Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2020

Open Access 01-12-2020 | Pseudomonas Aeruginosa | Research

Biological and microbiological interactions of Ti-35Nb-7Zr alloy and its basic elements on bone marrow stromal cells: good prospects for bone tissue engineering

Authors: Daphne de Camargo Reis Mello, Lais Morandini Rodrigues, Fabia Zampieri D’Antola Mello, Thais Fernanda Gonçalves, Bento Ferreira, Sandra Giacomin Schneider, Luciane Dias de Oliveira, Luana Marotta Reis de Vasconcellos

Published in: International Journal of Implant Dentistry | Issue 1/2020

Login to get access

Abstract

Background

An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts.

Methods

Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test.

Results

All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples.

Conclusion

Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.
Literature
1.
go back to reference Branemark PI, Hansson BO, Adel R, et al. Osseointegrated implants in the treatment of edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. 1977;16:132. Branemark PI, Hansson BO, Adel R, et al. Osseointegrated implants in the treatment of edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. 1977;16:132.
2.
go back to reference Kohavi D, Badihi L, Rosen G, et al. An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. Biofouling. 2013;10:1215–24.CrossRef Kohavi D, Badihi L, Rosen G, et al. An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. Biofouling. 2013;10:1215–24.CrossRef
3.
go back to reference Biesiekierski A, Lin J, Munir K, et al. An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Sci Rep. 2018;8:5737.PubMedPubMedCentralCrossRef Biesiekierski A, Lin J, Munir K, et al. An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Sci Rep. 2018;8:5737.PubMedPubMedCentralCrossRef
4.
go back to reference Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016:127–41. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016:127–41.
5.
go back to reference Ou KL, Weng CC, Lin YH, et al. A promising of alloying modified beta-type titanium-niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance. J Alloy Compd. 2017;697:231–8.CrossRef Ou KL, Weng CC, Lin YH, et al. A promising of alloying modified beta-type titanium-niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance. J Alloy Compd. 2017;697:231–8.CrossRef
6.
go back to reference Tallarico DA, Gobbi AL, Filho PIP, et al. Nascente PAP. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng. C. 2014;43:45–9.CrossRef Tallarico DA, Gobbi AL, Filho PIP, et al. Nascente PAP. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng. C. 2014;43:45–9.CrossRef
7.
go back to reference Bottino MC, Coelho PG, Henriques VAR, et al. Processing, characterization, and in vitro /in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys. J Biomed Mater Res. 2009;88A:689–96.CrossRef Bottino MC, Coelho PG, Henriques VAR, et al. Processing, characterization, and in vitro /in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys. J Biomed Mater Res. 2009;88A:689–96.CrossRef
8.
go back to reference Mishra A.K., Davidson J.A., Poggie R.A, et al: Mechanical and tribological properties and biocompatibility of diffusion hardened Ti–13Nb– 13Zr – a new titanium alloy for surgical implants. S.A. Brown, J.E. Lemons (Eds.), Medical applications of titanium and its alloys, ASTM STP 1272, ASTM International, West Conshohocken (1996), pp. 96–116. Mishra A.K., Davidson J.A., Poggie R.A, et al: Mechanical and tribological properties and biocompatibility of diffusion hardened Ti–13Nb– 13Zr – a new titanium alloy for surgical implants. S.A. Brown, J.E. Lemons (Eds.), Medical applications of titanium and its alloys, ASTM STP 1272, ASTM International, West Conshohocken (1996), pp. 96–116.
9.
go back to reference Okasaki Y, Rao S, Tateishi T, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new titanium alloys without Al and V. Biomaterials. 1998;19:1197–215.CrossRef Okasaki Y, Rao S, Tateishi T, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new titanium alloys without Al and V. Biomaterials. 1998;19:1197–215.CrossRef
10.
go back to reference de Avila ED, de Molon RS, Lima BP, et al. Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion. J Oral Implantol. 2016;42:153–8.PubMedCrossRef de Avila ED, de Molon RS, Lima BP, et al. Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion. J Oral Implantol. 2016;42:153–8.PubMedCrossRef
11.
go back to reference Elter C, Heuer W, Demling A, et al. Supraand subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants. 2008;23:327–34.PubMed Elter C, Heuer W, Demling A, et al. Supraand subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants. 2008;23:327–34.PubMed
12.
go back to reference Albertini M, Lopez Cerero L, Sullivan MG, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Res. 2015;26:937–41.CrossRef Albertini M, Lopez Cerero L, Sullivan MG, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Res. 2015;26:937–41.CrossRef
13.
go back to reference McConda DB, Karnes JM, Hamza T, et al. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: ‘the race to the surface’ studied in vitro. Biofouling. 2016;6:627–34.CrossRef McConda DB, Karnes JM, Hamza T, et al. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: ‘the race to the surface’ studied in vitro. Biofouling. 2016;6:627–34.CrossRef
14.
go back to reference Truong VK, Lapovok R, Estrin Y, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine- grained titanium. Biomaterials. 2010;31:3674–83.PubMedCrossRef Truong VK, Lapovok R, Estrin Y, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine- grained titanium. Biomaterials. 2010;31:3674–83.PubMedCrossRef
15.
go back to reference do Nascimento C, Pita MS, Pedrazzi V: In vivo evaluation of Candida spp. adhesion o titanium or zirconia abutment surfaces. Archives Oral Biol 2014, 58: 853–861. do Nascimento C, Pita MS, Pedrazzi V: In vivo evaluation of Candida spp. adhesion o titanium or zirconia abutment surfaces. Archives Oral Biol 2014, 58: 853–861.
16.
go back to reference Harris LG, Richard RG. Staphylococcus aureus adhesion to different treated titanium surfaces. J Materials Sci Materials Med. 2013;15:311–4.CrossRef Harris LG, Richard RG. Staphylococcus aureus adhesion to different treated titanium surfaces. J Materials Sci Materials Med. 2013;15:311–4.CrossRef
17.
go back to reference Rokadiya S. Malden, NJ: An implant periapical lesion leading to acute osteomyelitis with isolation of Staphylococcus aureus. British Dental Journal. 2008;205:489–91.PubMedCrossRef Rokadiya S. Malden, NJ: An implant periapical lesion leading to acute osteomyelitis with isolation of Staphylococcus aureus. British Dental Journal. 2008;205:489–91.PubMedCrossRef
18.
go back to reference Chiu LH, Lai WF, Chang SF, et al. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair. Biomaterials. 2014;9:2680–91.CrossRef Chiu LH, Lai WF, Chang SF, et al. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair. Biomaterials. 2014;9:2680–91.CrossRef
19.
go back to reference He LH, Xiao E, An JG, et al. Role of bone marrow stromal cells in impaired bone repair from BRONJ osseous lesions. J Dent Res. 2017;5:539–46.CrossRef He LH, Xiao E, An JG, et al. Role of bone marrow stromal cells in impaired bone repair from BRONJ osseous lesions. J Dent Res. 2017;5:539–46.CrossRef
20.
go back to reference Hahn TJ, Halstead LR, Teitelbaum SL, et al. Altered mineral metabolism in glucocorticoidinduced osteopenia – effect of 25-hydroxyvitamin-D administration. J Clin Invest. 1979;64:655–65.PubMedPubMedCentralCrossRef Hahn TJ, Halstead LR, Teitelbaum SL, et al. Altered mineral metabolism in glucocorticoidinduced osteopenia – effect of 25-hydroxyvitamin-D administration. J Clin Invest. 1979;64:655–65.PubMedPubMedCentralCrossRef
21.
go back to reference Van Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15:993–1000.PubMedCrossRef Van Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15:993–1000.PubMedCrossRef
22.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–75.PubMed
23.
go back to reference Zhang S, Cheng X, Yao Y, et al. Porous niobium coatings fabricated with selective laser melting on titanium substrates: preparation, characterization, and cell behavior. Mater Sci Eng C Mater Biol Appl. 2015;53:50–9.PubMedCrossRef Zhang S, Cheng X, Yao Y, et al. Porous niobium coatings fabricated with selective laser melting on titanium substrates: preparation, characterization, and cell behavior. Mater Sci Eng C Mater Biol Appl. 2015;53:50–9.PubMedCrossRef
24.
go back to reference Khan MA, Wiliams RL, Williams DF. The corrosion behavior of Ti-6Al-4V, Ti- 6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials. 1999;20:631–7.PubMedCrossRef Khan MA, Wiliams RL, Williams DF. The corrosion behavior of Ti-6Al-4V, Ti- 6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials. 1999;20:631–7.PubMedCrossRef
25.
go back to reference Ning C, Ding D, Dai K, et al. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Biomed Mater. 2010;4:1–8. Ning C, Ding D, Dai K, et al. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Biomed Mater. 2010;4:1–8.
26.
go back to reference Nakajo K, Takahashi M, Kikuchi M, et al. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation. Dent Mater J. 2014;3:389–39.CrossRef Nakajo K, Takahashi M, Kikuchi M, et al. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation. Dent Mater J. 2014;3:389–39.CrossRef
27.
go back to reference Banerjee R, Nag S, Stechschulte J, et al. Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials. 2004;25:3413–9.PubMedCrossRef Banerjee R, Nag S, Stechschulte J, et al. Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials. 2004;25:3413–9.PubMedCrossRef
28.
go back to reference Biesiekierski A, Wang J, Abdel-Hady Gepreel M, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661e1669.CrossRef Biesiekierski A, Wang J, Abdel-Hady Gepreel M, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661e1669.CrossRef
29.
go back to reference Wang X, Li Y, Hodgson PD, et al. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng. A. 2009;16:309e316. Wang X, Li Y, Hodgson PD, et al. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng. A. 2009;16:309e316.
30.
go back to reference Xu J, Weng XJ, Wang X, et al. Potential use of porous titanium–niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PLoS One. 2013;8:e79289.PubMedPubMedCentralCrossRef Xu J, Weng XJ, Wang X, et al. Potential use of porous titanium–niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PLoS One. 2013;8:e79289.PubMedPubMedCentralCrossRef
31.
go back to reference de Andrade DP, de Vasconcellos LM, Carvalho IC, et al. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study. Mater Sci Eng C Mater Biol Appl. 2015;56:538–44.PubMedCrossRef de Andrade DP, de Vasconcellos LM, Carvalho IC, et al. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study. Mater Sci Eng C Mater Biol Appl. 2015;56:538–44.PubMedCrossRef
32.
go back to reference do Prado RF, Esteves GC, Santos ELS, et al: In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One 2018, 13: e0196169. do Prado RF, Esteves GC, Santos ELS, et al: In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One 2018, 13: e0196169.
33.
go back to reference Takematsu E, Noguchi K, Kuroda K, et al. In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. PLoS ONE. 2018;13:e0189967.PubMedPubMedCentralCrossRef Takematsu E, Noguchi K, Kuroda K, et al. In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. PLoS ONE. 2018;13:e0189967.PubMedPubMedCentralCrossRef
34.
go back to reference Biesiekierski A, Lin J, Munir J, et al. An investigation of the mechanical and microstructural evolution of of a TiNbZr Alloy with Varied Ageing Time. Sci Rep. 2018;1:5737.CrossRef Biesiekierski A, Lin J, Munir J, et al. An investigation of the mechanical and microstructural evolution of of a TiNbZr Alloy with Varied Ageing Time. Sci Rep. 2018;1:5737.CrossRef
35.
go back to reference Jeyachandran YL, Narayandass SKA, Mangalaraj D, et al. The effect of surface composition of titanium films on bacterial adhesion. Biomed Mater. 2006;1:L1–5.PubMedCrossRef Jeyachandran YL, Narayandass SKA, Mangalaraj D, et al. The effect of surface composition of titanium films on bacterial adhesion. Biomed Mater. 2006;1:L1–5.PubMedCrossRef
36.
go back to reference Wen CE, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scripta Mater. 2001;45:1147–53.CrossRef Wen CE, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scripta Mater. 2001;45:1147–53.CrossRef
37.
go back to reference Mendonça G, Mendonça DBS, Aragão FJL, et al. Advancing dental implant surface technology - from micron- to nanotopography. Biomaterials. 2008;29:3822–35.PubMedCrossRef Mendonça G, Mendonça DBS, Aragão FJL, et al. Advancing dental implant surface technology - from micron- to nanotopography. Biomaterials. 2008;29:3822–35.PubMedCrossRef
38.
go back to reference Anselm K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;7:667–81.CrossRef Anselm K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;7:667–81.CrossRef
39.
go back to reference Zhang D, Wong CS, Wen C, et al: Cellular responses of osteoblast-like cells to 17 elemental metals. J Biomed Mater Res 2016; 00A:000–000. Zhang D, Wong CS, Wen C, et al: Cellular responses of osteoblast-like cells to 17 elemental metals. J Biomed Mater Res 2016; 00A:000–000.
40.
go back to reference Depprich R, Ommerborn M, Zipprich H, et al. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces. Head Face Med. 2008;1:29.CrossRef Depprich R, Ommerborn M, Zipprich H, et al. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces. Head Face Med. 2008;1:29.CrossRef
41.
go back to reference Josset Y, Oum’Hamed Z, Zarrinpour A, et al. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res. 1999;47:481–93.PubMedCrossRef Josset Y, Oum’Hamed Z, Zarrinpour A, et al. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res. 1999;47:481–93.PubMedCrossRef
42.
go back to reference Franco R. de L, Chiesa R, Beloti MM, et al: Human osteoblastic cell response to a Ca- and P-enriched titanium surface obtained by anodization. J Biomed Mater Res A 2010; 4:841-848. Franco R. de L, Chiesa R, Beloti MM, et al: Human osteoblastic cell response to a Ca- and P-enriched titanium surface obtained by anodization. J Biomed Mater Res A 2010; 4:841-848.
43.
go back to reference Goodman SB. The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis. Int Orthop. 2018;42:1705–9.PubMedCrossRef Goodman SB. The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis. Int Orthop. 2018;42:1705–9.PubMedCrossRef
44.
go back to reference Caplan AI, Mason C, Reeve B. The 3Rs of cell therapy. Stem Cell. Transl Med. 2017;6:17–21.CrossRef Caplan AI, Mason C, Reeve B. The 3Rs of cell therapy. Stem Cell. Transl Med. 2017;6:17–21.CrossRef
45.
go back to reference Yorukoglu AC, Kiter AE, Akkaya S, et al. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017:2374161.PubMedPubMedCentralCrossRef Yorukoglu AC, Kiter AE, Akkaya S, et al. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017:2374161.PubMedPubMedCentralCrossRef
47.
go back to reference Bryington M, Mendonça G, Nares S, et al. Osteoblastic and cytokine gene expression of implant-adherent cells in humans. Clin Oral Implants Res. 2014;1:52–8.CrossRef Bryington M, Mendonça G, Nares S, et al. Osteoblastic and cytokine gene expression of implant-adherent cells in humans. Clin Oral Implants Res. 2014;1:52–8.CrossRef
48.
go back to reference Kohno Y, Lin T, Pajarinen J, et al. Osteogenic ability of rat bone marrow concentrate is at least as efficacious as mesenchymal stem cells in vitro. J Biomed Mater Res B Appl Biomater. 2019;8:2500–6.CrossRef Kohno Y, Lin T, Pajarinen J, et al. Osteogenic ability of rat bone marrow concentrate is at least as efficacious as mesenchymal stem cells in vitro. J Biomed Mater Res B Appl Biomater. 2019;8:2500–6.CrossRef
49.
go back to reference Ghali O, Broux O, Falgayrac G, et al. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol. 2015:16–9. Ghali O, Broux O, Falgayrac G, et al. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol. 2015:16–9.
50.
go back to reference Rosa ML, Beloti MM, Prando N, et al. Chromic ethanol intake inhibits in vitro osteogenesis induced by osteoblasts differentiated from stem cells. J Appl Toxicol. 2008;2:205–11.CrossRef Rosa ML, Beloti MM, Prando N, et al. Chromic ethanol intake inhibits in vitro osteogenesis induced by osteoblasts differentiated from stem cells. J Appl Toxicol. 2008;2:205–11.CrossRef
51.
go back to reference Hoemann CD. El-Gabalawy, McKee MD: In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009;57:318–23.PubMedCrossRef Hoemann CD. El-Gabalawy, McKee MD: In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009;57:318–23.PubMedCrossRef
52.
go back to reference Eisenbarth E, Meyle J, Nachtigall N, et al. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterial. 1996;17:1399–140.CrossRef Eisenbarth E, Meyle J, Nachtigall N, et al. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterial. 1996;17:1399–140.CrossRef
53.
go back to reference Guillem-Marti J, Delgado L, Godoy-Gallardo M, et al. Fibroblast adhesion and activation onto micro-machined titanium surfaces. Clin Oral Impl Res. 2013;24:770–80.CrossRef Guillem-Marti J, Delgado L, Godoy-Gallardo M, et al. Fibroblast adhesion and activation onto micro-machined titanium surfaces. Clin Oral Impl Res. 2013;24:770–80.CrossRef
54.
go back to reference Heydenrijk VanderReijden MJ, Raghoebar GM, et al. Microbiota around root-form endosseous implants: a review of the literature. Int J Oral Maxillof Impl. 2002;17:829–38. Heydenrijk VanderReijden MJ, Raghoebar GM, et al. Microbiota around root-form endosseous implants: a review of the literature. Int J Oral Maxillof Impl. 2002;17:829–38.
55.
go back to reference Quirynen M, Soete M, Van Steenberghe V. Infectious risks for oral implants: a review of the literature. Clin Oral Impl Res. 2002;13:1–19.CrossRef Quirynen M, Soete M, Van Steenberghe V. Infectious risks for oral implants: a review of the literature. Clin Oral Impl Res. 2002;13:1–19.CrossRef
56.
go back to reference Furst MM, Salvi GE, Lang NP, et al. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Impl Res. 2007;18:501–8.CrossRef Furst MM, Salvi GE, Lang NP, et al. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Impl Res. 2007;18:501–8.CrossRef
57.
go back to reference Zhao B, van der Mei HC, Subbiahdoss G, et al. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater. 2014;7:716–27.CrossRef Zhao B, van der Mei HC, Subbiahdoss G, et al. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater. 2014;7:716–27.CrossRef
58.
go back to reference Mohamed A. Hussein, Madhan Kumar, Robin Drew, et al: Electrochemical corrosion and in vitro bioactivity of nano-grained biomedical Ti-20Nb-13Zr alloy in simulated body fluid. Materials (Basel) 2017; 11: 1-1. Mohamed A. Hussein, Madhan Kumar, Robin Drew, et al: Electrochemical corrosion and in vitro bioactivity of nano-grained biomedical Ti-20Nb-13Zr alloy in simulated body fluid. Materials (Basel) 2017; 11: 1-1.
59.
go back to reference Hussein A, Madhan Kumar A, Yilbas BS, et al. Laser nitriding of the newly developed Ti-20Nb-13Zr at% biomaterial alloy to enhance its mechanical and corrosion properties in simulated body fluid. J. Mater. Eng. Perform. 2017;26:5553–62..CrossRef Hussein A, Madhan Kumar A, Yilbas BS, et al. Laser nitriding of the newly developed Ti-20Nb-13Zr at% biomaterial alloy to enhance its mechanical and corrosion properties in simulated body fluid. J. Mater. Eng. Perform. 2017;26:5553–62..CrossRef
Metadata
Title
Biological and microbiological interactions of Ti-35Nb-7Zr alloy and its basic elements on bone marrow stromal cells: good prospects for bone tissue engineering
Authors
Daphne de Camargo Reis Mello
Lais Morandini Rodrigues
Fabia Zampieri D’Antola Mello
Thais Fernanda Gonçalves
Bento Ferreira
Sandra Giacomin Schneider
Luciane Dias de Oliveira
Luana Marotta Reis de Vasconcellos
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2020
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-020-00261-3

Other articles of this Issue 1/2020

International Journal of Implant Dentistry 1/2020 Go to the issue