Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

PRL PTPs: mediators and markers of cancer progression

Authors: Darrell C. Bessette, Dexin Qiu, Catherine J. Pallen

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Literature
1.
go back to reference Mohn, K. L., Laz, T. M., Hsu, J. C., Melby, A. E., Bravo, R., & Taub, R. (1991). The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Molecular and Cellular Biology, 11, 381–390.PubMed Mohn, K. L., Laz, T. M., Hsu, J. C., Melby, A. E., Bravo, R., & Taub, R. (1991). The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Molecular and Cellular Biology, 11, 381–390.PubMed
2.
go back to reference Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed
3.
go back to reference Montagna, M., Serova, O., Sylla, B. S., Feunteun, J., & Lenoir, G. M. (1995). A 100-kb physical and transcriptional map around the EDH17B2 gene: identification of three novel genes and a pseudogene of a human homologue of the rat PRL-1 tyrosine phosphatase. Human Genetics, 96, 532–538.PubMedCrossRef Montagna, M., Serova, O., Sylla, B. S., Feunteun, J., & Lenoir, G. M. (1995). A 100-kb physical and transcriptional map around the EDH17B2 gene: identification of three novel genes and a pseudogene of a human homologue of the rat PRL-1 tyrosine phosphatase. Human Genetics, 96, 532–538.PubMedCrossRef
4.
go back to reference Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Letters, 110, 49–55.PubMedCrossRef Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Letters, 110, 49–55.PubMedCrossRef
5.
go back to reference Zeng, Q., Hong, W., & Tan, Y. H. (1998). Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochemical and Biophysical Research Communications, 244, 421–427.PubMedCrossRef Zeng, Q., Hong, W., & Tan, Y. H. (1998). Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochemical and Biophysical Research Communications, 244, 421–427.PubMedCrossRef
6.
go back to reference Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., & Pallen, C. J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. Journal of Biological Chemistry, 275, 21444–21452.PubMedCrossRef Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., & Pallen, C. J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. Journal of Biological Chemistry, 275, 21444–21452.PubMedCrossRef
7.
go back to reference Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef
8.
go back to reference Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef
9.
go back to reference Kim, K. A., Song, J. S., Jee, J., Sheen, M. R., Lee, C., Lee, T. G., et al. (2004). Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Letters, 565, 181–187.PubMedCrossRef Kim, K. A., Song, J. S., Jee, J., Sheen, M. R., Lee, C., Lee, T. G., et al. (2004). Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Letters, 565, 181–187.PubMedCrossRef
10.
go back to reference Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., & Ekiel, I. (2004). Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Journal of Biological Chemistry, 279, 11882–11889.PubMedCrossRef Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., & Ekiel, I. (2004). Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Journal of Biological Chemistry, 279, 11882–11889.PubMedCrossRef
11.
go back to reference Zhou, H., Gallina, M., Mao, H., Nietlispach, D., Betz, S. F., Fetrow, J. S., et al. (2003). 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. Journal of Biomolecular NMR, 27, 397–398.PubMedCrossRef Zhou, H., Gallina, M., Mao, H., Nietlispach, D., Betz, S. F., Fetrow, J. S., et al. (2003). 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. Journal of Biomolecular NMR, 27, 397–398.PubMedCrossRef
12.
go back to reference Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef
13.
go back to reference Denu, J. M., Stuckey, J. A., Saper, M. A., & Dixon, J. E. (1996). Form and function in protein dephosphorylation. Cell, 87, 361–364.PubMedCrossRef Denu, J. M., Stuckey, J. A., Saper, M. A., & Dixon, J. E. (1996). Form and function in protein dephosphorylation. Cell, 87, 361–364.PubMedCrossRef
14.
go back to reference Zhang, Z. Y. (1998). Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Critical Reviews in Biochemistry and Molecular Biology, 33, 1–52.PubMedCrossRef Zhang, Z. Y. (1998). Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Critical Reviews in Biochemistry and Molecular Biology, 33, 1–52.PubMedCrossRef
15.
go back to reference Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef
16.
go back to reference Zhang, Z. Y., Palfey, B. A., Wu, L., & Zhao, Y. (1995). Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 34, 16389–16396.PubMedCrossRef Zhang, Z. Y., Palfey, B. A., Wu, L., & Zhao, Y. (1995). Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 34, 16389–16396.PubMedCrossRef
17.
go back to reference Denu, J. M., & Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 92, 5910–5914.PubMedCrossRef Denu, J. M., & Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 92, 5910–5914.PubMedCrossRef
18.
go back to reference Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef
19.
go back to reference Yu, L., Kelly, U., Ebright, J. N., Malek, G., Saloupis, P., Rickman, D. W., et al. (2007). Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica et Biophysica Acta, 1773, 1473–1482.PubMed Yu, L., Kelly, U., Ebright, J. N., Malek, G., Saloupis, P., Rickman, D. W., et al. (2007). Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica et Biophysica Acta, 1773, 1473–1482.PubMed
20.
go back to reference Dumaual, C. M., Sandusky, G. E., Crowell, P. L., & Randall, S. K. (2006). Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. Journal of Histochemistry and Cytochemistry, 54, 1401–1412.PubMedCrossRef Dumaual, C. M., Sandusky, G. E., Crowell, P. L., & Randall, S. K. (2006). Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. Journal of Histochemistry and Cytochemistry, 54, 1401–1412.PubMedCrossRef
21.
go back to reference Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef
22.
go back to reference Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L., & Waxman, J. (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Letters, 175, 63–69.PubMedCrossRef Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L., & Waxman, J. (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Letters, 175, 63–69.PubMedCrossRef
23.
go back to reference Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: A predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: A predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef
24.
go back to reference Miskad, U. A., Semba, S., Kato, H., & Yokozaki, H. (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology, 71, 176–184.PubMedCrossRef Miskad, U. A., Semba, S., Kato, H., & Yokozaki, H. (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology, 71, 176–184.PubMedCrossRef
25.
go back to reference Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Molecular Cancer Therapeutics, 5, 219–229.PubMedCrossRef Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Molecular Cancer Therapeutics, 5, 219–229.PubMedCrossRef
26.
go back to reference Radke, I., Gotte, M., Kersting, C., Mattsson, B., Kiesel, L., & Wulfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. British Journal of Cancer, 95, 347–354.PubMedCrossRef Radke, I., Gotte, M., Kersting, C., Mattsson, B., Kiesel, L., & Wulfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. British Journal of Cancer, 95, 347–354.PubMedCrossRef
27.
go back to reference Si, X., Zeng, Q., Ng, C. H., Hong, W., & Pallen, C. J. (2001). Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Journal of Biological Chemistry, 276, 32875–32882.PubMedCrossRef Si, X., Zeng, Q., Ng, C. H., Hong, W., & Pallen, C. J. (2001). Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Journal of Biological Chemistry, 276, 32875–32882.PubMedCrossRef
28.
go back to reference Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef
29.
go back to reference Diamond, R. H., Peters, C., Jung, S. P., Greenbaum, L. E., Haber, B. A., Silberg, D. G., et al. (1996). Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. American Journal of Physiology, 271, G121–129.PubMed Diamond, R. H., Peters, C., Jung, S. P., Greenbaum, L. E., Haber, B. A., Silberg, D. G., et al. (1996). Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. American Journal of Physiology, 271, G121–129.PubMed
30.
go back to reference Kong, W., Swain, G. P., Li, S., & Diamond, R. H. (2000). PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. American Journal of Physiology -l Gastrointestinal and Liver Physiology, 279, G613–G621. Kong, W., Swain, G. P., Li, S., & Diamond, R. H. (2000). PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. American Journal of Physiology -l Gastrointestinal and Liver Physiology, 279, G613–G621.
31.
go back to reference Yarovinsky, T. O., Rickman, D. W., Diamond, R. H., Taub, R., Hageman, G. S., & Bowes Rickman, C. (2000). Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors. Brain Research. Molecular Brain Research, 77, 95–103.PubMedCrossRef Yarovinsky, T. O., Rickman, D. W., Diamond, R. H., Taub, R., Hageman, G. S., & Bowes Rickman, C. (2000). Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors. Brain Research. Molecular Brain Research, 77, 95–103.PubMedCrossRef
32.
go back to reference Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef
33.
go back to reference Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed
34.
go back to reference Li, J., Guo, K., Koh, V. W., Tang, J. P., Gan, B. Q., Shi, H., et al. (2005). Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clinical Cancer Research, 11, 2195–2204.PubMedCrossRef Li, J., Guo, K., Koh, V. W., Tang, J. P., Gan, B. Q., Shi, H., et al. (2005). Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clinical Cancer Research, 11, 2195–2204.PubMedCrossRef
35.
go back to reference Peng, L., Ning, J., Meng, L., & Shou, C. (2004). The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 130, 521–526.PubMedCrossRef Peng, L., Ning, J., Meng, L., & Shou, C. (2004). The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 130, 521–526.PubMedCrossRef
36.
go back to reference Wang, Y., Li, Z. F., He, J., Li, Y. L., Zhu, G. B., & Zhang, L. H. (2007). Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. International Journal of Colorectal Disease, 22, 1179–1184.PubMedCrossRef Wang, Y., Li, Z. F., He, J., Li, Y. L., Zhu, G. B., & Zhang, L. H. (2007). Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. International Journal of Colorectal Disease, 22, 1179–1184.PubMedCrossRef
37.
go back to reference Wang, L., Peng, L., Dong, B., Kong, L., Meng, L., Yan, L., et al. (2006). Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome. Annals of Oncology, 17, 1517–1522.PubMedCrossRef Wang, L., Peng, L., Dong, B., Kong, L., Meng, L., Yan, L., et al. (2006). Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome. Annals of Oncology, 17, 1517–1522.PubMedCrossRef
38.
go back to reference Miskad, U. A., Semba, S., Kato, H., Matsukawa, Y., Kodama, Y., Mizuuchi, E., et al. (2007). High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: An in situ hybridization study. Virchows Archiv, 450, 303–310.PubMedCrossRef Miskad, U. A., Semba, S., Kato, H., Matsukawa, Y., Kodama, Y., Mizuuchi, E., et al. (2007). High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: An in situ hybridization study. Virchows Archiv, 450, 303–310.PubMedCrossRef
39.
go back to reference Li, Z. R., Wang, Z., Zhu, B. H., He, Y. L., Peng, J. S., Cai, S. R., et al. (2007). Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surgery Today, 37, 646–651.PubMedCrossRef Li, Z. R., Wang, Z., Zhu, B. H., He, Y. L., Peng, J. S., Cai, S. R., et al. (2007). Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surgery Today, 37, 646–651.PubMedCrossRef
40.
go back to reference Wu, X., Zeng, H., Zhang, X., Zhao, Y., Sha, H., Ge, X., et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. American Journal of Pathology, 164, 2039–2054.PubMed Wu, X., Zeng, H., Zhang, X., Zhao, Y., Sha, H., Ge, X., et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. American Journal of Pathology, 164, 2039–2054.PubMed
41.
go back to reference Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., et al. (2005). PRL-3 phosphatase is implicated in ovarian cancer growth. Clinical Cancer Research, 11, 6835–6839.PubMedCrossRef Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., et al. (2005). PRL-3 phosphatase is implicated in ovarian cancer growth. Clinical Cancer Research, 11, 6835–6839.PubMedCrossRef
42.
go back to reference Yamashita, S., Masuda, Y., Matsumoto, K., Okumura, Y., Matsuzaki, H., Kurizaki, T., et al. (2007). Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Annals of Thoracic and Cardiovascular Surgery, 13, 236–239.PubMed Yamashita, S., Masuda, Y., Matsumoto, K., Okumura, Y., Matsuzaki, H., Kurizaki, T., et al. (2007). Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Annals of Thoracic and Cardiovascular Surgery, 13, 236–239.PubMed
43.
go back to reference Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed
44.
go back to reference Guo, K., Li, J., Tang, J. P., Koh, V., Gan, B. Q., & Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: Formation of PRL-3 tumors inside the blood vessels. Cancer Biology & Therapy, 3, 945–951.CrossRef Guo, K., Li, J., Tang, J. P., Koh, V., Gan, B. Q., & Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: Formation of PRL-3 tumors inside the blood vessels. Cancer Biology & Therapy, 3, 945–951.CrossRef
45.
go back to reference Qian, F., Li, Y. P., Sheng, X., Zhang, Z. C., Song, R., Dong, W., et al. (2007). PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Molecular Medicine, 13, 151–159.PubMed Qian, F., Li, Y. P., Sheng, X., Zhang, Z. C., Song, R., Dong, W., et al. (2007). PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Molecular Medicine, 13, 151–159.PubMed
46.
go back to reference Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications, 348, 229–237.PubMedCrossRef Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications, 348, 229–237.PubMedCrossRef
47.
go back to reference St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., et al. (2000). Genes expressed in human tumor endothelium. Science, 289, 1197–1202.PubMedCrossRef St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., et al. (2000). Genes expressed in human tumor endothelium. Science, 289, 1197–1202.PubMedCrossRef
48.
go back to reference Guo, K., Li, J., Wang, H., Osato, M., Tang, J. P., Quah, S. Y., et al. (2006). PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Research, 66, 9625–9635.PubMedCrossRef Guo, K., Li, J., Wang, H., Osato, M., Tang, J. P., Quah, S. Y., et al. (2006). PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Research, 66, 9625–9635.PubMedCrossRef
49.
go back to reference Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P., & Zeng, Q. (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Research, 67, 2922–2926.PubMedCrossRef Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P., & Zeng, Q. (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Research, 67, 2922–2926.PubMedCrossRef
50.
go back to reference Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.PubMedCrossRef Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.PubMedCrossRef
51.
go back to reference Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.PubMedCrossRef Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.PubMedCrossRef
52.
go back to reference Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7464.PubMedCrossRef Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7464.PubMedCrossRef
53.
go back to reference Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24, 7443–7454.PubMedCrossRef Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24, 7443–7454.PubMedCrossRef
54.
go back to reference Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMedCrossRef Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMedCrossRef
55.
go back to reference Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39, 305–318.PubMedCrossRef Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39, 305–318.PubMedCrossRef
56.
go back to reference Barbera, M. J., Puig, I., Dominguez, D., Julien-Grille, S., Guaita-Esteruelas, S., Peiro, S., et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 23, 7345–7354.PubMedCrossRef Barbera, M. J., Puig, I., Dominguez, D., Julien-Grille, S., Guaita-Esteruelas, S., Peiro, S., et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 23, 7345–7354.PubMedCrossRef
57.
go back to reference Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6, 931–940.PubMedCrossRef Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6, 931–940.PubMedCrossRef
58.
go back to reference Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26, 7445–7456.PubMedCrossRef Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26, 7445–7456.PubMedCrossRef
59.
go back to reference Li, Z., Wang, L., Zhang, W., Fu, Y., Zhao, H., Hu, Y., et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochemical and Biophysical Research Communications, 363, 165–170.PubMedCrossRef Li, Z., Wang, L., Zhang, W., Fu, Y., Zhao, H., Hu, Y., et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochemical and Biophysical Research Communications, 363, 165–170.PubMedCrossRef
60.
go back to reference Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., et al. (1998). Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. Journal of Cell Biology, 142, 847–857.PubMedCrossRef Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., et al. (1998). Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. Journal of Cell Biology, 142, 847–857.PubMedCrossRef
61.
go back to reference Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., et al. (2000). Identification of a novel beta-catenin-interacting protein. Biochemical and Biophysical Research Communications, 273, 712–717.PubMedCrossRef Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., et al. (2000). Identification of a novel beta-catenin-interacting protein. Biochemical and Biophysical Research Communications, 273, 712–717.PubMedCrossRef
62.
go back to reference Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.PubMedCrossRef Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.PubMedCrossRef
63.
go back to reference Hehlgans, S., Haase, M., & Cordes, N. (2007). Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed Hehlgans, S., Haase, M., & Cordes, N. (2007). Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed
64.
go back to reference Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedCrossRef Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedCrossRef
65.
go back to reference Peng, L., Jin, G., Wang, L., Guo, J., Meng, L., & Shou, C. (2006). Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochemical and Biophysical Research Communications, 342, 179–183.PubMedCrossRef Peng, L., Jin, G., Wang, L., Guo, J., Meng, L., & Shou, C. (2006). Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochemical and Biophysical Research Communications, 342, 179–183.PubMedCrossRef
66.
go back to reference Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef
67.
go back to reference Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: A protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 266, 24249–24252.PubMed Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: A protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 266, 24249–24252.PubMed
68.
go back to reference Kunte, D. P., Wali, R. K., Koetsier, J. L., Hart, J., Kostjukova, M. N., Kilimnik, A. Y., et al. (2005). Down-regulation of the tumor suppressor gene C-terminal Src kinase: an early event during premalignant colonic epithelial hyperproliferation. FEBS Letters, 579, 3497–3502.PubMedCrossRef Kunte, D. P., Wali, R. K., Koetsier, J. L., Hart, J., Kostjukova, M. N., Kilimnik, A. Y., et al. (2005). Down-regulation of the tumor suppressor gene C-terminal Src kinase: an early event during premalignant colonic epithelial hyperproliferation. FEBS Letters, 579, 3497–3502.PubMedCrossRef
69.
go back to reference Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16, 257–263.PubMedCrossRef Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16, 257–263.PubMedCrossRef
70.
go back to reference Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef
71.
go back to reference Shah, A. N., & Gallick, G. E. (2007). Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anti-Cancer Drugs, 18, 371–375.PubMedCrossRef Shah, A. N., & Gallick, G. E. (2007). Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anti-Cancer Drugs, 18, 371–375.PubMedCrossRef
72.
go back to reference Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24, 7482–7492.PubMedCrossRef Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24, 7482–7492.PubMedCrossRef
73.
go back to reference Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.PubMedCrossRef Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.PubMedCrossRef
74.
go back to reference Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef
75.
go back to reference Gnainsky, Y., Spira, G., Paizi, M., Bruck, R., Nagler, A., Genina, O., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell and Tissue Research, 324, 385–394.PubMedCrossRef Gnainsky, Y., Spira, G., Paizi, M., Bruck, R., Nagler, A., Genina, O., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell and Tissue Research, 324, 385–394.PubMedCrossRef
76.
go back to reference Kadambi, V. J., Lorenz, J. N., Stagliano, N. E., Matter, W. F., Wang, X. S., Bloem, L., et al. (2000). Impaired ventricular relaxation resulting from cardiac-specific overexpression of a human prenylated protein tyrosine phosphatase. Circulation (Suppl), 102, II–268. Kadambi, V. J., Lorenz, J. N., Stagliano, N. E., Matter, W. F., Wang, X. S., Bloem, L., et al. (2000). Impaired ventricular relaxation resulting from cardiac-specific overexpression of a human prenylated protein tyrosine phosphatase. Circulation (Suppl), 102, II–268.
77.
go back to reference Chinnaiyan, K. M., Alexander, D., & McCullough, P. A. (2005). Role of angiotensin II in the evolution of diastolic heart failure. Journal of Clinical Hypertension (Greenwich), 7, 740–747.CrossRef Chinnaiyan, K. M., Alexander, D., & McCullough, P. A. (2005). Role of angiotensin II in the evolution of diastolic heart failure. Journal of Clinical Hypertension (Greenwich), 7, 740–747.CrossRef
78.
go back to reference Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.PubMedCrossRef Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.PubMedCrossRef
79.
go back to reference Peters, C. S., Liang, X., Li, S., Kannan, S., Peng, Y., Taub, R., et al. (2001). ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. Journal of Biological Chemistry, 276, 13718–13726.PubMedCrossRef Peters, C. S., Liang, X., Li, S., Kannan, S., Peng, Y., Taub, R., et al. (2001). ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. Journal of Biological Chemistry, 276, 13718–13726.PubMedCrossRef
80.
go back to reference Monaco, S. E., Angelastro, J. M., Szabolcs, M., & Greene, L. A. (2007). The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 120, 1883–1890.CrossRef Monaco, S. E., Angelastro, J. M., Szabolcs, M., & Greene, L. A. (2007). The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 120, 1883–1890.CrossRef
81.
go back to reference Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–117.PubMedCrossRef Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–117.PubMedCrossRef
82.
go back to reference Magnusson, C., Svensson, A., Christerson, U., & Tagerud, S. (2005). Denervation-induced alterations in gene expression in mouse skeletal muscle. European Journal of Neuroscience, 21, 577–580.PubMedCrossRef Magnusson, C., Svensson, A., Christerson, U., & Tagerud, S. (2005). Denervation-induced alterations in gene expression in mouse skeletal muscle. European Journal of Neuroscience, 21, 577–580.PubMedCrossRef
83.
go back to reference Yuan, L., Chen, J., Lin, B., Zhang, J., & Zhang, S. (2007). Differential expression and functional constraint of PRL-2 in hibernating bat. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 148, 375–381.CrossRef Yuan, L., Chen, J., Lin, B., Zhang, J., & Zhang, S. (2007). Differential expression and functional constraint of PRL-2 in hibernating bat. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 148, 375–381.CrossRef
84.
go back to reference Peng, Y., Du, K., Ramirez, S., Diamond, R. H., & Taub, R. (1999). Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. Journal of Biological Chemistry, 274, 4513–4520.PubMedCrossRef Peng, Y., Du, K., Ramirez, S., Diamond, R. H., & Taub, R. (1999). Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. Journal of Biological Chemistry, 274, 4513–4520.PubMedCrossRef
85.
go back to reference Peng, Y., Genin, A., Spinner, N. B., Diamond, R. H., & Taub, R. (1998). The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. Journal of Biological Chemistry, 273, 17286–17295.PubMedCrossRef Peng, Y., Genin, A., Spinner, N. B., Diamond, R. H., & Taub, R. (1998). The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. Journal of Biological Chemistry, 273, 17286–17295.PubMedCrossRef
86.
go back to reference Gregory, R. C., Lord, K. A., Panek, L. B., Gaines, P., Dillon, S. B., & Wojchowski, D. M. (2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine, 12, 845–857.PubMedCrossRef Gregory, R. C., Lord, K. A., Panek, L. B., Gaines, P., Dillon, S. B., & Wojchowski, D. M. (2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine, 12, 845–857.PubMedCrossRef
87.
go back to reference McLean, D. J., Friel, P. J., Pouchnik, D., & Griswold, M. D. (2002). Oligonucleotide microarray analysis of gene expression in follicle-stimulating hormone-treated rat Sertoli cells. Molecular Endocrinology, 16, 2780–2792.PubMedCrossRef McLean, D. J., Friel, P. J., Pouchnik, D., & Griswold, M. D. (2002). Oligonucleotide microarray analysis of gene expression in follicle-stimulating hormone-treated rat Sertoli cells. Molecular Endocrinology, 16, 2780–2792.PubMedCrossRef
88.
go back to reference Schmidt, J., de Avila, J., & McLean, D. (2006). Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary. Reproduction, Fertility, and Development, 18, 757–765.PubMedCrossRef Schmidt, J., de Avila, J., & McLean, D. (2006). Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary. Reproduction, Fertility, and Development, 18, 757–765.PubMedCrossRef
89.
go back to reference Scarlato, M., Beesley, J., & Pleasure, D. (2000). Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 59, 430–435.PubMedCrossRef Scarlato, M., Beesley, J., & Pleasure, D. (2000). Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 59, 430–435.PubMedCrossRef
90.
go back to reference Takano, S., Fukuyama, H., Fukumoto, M., Kimura, J., Xue, J. H., Ohashi, H., et al. (1996). PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Brain Research. Molecular Brain Research, 40, 105–115.PubMedCrossRef Takano, S., Fukuyama, H., Fukumoto, M., Kimura, J., Xue, J. H., Ohashi, H., et al. (1996). PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Brain Research. Molecular Brain Research, 40, 105–115.PubMedCrossRef
91.
go back to reference Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E., Laniado, M. E., Foster, C. S., et al. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters, 369, 290–294.PubMedCrossRef Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E., Laniado, M. E., Foster, C. S., et al. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters, 369, 290–294.PubMedCrossRef
92.
go back to reference Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. Journal of Cellular Physiology, 195, 479–487.PubMedCrossRef Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. Journal of Cellular Physiology, 195, 479–487.PubMedCrossRef
93.
go back to reference Raghavendra Prasad, H. S., Qi, Z., Srinivasan, K. N., & Gopalakrishnakone, P. (2004). Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon, 44, 597–608.PubMedCrossRef Raghavendra Prasad, H. S., Qi, Z., Srinivasan, K. N., & Gopalakrishnakone, P. (2004). Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon, 44, 597–608.PubMedCrossRef
94.
go back to reference Tonks, N. K. (2005). Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 121, 667–670.PubMedCrossRef Tonks, N. K. (2005). Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 121, 667–670.PubMedCrossRef
95.
go back to reference den Hertog, J., Groen, A., & van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Archives of Biochemistry and Biophysics, 434, 11–15.PubMedCrossRef den Hertog, J., Groen, A., & van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Archives of Biochemistry and Biophysics, 434, 11–15.PubMedCrossRef
96.
go back to reference Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 2996–2999.PubMedCrossRef Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 2996–2999.PubMedCrossRef
97.
go back to reference Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef
98.
go back to reference Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., et al. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128, 2822–2835.PubMedCrossRef Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., et al. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128, 2822–2835.PubMedCrossRef
99.
go back to reference Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed
100.
go back to reference Sands, M., Kron, M. A., & Brown, R. B. (1985). Pentamidine: A review. Reviews of Infectious Diseases, 7, 625–634.PubMed Sands, M., Kron, M. A., & Brown, R. B. (1985). Pentamidine: A review. Reviews of Infectious Diseases, 7, 625–634.PubMed
101.
go back to reference Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325–2327.PubMedCrossRef Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325–2327.PubMedCrossRef
102.
go back to reference Lebowitz, P. F., Casey, P. J., Prendergast, G. C., & Thissen, J. A. (1997). Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. Journal of Biological Chemistry, 272, 15591–15594.PubMedCrossRef Lebowitz, P. F., Casey, P. J., Prendergast, G. C., & Thissen, J. A. (1997). Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. Journal of Biological Chemistry, 272, 15591–15594.PubMedCrossRef
103.
go back to reference Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., Nunez-Oliva, I., James, L., Catino, J. J., et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry, 272, 14459–14464.PubMedCrossRef Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., Nunez-Oliva, I., James, L., Catino, J. J., et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry, 272, 14459–14464.PubMedCrossRef
104.
go back to reference Rowell, C. A., Kowalczyk, J. J., Lewis, M. D., & Garcia, A. M. (1997). Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. Journal of Biological Chemistry, 272, 14093–14097.PubMedCrossRef Rowell, C. A., Kowalczyk, J. J., Lewis, M. D., & Garcia, A. M. (1997). Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. Journal of Biological Chemistry, 272, 14093–14097.PubMedCrossRef
105.
go back to reference Mijimolle, N., Velasco, J., Dubus, P., Guerra, C., Weinbaum, C. A., Casey, P. J., et al. (2005). Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 7, 313–324.PubMedCrossRef Mijimolle, N., Velasco, J., Dubus, P., Guerra, C., Weinbaum, C. A., Casey, P. J., et al. (2005). Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 7, 313–324.PubMedCrossRef
106.
go back to reference Konstantinopoulos, P. A., Karamouzis, M. V., & Papavassiliou, A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Reviews Drug Discovery, 6, 541–555.PubMedCrossRef Konstantinopoulos, P. A., Karamouzis, M. V., & Papavassiliou, A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Reviews Drug Discovery, 6, 541–555.PubMedCrossRef
107.
go back to reference Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Chartrand, S. D., Zhang, M., et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Research, 64, 7857–7866.PubMedCrossRef Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Chartrand, S. D., Zhang, M., et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Research, 64, 7857–7866.PubMedCrossRef
108.
go back to reference Anant, J. S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J. C., Westover, K. D., et al. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 37, 12559–12568.PubMedCrossRef Anant, J. S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J. C., Westover, K. D., et al. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 37, 12559–12568.PubMedCrossRef
109.
go back to reference Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P., et al. (1993). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell, 73, 1091–1099.PubMedCrossRef Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P., et al. (1993). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell, 73, 1091–1099.PubMedCrossRef
Metadata
Title
PRL PTPs: mediators and markers of cancer progression
Authors
Darrell C. Bessette
Dexin Qiu
Catherine J. Pallen
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9121-3

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine