Skip to main content
Top
Published in: International Orthopaedics 7/2018

01-07-2018 | Review Article

The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis

Author: Stuart B. Goodman

Published in: International Orthopaedics | Issue 7/2018

Login to get access

Abstract

Core decompression is a surgical procedure that is capable of salvaging the patient’s own natural joint, if the operation is performed in the early stages of osteonecrosis, in which the articular surface has not collapsed. The addition of concentrated cells, aspirated from the iliac crest, to the core tract has been shown to enhance the viability of the femoral head, although large, prospective, randomized, blinded multicentre studies are lacking. The rationale for adding these cells to the core decompression tract is to provide osteoprogenitor and vascular progenitor cells to the area of decompressed dead bone, in order to facilitate tissue regeneration and repair. It has become increasingly evident that vast discrepancies exist in different series in regard to the criteria for patient selection, the surgical technique of core decompression, the methods for harvesting, processing, and injecting the cells, and the methodology for determining success or failure in a specific patient cohort. This paper reviews the salient points relevant to the treatment of osteonecrosis by core decompression with addition of concentrated iliac crest aspirates and poses important questions regarding the future successful application of this technique.
Literature
1.
go back to reference Mont MA, Carbone JJ, Fairbank AC (1996) Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 324:169–178CrossRef Mont MA, Carbone JJ, Fairbank AC (1996) Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 324:169–178CrossRef
2.
go back to reference Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR (2015) Nontraumatic osteonecrosis of the femoral head: where do we stand today? A ten-year update. J Bone Joint Surg Am 97(19):1604–1627CrossRefPubMed Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR (2015) Nontraumatic osteonecrosis of the femoral head: where do we stand today? A ten-year update. J Bone Joint Surg Am 97(19):1604–1627CrossRefPubMed
3.
4.
go back to reference Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA (2017) An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J 99-B(10):1267–1279CrossRefPubMed Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA (2017) An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J 99-B(10):1267–1279CrossRefPubMed
5.
go back to reference Bozic KJ, Zurakowski D, Thornhill TS (1999) Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am 81(2):200–209CrossRefPubMed Bozic KJ, Zurakowski D, Thornhill TS (1999) Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am 81(2):200–209CrossRefPubMed
6.
go back to reference Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23CrossRef Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23CrossRef
7.
go back to reference Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, Rouard H (2015) Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone 70:102–109CrossRefPubMed Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, Rouard H (2015) Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone 70:102–109CrossRefPubMed
8.
go back to reference Houdek MT, Wyles CC, Martin JR, Sierra RJ (2014) Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem Cells Cloning Adv Appl 7:65–70 Houdek MT, Wyles CC, Martin JR, Sierra RJ (2014) Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem Cells Cloning Adv Appl 7:65–70
9.
go back to reference Papakostidis C, Tosounidis TH, Jones E, Giannoudis PV (2016) The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop 87(1):72–78CrossRefPubMed Papakostidis C, Tosounidis TH, Jones E, Giannoudis PV (2016) The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop 87(1):72–78CrossRefPubMed
10.
go back to reference Goodman SB, Hwang KL (2015) Treatment of secondary osteonecrosis of the knee with local debridement and osteoprogenitor cell grafting. J Arthroplast 30(11):1892–1896CrossRef Goodman SB, Hwang KL (2015) Treatment of secondary osteonecrosis of the knee with local debridement and osteoprogenitor cell grafting. J Arthroplast 30(11):1892–1896CrossRef
11.
go back to reference Lieberman JR, Varthi AG, Polkowski GG 2nd (2014) Osteonecrosis of the knee—which joint preservation procedures work? J Arthroplast 29(1):52–56CrossRef Lieberman JR, Varthi AG, Polkowski GG 2nd (2014) Osteonecrosis of the knee—which joint preservation procedures work? J Arthroplast 29(1):52–56CrossRef
12.
go back to reference Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed
13.
go back to reference Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMed Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMed
15.
go back to reference Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437PubMed Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437PubMed
16.
go back to reference Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1):40–45CrossRefPubMedPubMedCentral Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1):40–45CrossRefPubMedPubMedCentral
17.
go back to reference Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709CrossRefPubMed Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709CrossRefPubMed
18.
go back to reference Patterson TE, Boehm C, Nakamoto C, Rozic R, Walker E, Piuzzi NS, Muschler GF (2017) The efficiency of bone marrow aspiration for the harvest of connective tissue progenitors from the human iliac crest. J Bone Joint Surg Am 99(19):1673–1682CrossRefPubMed Patterson TE, Boehm C, Nakamoto C, Rozic R, Walker E, Piuzzi NS, Muschler GF (2017) The efficiency of bone marrow aspiration for the harvest of connective tissue progenitors from the human iliac crest. J Bone Joint Surg Am 99(19):1673–1682CrossRefPubMed
19.
go back to reference Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125CrossRefPubMed Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125CrossRefPubMed
20.
go back to reference Piuzzi NS, Chahla J, Jiandong H, Chughtai M, LaPrade RF, Mont MA, Muschler GF, Pascual-Garrido C (2017) Analysis of cell therapies used in clinical trials for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(8):2612–2618CrossRef Piuzzi NS, Chahla J, Jiandong H, Chughtai M, LaPrade RF, Mont MA, Muschler GF, Pascual-Garrido C (2017) Analysis of cell therapies used in clinical trials for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(8):2612–2618CrossRef
21.
go back to reference Piuzzi NS, Chahla J, Schrock JB, LaPrade RF, Pascual-Garrido C, Mont MA, Muschler GF (2017) Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(5):1698–1708CrossRef Piuzzi NS, Chahla J, Schrock JB, LaPrade RF, Pascual-Garrido C, Mont MA, Muschler GF (2017) Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(5):1698–1708CrossRef
22.
go back to reference Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH (2016) Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress. Clin Orthop Surg 8(1):1–8CrossRefPubMedPubMedCentral Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH (2016) Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress. Clin Orthop Surg 8(1):1–8CrossRefPubMedPubMedCentral
23.
go back to reference Thoesen MS, Berg-Foels WS, Stokol T, Rassnick KM, Jacobson MS, Kevy SV, Todhunter RJ (2006) Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates. Am J Vet Res 67(10):1655–1661CrossRefPubMed Thoesen MS, Berg-Foels WS, Stokol T, Rassnick KM, Jacobson MS, Kevy SV, Todhunter RJ (2006) Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates. Am J Vet Res 67(10):1655–1661CrossRefPubMed
24.
go back to reference Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM (2014) A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 28(10):591–598CrossRefPubMed Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM (2014) A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 28(10):591–598CrossRefPubMed
25.
go back to reference Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181CrossRefPubMed Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181CrossRefPubMed
26.
go back to reference Caralla T, Boehm C, Hascall V, Muschler G (2012) Hyaluronan as a novel marker for rapid selection of connective tissue progenitors. Ann Biomed Eng 40(12):2559–2567CrossRefPubMed Caralla T, Boehm C, Hascall V, Muschler G (2012) Hyaluronan as a novel marker for rapid selection of connective tissue progenitors. Ann Biomed Eng 40(12):2559–2567CrossRefPubMed
27.
go back to reference Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H, Boehm C, Vasanji A, Hefferan TE, Walker E et al (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng A 19(1–2):125–134CrossRef Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H, Boehm C, Vasanji A, Hefferan TE, Walker E et al (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng A 19(1–2):125–134CrossRef
28.
go back to reference Joshi P, Williams PS, Moore LR, Caralla T, Boehm C, Muschler G, Zborowski M (2015) Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors. Anal Chem 87(19):9908–9915CrossRefPubMedPubMedCentral Joshi P, Williams PS, Moore LR, Caralla T, Boehm C, Muschler G, Zborowski M (2015) Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors. Anal Chem 87(19):9908–9915CrossRefPubMedPubMedCentral
29.
go back to reference Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251CrossRef Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251CrossRef
30.
go back to reference Luangphakdy V, Boehm C, Pan H, Herrick J, Zaveri P, Muschler GF (2016) Assessment of methods for rapid intraoperative concentration and selection of marrow-derived connective tissue progenitors for bone regeneration using the canine femoral multidefect model. Tissue Eng A 22(1–2):17–30CrossRef Luangphakdy V, Boehm C, Pan H, Herrick J, Zaveri P, Muschler GF (2016) Assessment of methods for rapid intraoperative concentration and selection of marrow-derived connective tissue progenitors for bone regeneration using the canine femoral multidefect model. Tissue Eng A 22(1–2):17–30CrossRef
31.
go back to reference Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673CrossRefPubMed Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673CrossRefPubMed
32.
go back to reference Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I (2016) Large-scale mesenchymal stem/stromal sell expansion: a visualization tool for bioprocess comparison. Tissue Eng B Rev 22(6):485–498CrossRef Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I (2016) Large-scale mesenchymal stem/stromal sell expansion: a visualization tool for bioprocess comparison. Tissue Eng B Rev 22(6):485–498CrossRef
33.
go back to reference Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T et al (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128–139CrossRefPubMed Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T et al (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128–139CrossRefPubMed
34.
go back to reference Sensebe L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26CrossRefPubMed Sensebe L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26CrossRefPubMed
35.
go back to reference Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66CrossRefPubMedPubMedCentral Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66CrossRefPubMedPubMedCentral
36.
go back to reference Arlet J, Ficat P, Sebbag D (1969) The use of measurement of intramedullary pressure in the greater trochanter in man, particularly in the diagnosis of osteonecrosis of the femoral head. Rev Rhum Mal Osteoartic 35(5):250–256 Arlet J, Ficat P, Sebbag D (1969) The use of measurement of intramedullary pressure in the greater trochanter in man, particularly in the diagnosis of osteonecrosis of the femoral head. Rev Rhum Mal Osteoartic 35(5):250–256
37.
go back to reference Mao Q, Wang W, Xu T, Zhang S, Xiao L, Chen D, Jin H, Tong P (2015) Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial. J Bone Miner Res 30(4):647–656CrossRefPubMedPubMedCentral Mao Q, Wang W, Xu T, Zhang S, Xiao L, Chen D, Jin H, Tong P (2015) Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial. J Bone Miner Res 30(4):647–656CrossRefPubMedPubMedCentral
38.
39.
go back to reference Prockop DJ, Kota DJ, Bazhanov N, Reger RL (2010) Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14(9):2190–2199CrossRefPubMedPubMedCentral Prockop DJ, Kota DJ, Bazhanov N, Reger RL (2010) Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14(9):2190–2199CrossRefPubMedPubMedCentral
40.
go back to reference Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159CrossRefPubMed Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159CrossRefPubMed
42.
go back to reference Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270 Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270
43.
go back to reference Hossain MA, Chowdhury T, Bagul A (2015) Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 9(11):1217–1224CrossRefPubMed Hossain MA, Chowdhury T, Bagul A (2015) Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 9(11):1217–1224CrossRefPubMed
45.
go back to reference Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 8(12):1969–1983CrossRef Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 8(12):1969–1983CrossRef
46.
go back to reference Lin CS, Xin ZC, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28(9):1109–1116PubMedPubMedCentral Lin CS, Xin ZC, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28(9):1109–1116PubMedPubMedCentral
47.
go back to reference Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK et al (2014) Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment. Tissue Eng A 20(3–4):810–818 Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK et al (2014) Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment. Tissue Eng A 20(3–4):810–818
Metadata
Title
The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis
Author
Stuart B. Goodman
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 7/2018
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-018-3830-1

Other articles of this Issue 7/2018

International Orthopaedics 7/2018 Go to the issue