Q, Tian K, Xu J, Zhang H, Li L, Fu Q, Chai D, Li H, Zheng J. Synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells in renal cell carcinoma. J Immunol Res. 2017;2017:6915912.PubMedPubMedCentralCrossRef Zhang Q, Tian K, Xu J, Zhang H, Li L, Fu Q, Chai D, Li H, Zheng J. Synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells in renal cell carcinoma. J Immunol Res. 2017;2017:6915912.PubMedPubMedCentralCrossRef
46.
go back to reference Thomas LJ, Vitale L, O’Neill T, Dolnick RY, Wallace PK, Minderman H, Gergel LE, Forsberg EM, Boyer JM, Storey JR, et al. Development of a novel antibody-drug conjugate for the potential treatment of ovarian, lung, and renal cell carcinoma expressing TIM-1. Mol Cancer Ther. 2016;15(12):2946–54.PubMedCrossRef Thomas LJ, Vitale L, O’Neill T, Dolnick RY, Wallace PK, Minderman H, Gergel LE, Forsberg EM, Boyer JM, Storey JR, et al. Development of a novel antibody-drug conjugate for the potential treatment of ovarian, lung, and renal cell carcinoma expressing TIM-1. Mol Cancer Ther. 2016;15(12):2946–54.PubMedCrossRef
47.
go back to reference McGregor BA, Gordon M, Flippot R, Agarwal N, George S, Quinn DI, Rogalski M, Hawthorne T, Keler T, Choueiri TK. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest New Drugs. 2020;38(6):1807–14.PubMedPubMedCentralCrossRef McGregor BA, Gordon M, Flippot R, Agarwal N, George S, Quinn DI, Rogalski M, Hawthorne T, Keler T, Choueiri TK. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest New Drugs. 2020;38(6):1807–14.PubMedPubMedCentralCrossRef
48.
go back to reference Lee HJ, Kim DI, Kwak C, Ku JH, Moon KC. Expression of CD24 in clear cell renal cell carcinoma and its prognostic significance. Urology. 2008;72(3):603–7.PubMedCrossRef Lee HJ, Kim DI, Kwak C, Ku JH, Moon KC. Expression of CD24 in clear cell renal cell carcinoma and its prognostic significance. Urology. 2008;72(3):603–7.PubMedCrossRef
49.
go back to reference Arik D, Can C, Dundar E, Kabukcuoglu S, Pasaoglu O. Prognostic significance of CD24 in clear cell renal cell carcinoma. Pathol Oncol Res. 2017;23(2):409–16.PubMedCrossRef Arik D, Can C, Dundar E, Kabukcuoglu S, Pasaoglu O. Prognostic significance of CD24 in clear cell renal cell carcinoma. Pathol Oncol Res. 2017;23(2):409–16.PubMedCrossRef
50.
go back to reference Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights into the function of CD24: a driving force in cancer. Int J Cancer. 2021;148(3):546–59.PubMedCrossRef Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights into the function of CD24: a driving force in cancer. Int J Cancer. 2021;148(3):546–59.PubMedCrossRef
51.
go back to reference Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392–6.PubMedPubMedCentralCrossRef Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392–6.PubMedPubMedCentralCrossRef
52.
go back to reference Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4—a potential biomarker and target for cancer therapy. Pharmacol Ther. 2019;198:135–59.PubMedCrossRef Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4—a potential biomarker and target for cancer therapy. Pharmacol Ther. 2019;198:135–59.PubMedCrossRef
53.
go back to reference Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, Tachibana M, Katsuoka Y, Dang NH, Morimoto C. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res. 2006;12(11 Pt 1):3470–7.PubMedCrossRef Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, Tachibana M, Katsuoka Y, Dang NH, Morimoto C. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res. 2006;12(11 Pt 1):3470–7.PubMedCrossRef
54.
go back to reference Nishida H, Hayashi M, Morimoto C, Sakamoto M, Yamada T. CD26 is a potential therapeutic target by humanized monoclonal antibody for the treatment of multiple myeloma. Blood Cancer J. 2018;8(11):99.PubMedPubMedCentralCrossRef Nishida H, Hayashi M, Morimoto C, Sakamoto M, Yamada T. CD26 is a potential therapeutic target by humanized monoclonal antibody for the treatment of multiple myeloma. Blood Cancer J. 2018;8(11):99.PubMedPubMedCentralCrossRef
55.
go back to reference Varona A, Blanco L, Perez I, Gil J, Irazusta J, Lopez JI, Candenas ML, Pinto FM, Larrinaga G. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer. 2010;10:193.PubMedPubMedCentralCrossRef Varona A, Blanco L, Perez I, Gil J, Irazusta J, Lopez JI, Candenas ML, Pinto FM, Larrinaga G. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer. 2010;10:193.PubMedPubMedCentralCrossRef
56.
go back to reference Zhou S, Li W, Xiao Y, Zhu X, Zhong Z, Li Q, Cheng F, Zou P, You Y, Zhu X. A novel chimeric antigen receptor redirecting T-cell specificity towards CD26(+) cancer cells. Leukemia. 2021;35(1):119–29.PubMedCrossRef Zhou S, Li W, Xiao Y, Zhu X, Zhong Z, Li Q, Cheng F, Zou P, You Y, Zhu X. A novel chimeric antigen receptor redirecting T-cell specificity towards CD26(+) cancer cells. Leukemia. 2021;35(1):119–29.PubMedCrossRef
57.
go back to reference Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY, Khoo KH, Hsiao M, Hsu TL, Wong CH. Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci USA. 2014;111(7):2482–7.PubMedPubMedCentralCrossRef Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY, Khoo KH, Hsiao M, Hsu TL, Wong CH. Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci USA. 2014;111(7):2482–7.PubMedPubMedCentralCrossRef
58.
go back to reference Saito S, Aoki H, Ito A, Ueno S, Wada T, Mitsuzuka K, Satoh M, Arai Y, Miyagi T. Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem. 2003;278(29):26474–9.PubMedCrossRef Saito S, Aoki H, Ito A, Ueno S, Wada T, Mitsuzuka K, Satoh M, Arai Y, Miyagi T. Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem. 2003;278(29):26474–9.PubMedCrossRef
59.
go back to reference Maruyama R, Saito S, Bilim V, Hara N, Itoi T, Yamana K, Nishiyama T, Arai Y, Takahashi K, Tomita Y. High incidence of GalNAc disialosyl lactotetraosylceramide in metastatic renal cell carcinoma. Anticancer Res. 2007;27(6C):4345–50.PubMed Maruyama R, Saito S, Bilim V, Hara N, Itoi T, Yamana K, Nishiyama T, Arai Y, Takahashi K, Tomita Y. High incidence of GalNAc disialosyl lactotetraosylceramide in metastatic renal cell carcinoma. Anticancer Res. 2007;27(6C):4345–50.PubMed
60.
go back to reference Yoon JY, Gedye C, Paterson J, Ailles L. Stem/progenitor cell marker expression in clear cell renal cell carcinoma: a potential relationship with the immune microenvironment to be explored. BMC Cancer. 2020;20(1):272.PubMedPubMedCentralCrossRef Yoon JY, Gedye C, Paterson J, Ailles L. Stem/progenitor cell marker expression in clear cell renal cell carcinoma: a potential relationship with the immune microenvironment to be explored. BMC Cancer. 2020;20(1):272.PubMedPubMedCentralCrossRef
61.
go back to reference Fiedorowicz M, Khan MI, Strzemecki D, Orzel J, Welniak-Kaminska M, Sobiborowicz A, Wieteska M, Rogulski Z, Cheda L, Wargocka-Matuszewska W, et al. Renal carcinoma CD105−/CD44− cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep. 2020;10(1):5379.PubMedPubMedCentralCrossRef Fiedorowicz M, Khan MI, Strzemecki D, Orzel J, Welniak-Kaminska M, Sobiborowicz A, Wieteska M, Rogulski Z, Cheda L, Wargocka-Matuszewska W, et al. Renal carcinoma CD105−/CD44− cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep. 2020;10(1):5379.PubMedPubMedCentralCrossRef
62.
go back to reference Shioi K, Komiya A, Hattori K, Huang Y, Sano F, Murakami T, Nakaigawa N, Kishida T, Kubota Y, Nagashima Y, et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res. 2006;12(24):7339–46.PubMedCrossRef Shioi K, Komiya A, Hattori K, Huang Y, Sano F, Murakami T, Nakaigawa N, Kishida T, Kubota Y, Nagashima Y, et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res. 2006;12(24):7339–46.PubMedCrossRef
64.
go back to reference Riegler J, Gill H, Ogasawara A, Hedehus M, Javinal V, Oeh J, Ferl GZ, Marik J, Williams S, Sampath D, et al. VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia. 2019;21(10):1036–50.PubMedPubMedCentralCrossRef Riegler J, Gill H, Ogasawara A, Hedehus M, Javinal V, Oeh J, Ferl GZ, Marik J, Williams S, Sampath D, et al. VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia. 2019;21(10):1036–50.PubMedPubMedCentralCrossRef
65.
go back to reference Nakajima K, Ino Y, Yamazaki-Itoh R, Naito C, Shimasaki M, Takahashi M, Esaki M, Nara S, Kishi Y, Shimada K, et al. IAP inhibitor, embelin increases VCAM-1 levels on the endothelium, producing lymphocytic infiltration and antitumor immunity. Oncoimmunology. 2020;9(1):1838812.PubMedPubMedCentralCrossRef Nakajima K, Ino Y, Yamazaki-Itoh R, Naito C, Shimasaki M, Takahashi M, Esaki M, Nara S, Kishi Y, Shimada K, et al. IAP inhibitor, embelin increases VCAM-1 levels on the endothelium, producing lymphocytic infiltration and antitumor immunity. Oncoimmunology. 2020;9(1):1838812.PubMedPubMedCentralCrossRef
66.
go back to reference Wang S, Yu ZH, Chai KQ. Identification of EGFR as a novel key gene in clear cell renal cell carcinoma (ccRCC) through bioinformatics analysis and meta-analysis. Biomed Res Int. 2019;2019:6480865.PubMedPubMedCentral Wang S, Yu ZH, Chai KQ. Identification of EGFR as a novel key gene in clear cell renal cell carcinoma (ccRCC) through bioinformatics analysis and meta-analysis. Biomed Res Int. 2019;2019:6480865.PubMedPubMedCentral
Metadata
Title
Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy
Authors
Simon Heumos
Sandra Dehn
Konstantin Bräutigam
Marius C. Codrea
Christian M. Schürch
Ulrich M. Lauer
Sven Nahnsen
Michael Schindler
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02710-y

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine