Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Lymphoma | Review

Targeting CD47 for cancer immunotherapy

Authors: Zhongxing Jiang, Hao Sun, Jifeng Yu, Wenzhi Tian, Yongping Song

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Much progress has been made in targeting CD47 for cancer immunotherapy in solid tumors (ST) and hematological malignancies. We summarized the CD47-related clinical research and analyzed the research trend both in the USA and in China. As of August 28, 2021, there are a total 23 related therapeutic agents with 46 clinical trials in the NCT registry platform. Among these trials, 29 are in ST, 14 in hematological malignancies and 3 in both solid tumor and hematological malignancy. The ST include gastric cancer, head and neck squamous cell carcinoma and leiomyosarcoma, while the hematological malignancies include non-Hodgkin's lymphoma, acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and chronic myeloid leukemia. Majority of the CD47-related clinical trials are at the early phases, such as 31 at phase I, 14 at phase II and 1 at phase III in the USA and 9, 6, 1, in China, respectively. The targets and spectrums of mechanism of action include 26 with mono-specific and 20 with bi-specific targets in the USA and 13 with mono-specific and 3 with bi-specific targets in China. The new generation CD47 antibodies have demonstrated promising results, and it is highly hopeful that some candidate agents will emerge and make into clinical application to meet the urgent needs of patients.
Literature
1.
go back to reference Arrieta O, Aviles-Salas A, Orozco-Morales M, Hernández-Pedro N, Cardona AF, Cabrera-Miranda L, et al. Association between CD47 expression, clinical characteristics and prognosis in patients with advanced non-small cell lung cancer. Cancer Med. 2020;9(7):2390–402.PubMedPubMedCentralCrossRef Arrieta O, Aviles-Salas A, Orozco-Morales M, Hernández-Pedro N, Cardona AF, Cabrera-Miranda L, et al. Association between CD47 expression, clinical characteristics and prognosis in patients with advanced non-small cell lung cancer. Cancer Med. 2020;9(7):2390–402.PubMedPubMedCentralCrossRef
2.
go back to reference Shi M, Gu Y, Jin K, Fang H, Chen Y, Cao Y, et al. CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother CII. 2021;70(7):1831–40.PubMedCrossRef Shi M, Gu Y, Jin K, Fang H, Chen Y, Cao Y, et al. CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother CII. 2021;70(7):1831–40.PubMedCrossRef
3.
go back to reference Kim H, Jee S, Kim Y, Sim J, Bang S, Son HK, et al. Correlation of CD47 expression with adverse clinicopathologic features and an unfavorable prognosis in colorectal adenocarcinoma. Diagnostics (Basel, Switzerland). 2021;11(4):668. Kim H, Jee S, Kim Y, Sim J, Bang S, Son HK, et al. Correlation of CD47 expression with adverse clinicopathologic features and an unfavorable prognosis in colorectal adenocarcinoma. Diagnostics (Basel, Switzerland). 2021;11(4):668.
4.
go back to reference Imam R, Chang Q, Black M, Yu C, Cao W. CD47 expression and CD163(+) macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer. 2021;21(1):320.PubMedPubMedCentralCrossRef Imam R, Chang Q, Black M, Yu C, Cao W. CD47 expression and CD163(+) macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer. 2021;21(1):320.PubMedPubMedCentralCrossRef
5.
go back to reference Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, George BM, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA. 2017;114(49):E10578–85.PubMedPubMedCentralCrossRef Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, George BM, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA. 2017;114(49):E10578–85.PubMedPubMedCentralCrossRef
6.
go back to reference Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Can Res. 2011;71(4):1374–84.CrossRef Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Can Res. 2011;71(4):1374–84.CrossRef
7.
go back to reference Orozco-Morales M, Avilés-Salas A, Hernández-Pedro N, Catalán R, Cruz-Rico G, Colín-González AL, et al. Clinicopathological and prognostic significance of CD47 expression in lung neuroendocrine tumors. J Immunol Res. 2021;2021:6632249.PubMedPubMedCentralCrossRef Orozco-Morales M, Avilés-Salas A, Hernández-Pedro N, Catalán R, Cruz-Rico G, Colín-González AL, et al. Clinicopathological and prognostic significance of CD47 expression in lung neuroendocrine tumors. J Immunol Res. 2021;2021:6632249.PubMedPubMedCentralCrossRef
8.
go back to reference Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, et al. Novel SIRPα antibodies that induce single-agent phagocytosis of tumor cells while preserving T cells. J Immunol (Baltimore, Md: 1950). 2021;206(4):712–21.CrossRef Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, et al. Novel SIRPα antibodies that induce single-agent phagocytosis of tumor cells while preserving T cells. J Immunol (Baltimore, Md: 1950). 2021;206(4):712–21.CrossRef
9.
go back to reference Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37(12):946–53.PubMedPubMedCentralCrossRef Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37(12):946–53.PubMedPubMedCentralCrossRef
10.
go back to reference Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med. 2018;379(18):1711–21.PubMedPubMedCentralCrossRef Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med. 2018;379(18):1711–21.PubMedPubMedCentralCrossRef
12.
go back to reference Sallman DA, Donnellan WB, Asch AS, et al. The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: initial phase 1b results. J Clin Oncol. 2019;37(15_suppl):7009.CrossRef Sallman DA, Donnellan WB, Asch AS, et al. The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: initial phase 1b results. J Clin Oncol. 2019;37(15_suppl):7009.CrossRef
13.
go back to reference Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol. 1996;16(12):6887–99.PubMedPubMedCentralCrossRef Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol. 1996;16(12):6887–99.PubMedPubMedCentralCrossRef
14.
go back to reference Oshima K, Ruhul Amin AR, Suzuki A, Hamaguchi M, Matsuda S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 2002;519(1–3):1–7.PubMedCrossRef Oshima K, Ruhul Amin AR, Suzuki A, Hamaguchi M, Matsuda S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 2002;519(1–3):1–7.PubMedCrossRef
15.
go back to reference Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE, Schraven B, et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr Biol CB. 1999;9(16):927–30.PubMedCrossRef Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE, Schraven B, et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr Biol CB. 1999;9(16):927–30.PubMedCrossRef
16.
go back to reference Johansen ML, Brown EJ. Dual regulation of SIRPalpha phosphorylation by integrins and CD47. J Biol Chem. 2007;282(33):24219–30.PubMedCrossRef Johansen ML, Brown EJ. Dual regulation of SIRPalpha phosphorylation by integrins and CD47. J Biol Chem. 2007;282(33):24219–30.PubMedCrossRef
17.
go back to reference Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, et al. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol (Baltimore, Md: 1950). 1998;161(4):1853–9.CrossRef Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, et al. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol (Baltimore, Md: 1950). 1998;161(4):1853–9.CrossRef
18.
go back to reference Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11(3):130–5.PubMedCrossRef Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11(3):130–5.PubMedCrossRef
20.
go back to reference Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG, Brown EJ. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci. 1995;108(Pt 11):3419–25.PubMedCrossRef Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG, Brown EJ. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci. 1995;108(Pt 11):3419–25.PubMedCrossRef
21.
go back to reference Jiang P, Lagenaur CF, Narayanan V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem. 1999;274(2):559–62.PubMedCrossRef Jiang P, Lagenaur CF, Narayanan V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem. 1999;274(2):559–62.PubMedCrossRef
22.
go back to reference Lindberg FP, Gresham HD, Reinhold MI, Brown EJ. Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol. 1996;134(5):1313–22.PubMedCrossRef Lindberg FP, Gresham HD, Reinhold MI, Brown EJ. Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol. 1996;134(5):1313–22.PubMedCrossRef
23.
go back to reference Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL, Brown MH. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol. 2000;30(8):2130–7.PubMedCrossRef Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL, Brown MH. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol. 2000;30(8):2130–7.PubMedCrossRef
24.
go back to reference Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, et al. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem. 2000;275(48):37984–92.PubMedCrossRef Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, et al. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem. 2000;275(48):37984–92.PubMedCrossRef
25.
go back to reference Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem. 2002;277(42):39833–9.PubMedCrossRef Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem. 2002;277(42):39833–9.PubMedCrossRef
27.
go back to reference Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–85.PubMedPubMedCentralCrossRef Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–85.PubMedPubMedCentralCrossRef
29.
go back to reference Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86–90.PubMedPubMedCentralCrossRef Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86–90.PubMedPubMedCentralCrossRef
30.
go back to reference Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, et al. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114(18):4757–62.PubMedPubMedCentralCrossRef Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, et al. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114(18):4757–62.PubMedPubMedCentralCrossRef
31.
go back to reference Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y, et al. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci. 2021;273:119150.PubMedCrossRef Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y, et al. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci. 2021;273:119150.PubMedCrossRef
32.
go back to reference Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent LC, Azuaje F, et al. CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncoimmunology. 2018;7(4):e1345415.PubMedPubMedCentralCrossRef Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent LC, Azuaje F, et al. CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncoimmunology. 2018;7(4):e1345415.PubMedPubMedCentralCrossRef
33.
go back to reference Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 2015;112(45):E6215–23.PubMedPubMedCentralCrossRef Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 2015;112(45):E6215–23.PubMedPubMedCentralCrossRef
34.
go back to reference Kaur S, Cicalese KV, Bannerjee R, Roberts DD. Preclinical and clinical development of therapeutic antibodies targeting functions of CD47 in the tumor microenvironment. Antibody Ther. 2020;3(3):179–92.CrossRef Kaur S, Cicalese KV, Bannerjee R, Roberts DD. Preclinical and clinical development of therapeutic antibodies targeting functions of CD47 in the tumor microenvironment. Antibody Ther. 2020;3(3):179–92.CrossRef
35.
go back to reference Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol. 2019;9:1380.PubMedCrossRef Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol. 2019;9:1380.PubMedCrossRef
37.
go back to reference Bruce LJ, Ghosh S, King MJ, Layton DM, Mawby WJ, Stewart GW, et al. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood. 2002;100(5):1878–85.PubMedCrossRef Bruce LJ, Ghosh S, King MJ, Layton DM, Mawby WJ, Stewart GW, et al. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood. 2002;100(5):1878–85.PubMedCrossRef
38.
go back to reference Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol. 1993;123(2):485–96.PubMedCrossRef Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol. 1993;123(2):485–96.PubMedCrossRef
39.
go back to reference Kaur S, Kuznetsova SA, Pendrak ML, Sipes JM, Romeo MJ, Li Z, et al. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J Biol Chem. 2011;286(17):14991–5002.PubMedPubMedCentralCrossRef Kaur S, Kuznetsova SA, Pendrak ML, Sipes JM, Romeo MJ, Li Z, et al. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J Biol Chem. 2011;286(17):14991–5002.PubMedPubMedCentralCrossRef
40.
go back to reference Dahl KN, Westhoff CM, Discher DE. Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood. 2003;101(3):1194–9.PubMedCrossRef Dahl KN, Westhoff CM, Discher DE. Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood. 2003;101(3):1194–9.PubMedCrossRef
41.
go back to reference McDonald JF, Zheleznyak A, Frazier WA. Cholesterol-independent interactions with CD47 enhance alphavbeta3 avidity. J Biol Chem. 2004;279(17):17301–11.PubMedCrossRef McDonald JF, Zheleznyak A, Frazier WA. Cholesterol-independent interactions with CD47 enhance alphavbeta3 avidity. J Biol Chem. 2004;279(17):17301–11.PubMedCrossRef
42.
go back to reference Peluso MO, Adam A, Armet CM, Zhang L, O’Connor RW, Lee BH, et al. The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer. 2020;8(1):e000413.PubMedPubMedCentralCrossRef Peluso MO, Adam A, Armet CM, Zhang L, O’Connor RW, Lee BH, et al. The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer. 2020;8(1):e000413.PubMedPubMedCentralCrossRef
43.
go back to reference Upton R, Banuelos A, Feng D, Biswas T, Kao K, McKenna K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc Natl Acad Sci USA. 2021;118(29):e2026849118.PubMedPubMedCentralCrossRef Upton R, Banuelos A, Feng D, Biswas T, Kao K, McKenna K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc Natl Acad Sci USA. 2021;118(29):e2026849118.PubMedPubMedCentralCrossRef
44.
go back to reference Kuo TC, Chen A, Harrabi O, Sockolosky JT, Zhang A, Sangalang E, et al. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol. 2020;13(1):160.PubMedPubMedCentralCrossRef Kuo TC, Chen A, Harrabi O, Sockolosky JT, Zhang A, Sangalang E, et al. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol. 2020;13(1):160.PubMedPubMedCentralCrossRef
45.
go back to reference Zhang Z, Luo F, Cao J, Lu F, Zhang Y, Ma Y, et al. Anticancer bispecific antibody R&D advances: a study focusing on research trend worldwide and in China. J Hematol Oncol. 2021;14(1):124.PubMedPubMedCentralCrossRef Zhang Z, Luo F, Cao J, Lu F, Zhang Y, Ma Y, et al. Anticancer bispecific antibody R&D advances: a study focusing on research trend worldwide and in China. J Hematol Oncol. 2021;14(1):124.PubMedPubMedCentralCrossRef
46.
go back to reference Dheilly E, Majocchi S, Moine V, Didelot G, Broyer L, Calloud S, et al. Tumor-directed blockade of CD47 with bispecific antibodies induces adaptive antitumor immunity. Antibodies (Basel, Switzerland). 2018;7(1):3. Dheilly E, Majocchi S, Moine V, Didelot G, Broyer L, Calloud S, et al. Tumor-directed blockade of CD47 with bispecific antibodies induces adaptive antitumor immunity. Antibodies (Basel, Switzerland). 2018;7(1):3.
47.
go back to reference Lu Q, Chen X, Wang S, Lu Y, Yang C, Jiang G. Potential new cancer immunotherapy: anti-CD47-SIRPα antibodies. OncoTargets Ther. 2020;13:9323–31.CrossRef Lu Q, Chen X, Wang S, Lu Y, Yang C, Jiang G. Potential new cancer immunotherapy: anti-CD47-SIRPα antibodies. OncoTargets Ther. 2020;13:9323–31.CrossRef
48.
go back to reference Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9.PubMedPubMedCentralCrossRef Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9.PubMedPubMedCentralCrossRef
50.
go back to reference Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. 2015;10(9):e0137345.PubMedPubMedCentralCrossRef Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. 2015;10(9):e0137345.PubMedPubMedCentralCrossRef
51.
go back to reference Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia. Mol Cancer Ther. 2018;17(8):1739–51.PubMedPubMedCentralCrossRef Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia. Mol Cancer Ther. 2018;17(8):1739–51.PubMedPubMedCentralCrossRef
52.
go back to reference Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 2017;23(4):1068–79.PubMedCrossRef Petrova PS, Viller NN, Wong M, Pang X, Lin GH, Dodge K, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 2017;23(4):1068–79.PubMedCrossRef
53.
go back to reference Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C, Westhoff CM. Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion. 2019;59(2):730–7.PubMedCrossRef Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C, Westhoff CM. Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion. 2019;59(2):730–7.PubMedCrossRef
54.
go back to reference Advani R, Bartlett NL, Smith SM, Roschewski M, Popplewell L, Flinn I, Collins G, Ghosh N, LaCasce A, Asch A, Kline J, Kesevan M, Tran T, Lynn J, Huang J, Agoram B, Volkmer J, Takimoto CH, Chao MP, Mehta A. The first-in-class anti-CD47 antibody HU5F9-G4 + rituximab induces durable responses in relapsed/refractory DLBCL and indolent lymphoma: interim phase 1B/2 results. Hematol Oncol. 2019;37(S2):89–90. https://doi.org/10.1002/hon57_2629.CrossRef Advani R, Bartlett NL, Smith SM, Roschewski M, Popplewell L, Flinn I, Collins G, Ghosh N, LaCasce A, Asch A, Kline J, Kesevan M, Tran T, Lynn J, Huang J, Agoram B, Volkmer J, Takimoto CH, Chao MP, Mehta A. The first-in-class anti-CD47 antibody HU5F9-G4 + rituximab induces durable responses in relapsed/refractory DLBCL and indolent lymphoma: interim phase 1B/2 results. Hematol Oncol. 2019;37(S2):89–90. https://​doi.​org/​10.​1002/​hon57_​2629.CrossRef
55.
go back to reference Ansell SM, Maris MB, Lesokhin AM, Chen RW, Flinn IW, Sawas A, et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2021;27(8):2190–9.PubMedCrossRef Ansell SM, Maris MB, Lesokhin AM, Chen RW, Flinn IW, Sawas A, et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2021;27(8):2190–9.PubMedCrossRef
56.
go back to reference Uger R, Johnson L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy. Expert Opin Biol Ther. 2020;20(1):5–8.PubMedCrossRef Uger R, Johnson L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy. Expert Opin Biol Ther. 2020;20(1):5–8.PubMedCrossRef
57.
go back to reference Krish Patel MBM, Bruce D. Cheson, Jeffrey A. Zonder, Alexander M. Lesokhin, Gottfried Von Keudell, Erlene Kuizon Seymour, Gloria H.Y. Lin, Tina Catalano, Yaping Shou, Swaminathan Padmanabhan Iyer, Radhakrishnan Ramchandren. Ongoing, first-in-human, phase I dose escalation study of the investigational CD47-blocker TTI-622 in patients with advanced relapsed or refractory lymphoma. 2020. https://meetings.asco.org/abstracts-presentations/188624. Krish Patel MBM, Bruce D. Cheson, Jeffrey A. Zonder, Alexander M. Lesokhin, Gottfried Von Keudell, Erlene Kuizon Seymour, Gloria H.Y. Lin, Tina Catalano, Yaping Shou, Swaminathan Padmanabhan Iyer, Radhakrishnan Ramchandren. Ongoing, first-in-human, phase I dose escalation study of the investigational CD47-blocker TTI-622 in patients with advanced relapsed or refractory lymphoma. 2020. https://​meetings.​asco.​org/​abstracts-presentations/​188624.
58.
go back to reference Lisa Johnson RKP, Rebecca L. King, Stephen Maxted Ansell, Robert W. Chen, Ian Flinn, Michael B. Maris, Meghan Irwin, Eric L. Sievers, Penka S. Petrova, Robert A. Uger. Effects of TTI-621 (SIRPαFc) on CD47 and serum cytokines associated with phagocytosis in subjects with relapsed, refractory hematologic malignancies: pharmacodynamic findings from a first-in-human clinical trial. ASCO meeting abstract. 2017. https://meetings.asco.org/abstracts-presentations/140876. Lisa Johnson RKP, Rebecca L. King, Stephen Maxted Ansell, Robert W. Chen, Ian Flinn, Michael B. Maris, Meghan Irwin, Eric L. Sievers, Penka S. Petrova, Robert A. Uger. Effects of TTI-621 (SIRPαFc) on CD47 and serum cytokines associated with phagocytosis in subjects with relapsed, refractory hematologic malignancies: pharmacodynamic findings from a first-in-human clinical trial. ASCO meeting abstract. 2017. https://​meetings.​asco.​org/​abstracts-presentations/​140876.
59.
go back to reference Kim TM, Lakhani N, Gainor J, Kamdar M, Fanning P, Squifflet P, Jin F, Wan H, Pons J, Randolph SS, Kim WS. A phase 1 study of ALX148, a CD47 blocker, in combination with rituximab in patients with non-Hodgkin lymphoma. Blood. 2019;134(Supplement_1):1953.CrossRef Kim TM, Lakhani N, Gainor J, Kamdar M, Fanning P, Squifflet P, Jin F, Wan H, Pons J, Randolph SS, Kim WS. A phase 1 study of ALX148, a CD47 blocker, in combination with rituximab in patients with non-Hodgkin lymphoma. Blood. 2019;134(Supplement_1):1953.CrossRef
60.
go back to reference Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L, et al. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS ONE. 2018;13(8):e0201832.PubMedPubMedCentralCrossRef Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L, et al. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS ONE. 2018;13(8):e0201832.PubMedPubMedCentralCrossRef
61.
go back to reference Chow LQMGJ, Lakhani NJ, et al. A phase I study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy. J Clin Oncol. 2019;37(15_suppl):2514.CrossRef Chow LQMGJ, Lakhani NJ, et al. A phase I study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy. J Clin Oncol. 2019;37(15_suppl):2514.CrossRef
62.
go back to reference Chow LQM, Gainor JF, Lakhani NJ, Lee KW, Chung HC, Lee J, LoRusso P, Bang Y-J, Hodi FS, Davila RS, Fanning P, Squifflet P, Jin F, Wan H, Kuo T, Pons J, Randolph S, Messersmith WA. A phase I study of ALX148, a CD47 blocker, in combination with standard anticancer antibodies and chemotherapy regimens in patients with advanced malignancy. 2020. https://meetings.asco.org/abstracts-presentations/189180. Chow LQM, Gainor JF, Lakhani NJ, Lee KW, Chung HC, Lee J, LoRusso P, Bang Y-J, Hodi FS, Davila RS, Fanning P, Squifflet P, Jin F, Wan H, Kuo T, Pons J, Randolph S, Messersmith WA. A phase I study of ALX148, a CD47 blocker, in combination with standard anticancer antibodies and chemotherapy regimens in patients with advanced malignancy. 2020. https://​meetings.​asco.​org/​abstracts-presentations/​189180.
64.
go back to reference Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, et al. Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 2020;19(3):835–46.PubMedCrossRef Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, et al. Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 2020;19(3):835–46.PubMedCrossRef
65.
go back to reference Burris HA III AIS, Taylor MH, Yeku OO, Liu JF, Munster PN, Hamilton EP, Thomas JS, Gatlin F, Penson RT, Abrams TA, Dhawan MS, Walling JM, Frye JW, Romanko K, Sung V, Brachmann C, El-Khoueiry AB. A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. 2021. https://meetings.asco.org/abstracts-presentations/199338. Burris HA III AIS, Taylor MH, Yeku OO, Liu JF, Munster PN, Hamilton EP, Thomas JS, Gatlin F, Penson RT, Abrams TA, Dhawan MS, Walling JM, Frye JW, Romanko K, Sung V, Brachmann C, El-Khoueiry AB. A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. 2021. https://​meetings.​asco.​org/​abstracts-presentations/​199338.
67.
go back to reference Champiat S, Kotecki N, Korakis I, Vinceneux A, Jungels C, Blatchford J, Elgadi MM, Clarke N, Fromond C, Poirier N, Vasseur B, Marabelle A, Delord J-P. Safety, pharmacokinetics, efficacy, and preliminary biomarker data of first-in-class BI 765063, a selective SIRPα inhibitor: results of monotherapy dose escalation in phase 1 study in patients with advanced solid tumors. 2021. https://meetings.asco.org/abstracts-presentations/196073. Champiat S, Kotecki N, Korakis I, Vinceneux A, Jungels C, Blatchford J, Elgadi MM, Clarke N, Fromond C, Poirier N, Vasseur B, Marabelle A, Delord J-P. Safety, pharmacokinetics, efficacy, and preliminary biomarker data of first-in-class BI 765063, a selective SIRPα inhibitor: results of monotherapy dose escalation in phase 1 study in patients with advanced solid tumors. 2021. https://​meetings.​asco.​org/​abstracts-presentations/​196073.
70.
go back to reference Qi J, Li J, Jiang B, Jiang B, Liu H, Cao X, Zhang M, Meng Y, Xiaoyu MA, Jia Y, Guo J. A phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): initial phase i results. Blood. 2020;136(Supplement 1):30–1. https://doi.org/10.1182/blood-2020-134391.CrossRef Qi J, Li J, Jiang B, Jiang B, Liu H, Cao X, Zhang M, Meng Y, Xiaoyu MA, Jia Y, Guo J. A phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): initial phase i results. Blood. 2020;136(Supplement 1):30–1. https://​doi.​org/​10.​1182/​blood-2020-134391.CrossRef
72.
go back to reference Wang Y, Pan D, Huang C, Chen B, Li M, Zhou S, et al. Dose escalation PET imaging for safety and effective therapy dose optimization of a bispecific antibody. MAbs. 2020;12(1):1748322.PubMedPubMedCentralCrossRef Wang Y, Pan D, Huang C, Chen B, Li M, Zhou S, et al. Dose escalation PET imaging for safety and effective therapy dose optimization of a bispecific antibody. MAbs. 2020;12(1):1748322.PubMedPubMedCentralCrossRef
73.
go back to reference Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother CII. 2021;70(2):365–76.PubMedCrossRef Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother CII. 2021;70(2):365–76.PubMedCrossRef
77.
go back to reference Gao Y, Zhang D, Yang C, Duan X, Li X, Zhong D. Two validated liquid chromatography-mass spectrometry methods with different pretreatments for the quantification of an anti-CD47 monoclonal antibody in rat and cynomolgus monkey serum compared with an electrochemiluminescence method. J Pharm Biomed Anal. 2019;175:112792.PubMedCrossRef Gao Y, Zhang D, Yang C, Duan X, Li X, Zhong D. Two validated liquid chromatography-mass spectrometry methods with different pretreatments for the quantification of an anti-CD47 monoclonal antibody in rat and cynomolgus monkey serum compared with an electrochemiluminescence method. J Pharm Biomed Anal. 2019;175:112792.PubMedCrossRef
79.
go back to reference Zhao W, Hu X, Li W, Li R, Chen J, Zhou L, et al. M2-like TAMs function reversal contributes to breast cancer eradication by combination dual immune checkpoint blockade and photothermal therapy. Small. 2021;17(13):e2007051.PubMedCrossRef Zhao W, Hu X, Li W, Li R, Chen J, Zhou L, et al. M2-like TAMs function reversal contributes to breast cancer eradication by combination dual immune checkpoint blockade and photothermal therapy. Small. 2021;17(13):e2007051.PubMedCrossRef
80.
go back to reference Chen SH, Dominik PK, Stanfield J, Ding S, Yang W, Kurd N, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021;9(10):e003464.PubMedPubMedCentralCrossRef Chen SH, Dominik PK, Stanfield J, Ding S, Yang W, Kurd N, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021;9(10):e003464.PubMedPubMedCentralCrossRef
83.
go back to reference Anniss AM, Sparrow RL. Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage. Transfus Apheresis Sci. 2002;27(3):233–8.CrossRef Anniss AM, Sparrow RL. Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage. Transfus Apheresis Sci. 2002;27(3):233–8.CrossRef
84.
go back to reference Khandelwal S, van Rooijen N, Saxena RK. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion. 2007;47(9):1725–32.PubMedCrossRef Khandelwal S, van Rooijen N, Saxena RK. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion. 2007;47(9):1725–32.PubMedCrossRef
85.
go back to reference Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer (Oxford, England: 1990). 2017;76:100–9.CrossRef Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer (Oxford, England: 1990). 2017;76:100–9.CrossRef
86.
go back to reference Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6(6):457–64.PubMedCrossRef Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6(6):457–64.PubMedCrossRef
87.
go back to reference Logtenberg MEW, Jansen JHM, Raaben M, Toebes M, Franke K, Brandsma AM, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med. 2019;25(4):612–9.PubMedPubMedCentralCrossRef Logtenberg MEW, Jansen JHM, Raaben M, Toebes M, Franke K, Brandsma AM, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med. 2019;25(4):612–9.PubMedPubMedCentralCrossRef
88.
go back to reference Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14(1):89–97.PubMedCrossRef Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14(1):89–97.PubMedCrossRef
89.
go back to reference Liu Q, Wen W, Tang L, Qin CJ, Lin Y, Zhang HL, et al. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology. 2016;5(9):e1183850.PubMedPubMedCentralCrossRef Liu Q, Wen W, Tang L, Qin CJ, Lin Y, Zhang HL, et al. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology. 2016;5(9):e1183850.PubMedPubMedCentralCrossRef
90.
go back to reference Tahk S, Vick B, Hiller B, Schmitt S, Marcinek A, Perini ED, et al. SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells. J Hematol Oncol. 2021;14(1):155.PubMedPubMedCentralCrossRef Tahk S, Vick B, Hiller B, Schmitt S, Marcinek A, Perini ED, et al. SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells. J Hematol Oncol. 2021;14(1):155.PubMedPubMedCentralCrossRef
Metadata
Title
Targeting CD47 for cancer immunotherapy
Authors
Zhongxing Jiang
Hao Sun
Jifeng Yu
Wenzhi Tian
Yongping Song
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01197-w

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine