Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2024

19-02-2024 | Prostate Cancer | REVIEW

Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation

Authors: Milad Ashrafizadeh, Wei Zhang, Yu Tian, Gautam Sethi, Xianbin Zhang, Aiming Qiu

Published in: Cancer and Metastasis Reviews | Issue 1/2024

Login to get access

Abstract

Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Literature
4.
go back to reference Crawford, E. D., Heidenreich, A., Lawrentschuk, N., Tombal, B., Pompeo, A. C. L., Mendoza-Valdes, A., Miller, K., Debruyne, F. M. J., & Klotz, L. (2019). Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate cancer and prostatic diseases, 22, 24–38. https://doi.org/10.1038/s41391-018-0079-0CrossRefPubMed Crawford, E. D., Heidenreich, A., Lawrentschuk, N., Tombal, B., Pompeo, A. C. L., Mendoza-Valdes, A., Miller, K., Debruyne, F. M. J., & Klotz, L. (2019). Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate cancer and prostatic diseases, 22, 24–38. https://​doi.​org/​10.​1038/​s41391-018-0079-0CrossRefPubMed
8.
9.
go back to reference Coleman, W. B. (2018). Chapter 25 — Molecular pathogenesis of prostate cancer. In Molecular pathology (Second Edition), Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press. pp. 555–568. Coleman, W. B. (2018). Chapter 25 — Molecular pathogenesis of prostate cancer. In Molecular pathology (Second Edition), Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press. pp. 555–568.
10.
go back to reference Avkshtol, V., Ruth, K. J., Ross, E. A., Hallman, M. A., Greenberg, R. E., Price, R. A., Jr., Leachman, B., Uzzo, R. G., Ma, C., Chen, D., et al. (2020). Ten-year update of a randomized, prospective trial of conventional fractionated versus moderate hypofractionated radiation therapy for localized prostate cancer. Journal of clinical oncology : Official journal of the American Society of Clinical Oncology, 38, 1676–1684. https://doi.org/10.1200/jco.19.01485CrossRefPubMed Avkshtol, V., Ruth, K. J., Ross, E. A., Hallman, M. A., Greenberg, R. E., Price, R. A., Jr., Leachman, B., Uzzo, R. G., Ma, C., Chen, D., et al. (2020). Ten-year update of a randomized, prospective trial of conventional fractionated versus moderate hypofractionated radiation therapy for localized prostate cancer. Journal of clinical oncology : Official journal of the American Society of Clinical Oncology, 38, 1676–1684. https://​doi.​org/​10.​1200/​jco.​19.​01485CrossRefPubMed
16.
18.
go back to reference Oh, M., Alkhushaym, N., Fallatah, S., Althagafi, A., Aljadeed, R., Alsowaida, Y., Jeter, J., Martin, J. R., Babiker, H. M., McBride, A., et al. (2019). The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A meta-analysis. The Prostate, 79, 880–895. https://doi.org/10.1002/pros.23795CrossRefPubMed Oh, M., Alkhushaym, N., Fallatah, S., Althagafi, A., Aljadeed, R., Alsowaida, Y., Jeter, J., Martin, J. R., Babiker, H. M., McBride, A., et al. (2019). The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A meta-analysis. The Prostate, 79, 880–895. https://​doi.​org/​10.​1002/​pros.​23795CrossRefPubMed
24.
go back to reference Cyrta, J., Prandi, D., Arora, A., Hovelson, D. H., Sboner, A., Rodriguez, A., Fedrizzi, T., Beltran, H., Robinson, D. R., Gopalan, A., et al. (2022). Comparative genomics of primary prostate cancer and paired metastases: Insights from 12 molecular case studies. The Journal of pathology, 257, 274–284. https://doi.org/10.1002/path.5887CrossRefPubMed Cyrta, J., Prandi, D., Arora, A., Hovelson, D. H., Sboner, A., Rodriguez, A., Fedrizzi, T., Beltran, H., Robinson, D. R., Gopalan, A., et al. (2022). Comparative genomics of primary prostate cancer and paired metastases: Insights from 12 molecular case studies. The Journal of pathology, 257, 274–284. https://​doi.​org/​10.​1002/​path.​5887CrossRefPubMed
31.
go back to reference Goldie, J. H., & Coldman, A. J. (1984). The genetic origin of drug resistance in neoplasms: Implications for systemic therapy. Cancer Research, 44, 3643–3653.PubMed Goldie, J. H., & Coldman, A. J. (1984). The genetic origin of drug resistance in neoplasms: Implications for systemic therapy. Cancer Research, 44, 3643–3653.PubMed
33.
go back to reference Skipper, H. E., Schabel, F. M., Jr., & Wilcox, W. S. (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemotherapy Reports, 35, 1–111.PubMed Skipper, H. E., Schabel, F. M., Jr., & Wilcox, W. S. (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemotherapy Reports, 35, 1–111.PubMed
34.
go back to reference Goldie, J. H., & Coldman, A. J. (1979). A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports, 63, 1727–1733.PubMed Goldie, J. H., & Coldman, A. J. (1979). A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports, 63, 1727–1733.PubMed
44.
go back to reference Makker, V., Rasco, D., Vogelzang, N. J., Brose, M. S., Cohn, A. L., Mier, J., Di Simone, C., Hyman, D. M., Stepan, D. E., Dutcus, C. E., et al. (2019). Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. The Lancet. Oncology, 20, 711–718. https://doi.org/10.1016/s1470-2045(19)30020-8CrossRefPubMed Makker, V., Rasco, D., Vogelzang, N. J., Brose, M. S., Cohn, A. L., Mier, J., Di Simone, C., Hyman, D. M., Stepan, D. E., Dutcus, C. E., et al. (2019). Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. The Lancet. Oncology, 20, 711–718. https://​doi.​org/​10.​1016/​s1470-2045(19)30020-8CrossRefPubMed
45.
go back to reference Rini, B. I., Plimack, E. R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., Pouliot, F., Alekseev, B., Soulières, D., Melichar, B., et al. (2019). Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. The New England Journal of Medicine, 380, 1116–1127. https://doi.org/10.1056/NEJMoa1816714CrossRefPubMed Rini, B. I., Plimack, E. R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., Pouliot, F., Alekseev, B., Soulières, D., Melichar, B., et al. (2019). Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. The New England Journal of Medicine, 380, 1116–1127. https://​doi.​org/​10.​1056/​NEJMoa1816714CrossRefPubMed
48.
49.
go back to reference Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP–dependent transporters. Nature Reviews Cancer, 2, 48–58.CrossRefPubMed Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP–dependent transporters. Nature Reviews Cancer, 2, 48–58.CrossRefPubMed
50.
go back to reference Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., & Gottesman, M. M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology, 39, 361–398.CrossRefPubMed Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., & Gottesman, M. M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology, 39, 361–398.CrossRefPubMed
51.
go back to reference Choi, C.-H. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell International, 5, 1–13.CrossRef Choi, C.-H. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell International, 5, 1–13.CrossRef
52.
go back to reference Thomas, H., & Coley, H. M. (2003). Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 10, 159–165.CrossRefPubMed Thomas, H., & Coley, H. M. (2003). Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 10, 159–165.CrossRefPubMed
53.
go back to reference Pusztai, L., Wagner, P., Ibrahim, N., Rivera, E., Theriault, R., Booser, D., Symmans, F. W., Wong, F., Blumenschein, G., & Fleming, D. R. (2005). Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 104, 682–691.CrossRefPubMed Pusztai, L., Wagner, P., Ibrahim, N., Rivera, E., Theriault, R., Booser, D., Symmans, F. W., Wong, F., Blumenschein, G., & Fleming, D. R. (2005). Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 104, 682–691.CrossRefPubMed
54.
go back to reference Meijer, C., Mulder, N. H., Timmer-Bosscha, H., Sluiter, W. J., Meersma, G. J., & de Vries, E. G. (1992). Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Research, 52, 6885–6889.PubMed Meijer, C., Mulder, N. H., Timmer-Bosscha, H., Sluiter, W. J., Meersma, G. J., & de Vries, E. G. (1992). Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Research, 52, 6885–6889.PubMed
55.
go back to reference Schwartz, P. M., Moir, R. D., Hyde, C. M., Turek, P. J., & Handschumacher, R. E. (1985). Role of uridine phosphorylase in the anabolism of 5-fluorouracil. Biochemical Pharmacology, 34, 3585–3589.CrossRefPubMed Schwartz, P. M., Moir, R. D., Hyde, C. M., Turek, P. J., & Handschumacher, R. E. (1985). Role of uridine phosphorylase in the anabolism of 5-fluorouracil. Biochemical Pharmacology, 34, 3585–3589.CrossRefPubMed
56.
go back to reference Houghton, J. A., & Houghton, P. J. (1983). Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma. European Journal of Cancer and Clinical Oncology, 19, 807–815.CrossRefPubMed Houghton, J. A., & Houghton, P. J. (1983). Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma. European Journal of Cancer and Clinical Oncology, 19, 807–815.CrossRefPubMed
57.
go back to reference Malet-Martino, M., & Martino, R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. The Oncologist, 7, 288–323.CrossRefPubMed Malet-Martino, M., & Martino, R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. The Oncologist, 7, 288–323.CrossRefPubMed
58.
go back to reference Kosuri, K., Wu, X., Wang, L., Villalona-Calero, M., & Otterson, G. (2010). An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochemical and Biophysical Research Communications, 391, 1465–1470.CrossRefPubMed Kosuri, K., Wu, X., Wang, L., Villalona-Calero, M., & Otterson, G. (2010). An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochemical and Biophysical Research Communications, 391, 1465–1470.CrossRefPubMed
59.
go back to reference Bélanger, A.-S., Tojcic, J., Harvey, M., & Guillemette, C. (2010). Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Molecular Biology, 11, 1–11.CrossRef Bélanger, A.-S., Tojcic, J., Harvey, M., & Guillemette, C. (2010). Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Molecular Biology, 11, 1–11.CrossRef
60.
go back to reference Toffoli, G., Cecchin, E., Gasparini, G., D’Andrea, M., Azzarello, G., Basso, U., Mini, E., Pessa, S., De Mattia, E., & Lo Re, G. (2010). Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 28, 866–871.CrossRefPubMed Toffoli, G., Cecchin, E., Gasparini, G., D’Andrea, M., Azzarello, G., Basso, U., Mini, E., Pessa, S., De Mattia, E., & Lo Re, G. (2010). Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 28, 866–871.CrossRefPubMed
61.
go back to reference Ward, R. A., Fawell, S., Floc’h, N., Flemington, V., McKerrecher, D., & Smith, P. D. (2020). Challenges and opportunities in cancer drug resistance. Chemical Reviews, 121, 3297–3351.CrossRefPubMed Ward, R. A., Fawell, S., Floc’h, N., Flemington, V., McKerrecher, D., & Smith, P. D. (2020). Challenges and opportunities in cancer drug resistance. Chemical Reviews, 121, 3297–3351.CrossRefPubMed
62.
go back to reference Joyce, H., McCann, A., Clynes, M., & Larkin, A. (2015). Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 11, 795–809.CrossRef Joyce, H., McCann, A., Clynes, M., & Larkin, A. (2015). Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 11, 795–809.CrossRef
64.
go back to reference Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., & Wyczalkowski, M. A. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339.CrossRefPubMedPubMedCentral Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., & Wyczalkowski, M. A. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339.CrossRefPubMedPubMedCentral
65.
go back to reference Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., Wong, K.-K., & Elledge, S. J. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.CrossRefPubMedPubMedCentral Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., Wong, K.-K., & Elledge, S. J. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.CrossRefPubMedPubMedCentral
66.
go back to reference Zhang, T., Brazhnik, P., & Tyson, J. J. (2009). Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophysical Journal, 97, 415–434.CrossRefPubMedPubMedCentral Zhang, T., Brazhnik, P., & Tyson, J. J. (2009). Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophysical Journal, 97, 415–434.CrossRefPubMedPubMedCentral
67.
go back to reference Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 23, 2934–2949.CrossRefPubMed Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 23, 2934–2949.CrossRefPubMed
68.
go back to reference Zhivotovsky, B., & Orrenius, S. (2003). Defects in the apoptotic machinery of cancer cells: Role in drug resistance. In: Proceedings of the Seminars in cancer biology, pp. 125–134. Zhivotovsky, B., & Orrenius, S. (2003). Defects in the apoptotic machinery of cancer cells: Role in drug resistance. In: Proceedings of the Seminars in cancer biology, pp. 125–134.
69.
go back to reference Indran, I. R., Tufo, G., Pervaiz, S., & Brenner, C. (2011). Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 735–745.CrossRefPubMed Indran, I. R., Tufo, G., Pervaiz, S., & Brenner, C. (2011). Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 735–745.CrossRefPubMed
79.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., & Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648. https://doi.org/10.1038/367645a0CrossRefPubMed Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., & Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648. https://​doi.​org/​10.​1038/​367645a0CrossRefPubMed
85.
go back to reference Chen, P. M., Wong, C. N., Wong, C. N., Chu, P. Y. (2023). Actin-like protein 6A expression correlates with cancer stem cell-like features and poor prognosis in ovarian cancer. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms24032016 Chen, P. M., Wong, C. N., Wong, C. N., Chu, P. Y. (2023). Actin-like protein 6A expression correlates with cancer stem cell-like features and poor prognosis in ovarian cancer. International Journal of Molecular Sciences, 24. https://​doi.​org/​10.​3390/​ijms24032016
86.
go back to reference Sun, K., Shen, H., He, S., & Liu, Y. (2022). MASM inhibits cancer stem cell-like characteristics of EpCAM(+) cells via AKT/GSK3β/β-catenin signaling. American Journal of Translational Research, 14, 8380–8389.PubMedPubMedCentral Sun, K., Shen, H., He, S., & Liu, Y. (2022). MASM inhibits cancer stem cell-like characteristics of EpCAM(+) cells via AKT/GSK3β/β-catenin signaling. American Journal of Translational Research, 14, 8380–8389.PubMedPubMedCentral
89.
go back to reference Liao, W., Zhang, L., Chen, X., Xiang, J., Zheng, Q., Chen, N., Zhao, M., Zhang, G., Xiao, X., Zhou, G., et al. (2023). Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 108, 154524. https://doi.org/10.1016/j.phymed.2022.154524CrossRefPubMed Liao, W., Zhang, L., Chen, X., Xiang, J., Zheng, Q., Chen, N., Zhao, M., Zhang, G., Xiao, X., Zhou, G., et al. (2023). Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 108, 154524. https://​doi.​org/​10.​1016/​j.​phymed.​2022.​154524CrossRefPubMed
99.
go back to reference Xie, C., Wang, Z., Ba, Y., Aguilar, J., Kyan, A., Zhong, L., & Hao, J. (2023). BMP signaling inhibition overcomes chemoresistance of prostate cancer. American Journal of Cancer Research, 13, 4073–4086.PubMedPubMedCentral Xie, C., Wang, Z., Ba, Y., Aguilar, J., Kyan, A., Zhong, L., & Hao, J. (2023). BMP signaling inhibition overcomes chemoresistance of prostate cancer. American Journal of Cancer Research, 13, 4073–4086.PubMedPubMedCentral
107.
113.
go back to reference Gujrati, H., Ha, S., Waseem, M., Wang, B. D. (2022). Downregulation of miR-99b-5p and upregulation of nuclear mTOR cooperatively promotes the tumor aggressiveness and drug resistance in African American prostate cancer. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23179643 Gujrati, H., Ha, S., Waseem, M., Wang, B. D. (2022). Downregulation of miR-99b-5p and upregulation of nuclear mTOR cooperatively promotes the tumor aggressiveness and drug resistance in African American prostate cancer. International Journal of Molecular Sciences, 23. https://​doi.​org/​10.​3390/​ijms23179643
114.
go back to reference Paskeh, M. D. A., Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., et al. (2022). Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology, 15, 83. https://doi.org/10.1186/s13045-022-01305-4CrossRef Paskeh, M. D. A., Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., et al. (2022). Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology, 15, 83. https://​doi.​org/​10.​1186/​s13045-022-01305-4CrossRef
125.
go back to reference Mirzaei, S., Paskeh, M. D. A., Okina, E., Gholami, M. H., Hushmandi, K., Hashemi, M., Kalu, A., Zarrabi, A., Nabavi, N., Rabiee, N., et al. (2022). Molecular landscape of LncRNAs in prostate cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental & Clinical Cancer Research : CR, 41, 214. https://doi.org/10.1186/s13046-022-02406-1CrossRefPubMedCentral Mirzaei, S., Paskeh, M. D. A., Okina, E., Gholami, M. H., Hushmandi, K., Hashemi, M., Kalu, A., Zarrabi, A., Nabavi, N., Rabiee, N., et al. (2022). Molecular landscape of LncRNAs in prostate cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental & Clinical Cancer Research : CR, 41, 214. https://​doi.​org/​10.​1186/​s13046-022-02406-1CrossRefPubMedCentral
129.
go back to reference Jiang, H., Xiong, W., Chen, L., Lv, Z., Yang, C., & Li, Y. (2019). Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer. Journal of Cellular Biochemistry, 120, 8965–8974. https://doi.org/10.1002/jcb.27851CrossRefPubMed Jiang, H., Xiong, W., Chen, L., Lv, Z., Yang, C., & Li, Y. (2019). Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer. Journal of Cellular Biochemistry, 120, 8965–8974. https://​doi.​org/​10.​1002/​jcb.​27851CrossRefPubMed
132.
137.
go back to reference Gu, P., Chen, X., Xie, R., Han, J., Xie, W., Wang, B., Dong, W., Chen, C., Yang, M., Jiang, J., et al. (2017). lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Molecular therapy : The Journal of the American Society of Gene Therapy, 25, 1959–1973. https://doi.org/10.1016/j.ymthe.2017.04.016CrossRefPubMed Gu, P., Chen, X., Xie, R., Han, J., Xie, W., Wang, B., Dong, W., Chen, C., Yang, M., Jiang, J., et al. (2017). lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Molecular therapy : The Journal of the American Society of Gene Therapy, 25, 1959–1973. https://​doi.​org/​10.​1016/​j.​ymthe.​2017.​04.​016CrossRefPubMed
150.
go back to reference Ni, J., Cozzi, P., Hao, J., Beretov, J., Chang, L., Duan, W., Shigdar, S., Delprado, W., Graham, P., Bucci, J., et al. (2013). Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. The International Journal of Biochemistry & Cell Biology, 45, 2736–2748. https://doi.org/10.1016/j.biocel.2013.09.008CrossRef Ni, J., Cozzi, P., Hao, J., Beretov, J., Chang, L., Duan, W., Shigdar, S., Delprado, W., Graham, P., Bucci, J., et al. (2013). Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. The International Journal of Biochemistry & Cell Biology, 45, 2736–2748. https://​doi.​org/​10.​1016/​j.​biocel.​2013.​09.​008CrossRef
151.
go back to reference Sharma, P. K., Singh, R., Novakovic, K. R., Eaton, J. W., Grizzle, W. E., & Singh, S. (2010). CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. International Journal of Cancer, 127, 2020–2030. https://doi.org/10.1002/ijc.25219CrossRefPubMed Sharma, P. K., Singh, R., Novakovic, K. R., Eaton, J. W., Grizzle, W. E., & Singh, S. (2010). CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. International Journal of Cancer, 127, 2020–2030. https://​doi.​org/​10.​1002/​ijc.​25219CrossRefPubMed
153.
go back to reference Hour, T. C., Chung, S. D., Kang, W. Y., Lin, Y. C., Chuang, S. J., Huang, A. M., Wu, W. J., Huang, S. P., Huang, C. Y., & Pu, Y. S. (2015). EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Archives of Toxicology, 89, 591–605. https://doi.org/10.1007/s00204-014-1275-xCrossRefPubMed Hour, T. C., Chung, S. D., Kang, W. Y., Lin, Y. C., Chuang, S. J., Huang, A. M., Wu, W. J., Huang, S. P., Huang, C. Y., & Pu, Y. S. (2015). EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Archives of Toxicology, 89, 591–605. https://​doi.​org/​10.​1007/​s00204-014-1275-xCrossRefPubMed
154.
158.
go back to reference Hong, Z., Wu, G., Xiang, Z. D., Xu, C. D., Huang, S. S., Li, C., Shi, L., & Wu, D. L. (2019). KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 114, 108793. https://doi.org/10.1016/j.biopha.2019.108793CrossRef Hong, Z., Wu, G., Xiang, Z. D., Xu, C. D., Huang, S. S., Li, C., Shi, L., & Wu, D. L. (2019). KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 114, 108793. https://​doi.​org/​10.​1016/​j.​biopha.​2019.​108793CrossRef
162.
go back to reference Sekino, Y., Han, X., Kawaguchi, T., Babasaki, T., Goto, K., Inoue, S., Hayashi, T., Teishima, J., Shiota, M., Yasui, W. et al. (2019). TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20163936 Sekino, Y., Han, X., Kawaguchi, T., Babasaki, T., Goto, K., Inoue, S., Hayashi, T., Teishima, J., Shiota, M., Yasui, W. et al. (2019). TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. International Journal of Molecular Sciences, 20. https://​doi.​org/​10.​3390/​ijms20163936
164.
go back to reference Thalappil, M. A., Butturini, E., Carcereri de Prati, A., Bettin, I., Antonini, L., Sapienza, F. U., Garzoli, S., Ragno, R., Mariotto, S. (2022). Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules (Basel, Switzerland), 27. https://doi.org/10.3390/molecules27154834 Thalappil, M. A., Butturini, E., Carcereri de Prati, A., Bettin, I., Antonini, L., Sapienza, F. U., Garzoli, S., Ragno, R., Mariotto, S. (2022). Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules (Basel, Switzerland), 27. https://​doi.​org/​10.​3390/​molecules2715483​4
173.
go back to reference Wu, G., Wang, J., Chen, G., & Zhao, X. (2017). microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). American Journal of Translational Research, 9, 3599–3610.PubMedPubMedCentral Wu, G., Wang, J., Chen, G., & Zhao, X. (2017). microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). American Journal of Translational Research, 9, 3599–3610.PubMedPubMedCentral
176.
go back to reference Hsu, W. C., Ramesh, S., Shibu, M. A., Chen, M. C., Wang, T. F., Day, C. H., Chen, R. J., Padma, V. V., Li, C. C., Tseng, Y. C., et al. (2021). Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 82, 153442. https://doi.org/10.1016/j.phymed.2020.153442CrossRefPubMed Hsu, W. C., Ramesh, S., Shibu, M. A., Chen, M. C., Wang, T. F., Day, C. H., Chen, R. J., Padma, V. V., Li, C. C., Tseng, Y. C., et al. (2021). Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 82, 153442. https://​doi.​org/​10.​1016/​j.​phymed.​2020.​153442CrossRefPubMed
177.
go back to reference Xiao, G., Wang, X., & Yu, Y. (2017). CXCR4/Let-7a axis regulates metastasis and chemoresistance of pancreatic cancer cells through targeting HMGA2. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 43, 840–851. https://doi.org/10.1159/000481610CrossRefPubMed Xiao, G., Wang, X., & Yu, Y. (2017). CXCR4/Let-7a axis regulates metastasis and chemoresistance of pancreatic cancer cells through targeting HMGA2. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 43, 840–851. https://​doi.​org/​10.​1159/​000481610CrossRefPubMed
178.
go back to reference Dong, J., Wang, R., Ren, G., Li, X., Wang, J., Sun, Y., Liang, J., Nie, Y., Wu, K., Feng, B., et al. (2017). HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23, 3461–3473. https://doi.org/10.1158/1078-0432.Ccr-16-2180CrossRefPubMed Dong, J., Wang, R., Ren, G., Li, X., Wang, J., Sun, Y., Liang, J., Nie, Y., Wu, K., Feng, B., et al. (2017). HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23, 3461–3473. https://​doi.​org/​10.​1158/​1078-0432.​Ccr-16-2180CrossRefPubMed
179.
182.
go back to reference Mancini, M. C. S., Morelli, A. P., Severino, M. B., Pavan, I. C. B., Zambalde, É. P., Góis, M. M., Silva, L., Quintero-Ruiz, N., Romeiro, C. F., Dos Santos, D. F. G., et al. (2022). Knockout of NRF2 triggers prostate cancer cells death through ROS modulation and sensitizes to cisplatin. Journal of Cellular Biochemistry, 123, 2079–2092. https://doi.org/10.1002/jcb.30333CrossRefPubMed Mancini, M. C. S., Morelli, A. P., Severino, M. B., Pavan, I. C. B., Zambalde, É. P., Góis, M. M., Silva, L., Quintero-Ruiz, N., Romeiro, C. F., Dos Santos, D. F. G., et al. (2022). Knockout of NRF2 triggers prostate cancer cells death through ROS modulation and sensitizes to cisplatin. Journal of Cellular Biochemistry, 123, 2079–2092. https://​doi.​org/​10.​1002/​jcb.​30333CrossRefPubMed
191.
194.
go back to reference Lamprou, I., Tsolou, A., Kakouratos, C., Mitrakas, A. G., Xanthopoulou, E. T., Kassela, K., Karakasiliotis, I., Zois, C. E., Giatromanolaki, A., & Koukourakis, M. I. (2021). Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Medical Oncology (Northwood, London, England), 38, 116. https://doi.org/10.1007/s12032-021-01566-yCrossRefPubMed Lamprou, I., Tsolou, A., Kakouratos, C., Mitrakas, A. G., Xanthopoulou, E. T., Kassela, K., Karakasiliotis, I., Zois, C. E., Giatromanolaki, A., & Koukourakis, M. I. (2021). Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Medical Oncology (Northwood, London, England), 38, 116. https://​doi.​org/​10.​1007/​s12032-021-01566-yCrossRefPubMed
196.
go back to reference Martínez-Martínez, D., Soto, A., Gil-Araujo, B., Gallego, B., Chiloeches, A., & Lasa, M. (2019). Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 124, 273–279. https://doi.org/10.1016/j.fct.2018.12.014CrossRefPubMed Martínez-Martínez, D., Soto, A., Gil-Araujo, B., Gallego, B., Chiloeches, A., & Lasa, M. (2019). Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 124, 273–279. https://​doi.​org/​10.​1016/​j.​fct.​2018.​12.​014CrossRefPubMed
198.
go back to reference Kim, K. Y., Yun, U. J., Yeom, S. H., Kim, S. C., Lee, H. J., Ahn, S.C., Park, K. I., Kim, Y. W. (2021). Inhibition of autophagy promotes hemistepsin A-induced apoptosis via reactive oxygen species-mediated AMPK-dependent signaling in human prostate cancer cells. Biomolecules, 11. https://doi.org/10.3390/biom11121806 Kim, K. Y., Yun, U. J., Yeom, S. H., Kim, S. C., Lee, H. J., Ahn, S.C., Park, K. I., Kim, Y. W. (2021). Inhibition of autophagy promotes hemistepsin A-induced apoptosis via reactive oxygen species-mediated AMPK-dependent signaling in human prostate cancer cells. Biomolecules, 11. https://​doi.​org/​10.​3390/​biom11121806
203.
go back to reference Jung, A. R., Kim, G. E., Kim, M. Y., Ha, U. S., Hong, S. H., Lee, J. Y., Kim, S. W., & Park, Y. H. (2021). HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-κB axis in castration-resistant prostate cancer. American Journal of Cancer Research, 11, 2215–2227.PubMedPubMedCentral Jung, A. R., Kim, G. E., Kim, M. Y., Ha, U. S., Hong, S. H., Lee, J. Y., Kim, S. W., & Park, Y. H. (2021). HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-κB axis in castration-resistant prostate cancer. American Journal of Cancer Research, 11, 2215–2227.PubMedPubMedCentral
207.
210.
215.
go back to reference Castellón, E. A., Indo, S., Contreras, H. R. (2022). Cancer stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: Potential therapeutic target. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms232314917 Castellón, E. A., Indo, S., Contreras, H. R. (2022). Cancer stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: Potential therapeutic target. International Journal of Molecular Sciences, 23. https://​doi.​org/​10.​3390/​ijms232314917
224.
229.
go back to reference Chen, D., Chou, F. J., Chen, Y., Huang, C. P., Tian, H., Wang, Y., Niu, Y., You, B., Yeh, S., Xing, N., et al. (2022). Targeting the radiation-induced ARv7-mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin increases prostate cancer radiosensitivity. Journal of Experimental & Clinical Cancer Research : CR, 41, 235. https://doi.org/10.1186/s13046-022-02287-4CrossRefPubMedCentral Chen, D., Chou, F. J., Chen, Y., Huang, C. P., Tian, H., Wang, Y., Niu, Y., You, B., Yeh, S., Xing, N., et al. (2022). Targeting the radiation-induced ARv7-mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin increases prostate cancer radiosensitivity. Journal of Experimental & Clinical Cancer Research : CR, 41, 235. https://​doi.​org/​10.​1186/​s13046-022-02287-4CrossRefPubMedCentral
235.
go back to reference Bao, X., Zhu, J., Ren, C., Zhao, A., Zhang, M., Zhu, Z., Lu, X., Zhang, Y., Li, X., Sima, X., et al. (2021). β-elemonic acid inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells through the suppression of JAK2/STAT3/MCL-1 and NF-ĸB signal pathways. Chemico-Biological Interactions, 342, 109477. https://doi.org/10.1016/j.cbi.2021.109477CrossRefPubMed Bao, X., Zhu, J., Ren, C., Zhao, A., Zhang, M., Zhu, Z., Lu, X., Zhang, Y., Li, X., Sima, X., et al. (2021). β-elemonic acid inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells through the suppression of JAK2/STAT3/MCL-1 and NF-ĸB signal pathways. Chemico-Biological Interactions, 342, 109477. https://​doi.​org/​10.​1016/​j.​cbi.​2021.​109477CrossRefPubMed
236.
go back to reference Liu, Y. Q., Wang, S. K., Xu, Q. Q., Yuan, H. Q., Guo, Y. X., Wang, Q., Kong, F., Lin, Z. M., Sun, D. Q., Wang, R. M., et al. (2019). Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacologica Sinica, 40, 689–698. https://doi.org/10.1038/s41401-018-0157-9CrossRefPubMed Liu, Y. Q., Wang, S. K., Xu, Q. Q., Yuan, H. Q., Guo, Y. X., Wang, Q., Kong, F., Lin, Z. M., Sun, D. Q., Wang, R. M., et al. (2019). Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacologica Sinica, 40, 689–698. https://​doi.​org/​10.​1038/​s41401-018-0157-9CrossRefPubMed
246.
go back to reference Imrali, A., Mao, X., Yeste-Velasco, M., Shamash, J., & Lu, Y. (2016). Rapamycin inhibits prostate cancer cell growth through cyclin D1 and enhances the cytotoxic efficacy of cisplatin. American Journal of Cancer Research, 6, 1772–1784.PubMedPubMedCentral Imrali, A., Mao, X., Yeste-Velasco, M., Shamash, J., & Lu, Y. (2016). Rapamycin inhibits prostate cancer cell growth through cyclin D1 and enhances the cytotoxic efficacy of cisplatin. American Journal of Cancer Research, 6, 1772–1784.PubMedPubMedCentral
250.
251.
252.
go back to reference Marampon, F., Gravina, G., Ju, X., Vetuschi, A., Sferra, R., Casimiro, M., Pompili, S., Festuccia, C., Colapietro, A., Gaudio, E., et al. (2016). Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget, 7, 5383–5400. https://doi.org/10.18632/oncotarget.6579CrossRefPubMed Marampon, F., Gravina, G., Ju, X., Vetuschi, A., Sferra, R., Casimiro, M., Pompili, S., Festuccia, C., Colapietro, A., Gaudio, E., et al. (2016). Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget, 7, 5383–5400. https://​doi.​org/​10.​18632/​oncotarget.​6579CrossRefPubMed
253.
go back to reference Wu, K., Wu, M., Yang, H., Diao, R., & Zeng, H. (2023). Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. Clinical & Translational Oncology : Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. https://doi.org/10.1007/s12094-023-03093-wCrossRef Wu, K., Wu, M., Yang, H., Diao, R., & Zeng, H. (2023). Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. Clinical & Translational Oncology : Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. https://​doi.​org/​10.​1007/​s12094-023-03093-wCrossRef
257.
261.
go back to reference He, Z., Yuan, J., Shen, F., Zeng, F., Qi, P., Wang, Z., & Zhai, Z. (2020). Atorvastatin enhances effects of radiotherapy on prostate cancer cells and xenograft tumor mice through triggering interaction between Bcl-2 and MSH2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 26, e923560. https://doi.org/10.12659/msm.923560CrossRefPubMed He, Z., Yuan, J., Shen, F., Zeng, F., Qi, P., Wang, Z., & Zhai, Z. (2020). Atorvastatin enhances effects of radiotherapy on prostate cancer cells and xenograft tumor mice through triggering interaction between Bcl-2 and MSH2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 26, e923560. https://​doi.​org/​10.​12659/​msm.​923560CrossRefPubMed
264.
go back to reference Zhang, L., Lin, Z., Chen, Y., Gao, D., Wang, P., Lin, Y., Wang, Y., Wang, F., Han, Y., & Yuan, H. (2022). Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 174, 106199. https://doi.org/10.1016/j.ejps.2022.106199CrossRefPubMed Zhang, L., Lin, Z., Chen, Y., Gao, D., Wang, P., Lin, Y., Wang, Y., Wang, F., Han, Y., & Yuan, H. (2022). Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 174, 106199. https://​doi.​org/​10.​1016/​j.​ejps.​2022.​106199CrossRefPubMed
267.
268.
go back to reference Potiron, V. A., Abderrahmani, R., Giang, E., Chiavassa, S., Di Tomaso, E., Maira, S. M., Paris, F., & Supiot, S. (2013). Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 106, 138–146. https://doi.org/10.1016/j.radonc.2012.11.014CrossRefPubMed Potiron, V. A., Abderrahmani, R., Giang, E., Chiavassa, S., Di Tomaso, E., Maira, S. M., Paris, F., & Supiot, S. (2013). Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 106, 138–146. https://​doi.​org/​10.​1016/​j.​radonc.​2012.​11.​014CrossRefPubMed
270.
go back to reference Chen, Y. A., Tzeng, D. T. W., Huang, Y. P., Lin, C. J., Lo, U. G., Wu, C. L., Lin, H., Hsieh, J. T., Tang, C. H., Lai, C. H. (2018). Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers, 11. https://doi.org/10.3390/cancers11010034 Chen, Y. A., Tzeng, D. T. W., Huang, Y. P., Lin, C. J., Lo, U. G., Wu, C. L., Lin, H., Hsieh, J. T., Tang, C. H., Lai, C. H. (2018). Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers, 11. https://​doi.​org/​10.​3390/​cancers11010034
273.
go back to reference Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11, 214. https://doi.org/10.1038/s41419-020-2405-4CrossRef Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11, 214. https://​doi.​org/​10.​1038/​s41419-020-2405-4CrossRef
274.
go back to reference Chang, L., Graham, P. H., Hao, J., Ni, J., Bucci, J., Cozzi, P. J., Kearsley, J. H., & Li, Y. (2014). PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death & Disease, 5, e1437. https://doi.org/10.1038/cddis.2014.415CrossRef Chang, L., Graham, P. H., Hao, J., Ni, J., Bucci, J., Cozzi, P. J., Kearsley, J. H., & Li, Y. (2014). PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death & Disease, 5, e1437. https://​doi.​org/​10.​1038/​cddis.​2014.​415CrossRef
278.
go back to reference Wang, W., Liu, M., Guan, Y., & Wu, Q. (2016). Hypoxia-responsive Mir-301a and Mir-301b promote radioresistance of prostate cancer cells via downregulating NDRG2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 22, 2126–2132. https://doi.org/10.12659/msm.896832CrossRefPubMed Wang, W., Liu, M., Guan, Y., & Wu, Q. (2016). Hypoxia-responsive Mir-301a and Mir-301b promote radioresistance of prostate cancer cells via downregulating NDRG2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 22, 2126–2132. https://​doi.​org/​10.​12659/​msm.​896832CrossRefPubMed
284.
go back to reference Ciccarelli, C., Di Rocco, A., Gravina, G. L., Mauro, A., Festuccia, C., Del Fattore, A., Berardinelli, P., De Felice, F., Musio, D., Bouché, M., et al. (2018). Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. Journal of Cancer Research and Clinical Oncology, 144, 1685–1699. https://doi.org/10.1007/s00432-018-2696-3CrossRefPubMed Ciccarelli, C., Di Rocco, A., Gravina, G. L., Mauro, A., Festuccia, C., Del Fattore, A., Berardinelli, P., De Felice, F., Musio, D., Bouché, M., et al. (2018). Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. Journal of Cancer Research and Clinical Oncology, 144, 1685–1699. https://​doi.​org/​10.​1007/​s00432-018-2696-3CrossRefPubMed
285.
go back to reference Chen, X., Chen, F., Ren, Y., Weng, G., Xu, L., Xue, X., Keng, P. C., Lee, S. O., & Chen, Y. (2019). IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. Journal of Cancer Research and Clinical Oncology, 145, 1471–1484. https://doi.org/10.1007/s00432-019-02917-zCrossRefPubMed Chen, X., Chen, F., Ren, Y., Weng, G., Xu, L., Xue, X., Keng, P. C., Lee, S. O., & Chen, Y. (2019). IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. Journal of Cancer Research and Clinical Oncology, 145, 1471–1484. https://​doi.​org/​10.​1007/​s00432-019-02917-zCrossRefPubMed
294.
296.
go back to reference Wise, D. R., Schneider, J.A., Armenia, J., Febles, V. A., McLaughlin, B., Brennan, R., Thoren, K. L., Abida, W., Sfanos, K. S., De Marzo, A. M., et al. (2020). Dickkopf-1 can lead to immune evasion in metastatic castration-resistant prostate cancer. JCO Precision Oncology, 4. https://doi.org/10.1200/po.20.00097 Wise, D. R., Schneider, J.A., Armenia, J., Febles, V. A., McLaughlin, B., Brennan, R., Thoren, K. L., Abida, W., Sfanos, K. S., De Marzo, A. M., et al. (2020). Dickkopf-1 can lead to immune evasion in metastatic castration-resistant prostate cancer. JCO Precision Oncology, 4. https://​doi.​org/​10.​1200/​po.​20.​00097
303.
311.
go back to reference Jeong, J. H., Zhong, S., Li, F., Huang, C., Chen, X., Liu, Q., Peng, S., Park, H., Lee, Y.M., Dhillon, J., et al. (2023). Tumor-derived OBP2A promotes prostate cancer castration resistance. The Journal of Experimental Medicine, 220. https://doi.org/10.1084/jem.20211546 Jeong, J. H., Zhong, S., Li, F., Huang, C., Chen, X., Liu, Q., Peng, S., Park, H., Lee, Y.M., Dhillon, J., et al. (2023). Tumor-derived OBP2A promotes prostate cancer castration resistance. The Journal of Experimental Medicine, 220. https://​doi.​org/​10.​1084/​jem.​20211546
312.
go back to reference Sharp, A., Coleman, I., Yuan, W., Sprenger, C., Dolling, D., Rodrigues, D. N., Russo, J. W., Figueiredo, I., Bertan, C., Seed, G., et al. (2019). Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. The Journal of Clinical Investigation, 129, 192–208. https://doi.org/10.1172/jci122819CrossRefPubMed Sharp, A., Coleman, I., Yuan, W., Sprenger, C., Dolling, D., Rodrigues, D. N., Russo, J. W., Figueiredo, I., Bertan, C., Seed, G., et al. (2019). Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. The Journal of Clinical Investigation, 129, 192–208. https://​doi.​org/​10.​1172/​jci122819CrossRefPubMed
314.
go back to reference Yuan, S., He, S. H., Li, L. Y., Xi, S., Weng, H., Zhang, J. H., Wang, D. Q., Guo, M. M., Zhang, H., Wang, S. Y., et al. (2023). A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1. Cell Death & Disease, 14, 7. https://doi.org/10.1038/s41419-022-05544-8CrossRef Yuan, S., He, S. H., Li, L. Y., Xi, S., Weng, H., Zhang, J. H., Wang, D. Q., Guo, M. M., Zhang, H., Wang, S. Y., et al. (2023). A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1. Cell Death & Disease, 14, 7. https://​doi.​org/​10.​1038/​s41419-022-05544-8CrossRef
315.
go back to reference Zhang, N., Huang, D., Ruan, X., Ng, A. T., Tsu, J. H., Jiang, G., Huang, J., Zhan, Y., & Na, R. (2023). CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 67, 100912. https://doi.org/10.1016/j.drup.2022.100912CrossRefPubMed Zhang, N., Huang, D., Ruan, X., Ng, A. T., Tsu, J. H., Jiang, G., Huang, J., Zhan, Y., & Na, R. (2023). CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 67, 100912. https://​doi.​org/​10.​1016/​j.​drup.​2022.​100912CrossRefPubMed
316.
go back to reference Sun, Y., Cronin, M. F., Mendonça, M. C. P., Guo, J., & O’Driscoll, C. M. (2023). Sialic acid-targeted cyclodextrin-based nanoparticles deliver CSF-1R siRNA and reprogram tumour-associated macrophages for immunotherapy of prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 185, 106427. https://doi.org/10.1016/j.ejps.2023.106427CrossRefPubMed Sun, Y., Cronin, M. F., Mendonça, M. C. P., Guo, J., & O’Driscoll, C. M. (2023). Sialic acid-targeted cyclodextrin-based nanoparticles deliver CSF-1R siRNA and reprogram tumour-associated macrophages for immunotherapy of prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 185, 106427. https://​doi.​org/​10.​1016/​j.​ejps.​2023.​106427CrossRefPubMed
322.
325.
326.
go back to reference Guo, Q., Dong, Y., Zhang, Y., Fu, H., Chen, C., Wang, L., Yang, X., Shen, M., Yu, J., Chen, M., et al. (2021). Sequential release of pooled siRNAs and paclitaxel by aptamer-functionalized shell-core nanoparticles to overcome paclitaxel resistance of prostate cancer. ACS Applied Materials & Interfaces, 13, 13990–14003. https://doi.org/10.1021/acsami.1c00852CrossRef Guo, Q., Dong, Y., Zhang, Y., Fu, H., Chen, C., Wang, L., Yang, X., Shen, M., Yu, J., Chen, M., et al. (2021). Sequential release of pooled siRNAs and paclitaxel by aptamer-functionalized shell-core nanoparticles to overcome paclitaxel resistance of prostate cancer. ACS Applied Materials & Interfaces, 13, 13990–14003. https://​doi.​org/​10.​1021/​acsami.​1c00852CrossRef
327.
go back to reference Nagesh, P. K. B., Chowdhury, P., Hatami, E., Boya, V. K. N., Kashyap, V. K., Khan, S., Hafeez, B. B., Chauhan, S. C., Jaggi, M., Yallapu, M. M. (2018). miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers, 10. https://doi.org/10.3390/cancers10090289 Nagesh, P. K. B., Chowdhury, P., Hatami, E., Boya, V. K. N., Kashyap, V. K., Khan, S., Hafeez, B. B., Chauhan, S. C., Jaggi, M., Yallapu, M. M. (2018). miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers, 10. https://​doi.​org/​10.​3390/​cancers10090289
329.
go back to reference Hara, D., Tao, W., Schmidt, R. M., Yang, Y. P., Daunert, S., Dogan, N., Ford, J. C., Pollack, A., Shi, J. (2022). Boosted radiation bystander effect of PSMA-targeted gold nanoparticles in prostate cancer radiosensitization. Nanomaterials (Basel, Switzerland), 12. https://doi.org/10.3390/nano12244440 Hara, D., Tao, W., Schmidt, R. M., Yang, Y. P., Daunert, S., Dogan, N., Ford, J. C., Pollack, A., Shi, J. (2022). Boosted radiation bystander effect of PSMA-targeted gold nanoparticles in prostate cancer radiosensitization. Nanomaterials (Basel, Switzerland), 12. https://​doi.​org/​10.​3390/​nano12244440
330.
go back to reference Zhang, X., Liu, N., Shao, Z., Qiu, H., Yao, H., Ji, J., Wang, J., Lu, W., Chen, R. C., & Zhang, L. (2017). Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine : Nanotechnology, Biology, and Medicine, 13, 1309–1321. https://doi.org/10.1016/j.nano.2017.01.015CrossRefPubMed Zhang, X., Liu, N., Shao, Z., Qiu, H., Yao, H., Ji, J., Wang, J., Lu, W., Chen, R. C., & Zhang, L. (2017). Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine : Nanotechnology, Biology, and Medicine, 13, 1309–1321. https://​doi.​org/​10.​1016/​j.​nano.​2017.​01.​015CrossRefPubMed
332.
go back to reference Mortensen, M. M., Høyer, S., Lynnerup, A.-S., Ørntoft, T. F., Sørensen, K. D., Borre, M., & Dyrskjøt, L. (2015). Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Scientific Reports, 5, 16018.CrossRefPubMedPubMedCentral Mortensen, M. M., Høyer, S., Lynnerup, A.-S., Ørntoft, T. F., Sørensen, K. D., Borre, M., & Dyrskjøt, L. (2015). Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Scientific Reports, 5, 16018.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation
Authors
Milad Ashrafizadeh
Wei Zhang
Yu Tian
Gautam Sethi
Xianbin Zhang
Aiming Qiu
Publication date
19-02-2024
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2024
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-024-10168-9

Other articles of this Issue 1/2024

Cancer and Metastasis Reviews 1/2024 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine