Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2024

03-01-2024 | Metastasis | REVIEW

Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals

Authors: Sajad Fakhri, Seyed Zachariah Moradi, Fatemeh Abbaszadeh, Farahnaz Faraji, Roshanak Amirian, Dona Sinha, Emily G. McMahon, Anupam Bishayee

Published in: Cancer and Metastasis Reviews | Issue 1/2024

Login to get access

Abstract

Plasticity of phenotypic traits refers to an organism’s ability to change in response to environmental stimuli. As a result, the response may alter an organism’s physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Literature
1.
go back to reference Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.PubMed Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.PubMed
2.
go back to reference Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.PubMed Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.PubMed
3.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.PubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.PubMed
4.
go back to reference Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedPubMedCentral Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedPubMedCentral
5.
go back to reference Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.PubMedPubMedCentral Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.PubMedPubMedCentral
6.
go back to reference Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.PubMed Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.PubMed
8.
go back to reference Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.PubMedPubMedCentral Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.PubMedPubMedCentral
11.
go back to reference Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.PubMed Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.PubMed
12.
go back to reference Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier
13.
go back to reference Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.PubMedPubMedCentral Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.PubMedPubMedCentral
14.
go back to reference More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest. More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest.
15.
16.
go back to reference Darwin, C. (2004). On the origin of species, 1859. Routledge. Darwin, C. (2004). On the origin of species, 1859. Routledge.
17.
go back to reference Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428. Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428.
18.
go back to reference Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172. Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172.
19.
go back to reference Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487. Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487.
21.
go back to reference Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159. Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159.
22.
go back to reference Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston. Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.
23.
go back to reference Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press. Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press.
24.
go back to reference Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press. Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.
25.
go back to reference Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155.
26.
go back to reference Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.PubMed Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.PubMed
27.
go back to reference Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.PubMedPubMedCentral Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.PubMedPubMedCentral
28.
go back to reference Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.PubMed Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.PubMed
29.
go back to reference Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.PubMed Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.PubMed
30.
go back to reference Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMed Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMed
31.
go back to reference Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.PubMed Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.PubMed
32.
go back to reference Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.PubMed Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.PubMed
33.
go back to reference Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://doi.org/10.3390/cancers14092057 Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://​doi.​org/​10.​3390/​cancers14092057
34.
go back to reference Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.PubMed Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.PubMed
36.
go back to reference Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.PubMedPubMedCentral Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.PubMedPubMedCentral
37.
go back to reference Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324 Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324
38.
go back to reference Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.PubMed Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.PubMed
39.
go back to reference Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.PubMed Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.PubMed
40.
go back to reference Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.PubMed Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.PubMed
41.
go back to reference Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.PubMedPubMedCentral Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.PubMedPubMedCentral
42.
go back to reference Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.PubMed Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.PubMed
44.
go back to reference Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience. Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience.
45.
go back to reference Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.PubMedPubMedCentral Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.PubMedPubMedCentral
49.
go back to reference van de Stolpe, A. (2013). On the origin and destination of cancer stem cells: A conceptual evaluation. American Journal of Cancer Research, 3(1), 107–116.PubMedPubMedCentral van de Stolpe, A. (2013). On the origin and destination of cancer stem cells: A conceptual evaluation. American Journal of Cancer Research, 3(1), 107–116.PubMedPubMedCentral
51.
go back to reference Osman, A., Afify, S. M., Hassan, G., Fu, X., Seno, A., & Seno, M. (2020). Revisiting cancer stem cells as the origin of cancer-associated cells in the tumor microenvironment: A hypothetical view from the potential of iPSCs. Cancers, 12(4), 879.PubMedPubMedCentral Osman, A., Afify, S. M., Hassan, G., Fu, X., Seno, A., & Seno, M. (2020). Revisiting cancer stem cells as the origin of cancer-associated cells in the tumor microenvironment: A hypothetical view from the potential of iPSCs. Cancers, 12(4), 879.PubMedPubMedCentral
52.
go back to reference Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 457(7229), 603–607.PubMed Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 457(7229), 603–607.PubMed
53.
go back to reference Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMed Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMed
54.
go back to reference Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed
55.
go back to reference Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.-L., Oakes, S. R., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3(4), 429–441.PubMed Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.-L., Oakes, S. R., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3(4), 429–441.PubMed
56.
go back to reference Wang, X., Julio, M.K.-D., Economides, K. D., Walker, D., Yu, H., Halili, M. V., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.PubMedPubMedCentral Wang, X., Julio, M.K.-D., Economides, K. D., Walker, D., Yu, H., Halili, M. V., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.PubMedPubMedCentral
57.
go back to reference Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences, 107(6), 2610-2615. Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences, 107(6), 2610-2615.
58.
go back to reference Korsten, H., Ziel-van der Made, A., Ma, X., van der Kwast, T., & Trapman, J. (2009). Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One, 4(5), e5662.PubMedPubMedCentral Korsten, H., Ziel-van der Made, A., Ma, X., van der Kwast, T., & Trapman, J. (2009). Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One, 4(5), e5662.PubMedPubMedCentral
59.
go back to reference Friedlander, S. Y. G., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., et al. (2009). Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16(5), 379–389. Friedlander, S. Y. G., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., et al. (2009). Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16(5), 379–389.
60.
go back to reference Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., et al. (2010). Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1), 25–36.PubMed Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., et al. (2010). Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1), 25–36.PubMed
61.
go back to reference Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.PubMed Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.PubMed
62.
go back to reference Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 1(3), 269–277.PubMed Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 1(3), 269–277.PubMed
63.
go back to reference Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., et al. (2010). Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. The EMBO Journal, 29(1), 222–235.PubMed Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., et al. (2010). Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. The EMBO Journal, 29(1), 222–235.PubMed
64.
go back to reference Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., & Uhrbom, L. (2009). Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28(23), 2266–2275.PubMed Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., & Uhrbom, L. (2009). Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28(23), 2266–2275.PubMed
65.
go back to reference Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468(7327), 1095–1099.PubMedPubMedCentral Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468(7327), 1095–1099.PubMedPubMedCentral
66.
go back to reference Johnson, R. A., Wright, K. D., Poppleton, H., Mohankumar, K. M., Finkelstein, D., Pounds, S. B., et al. (2010). Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 466(7306), 632–636.PubMedPubMedCentral Johnson, R. A., Wright, K. D., Poppleton, H., Mohankumar, K. M., Finkelstein, D., Pounds, S. B., et al. (2010). Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 466(7306), 632–636.PubMedPubMedCentral
67.
go back to reference Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed
68.
go back to reference Bhatia, S., Wang, P., Toh, A., & Thompson, E. W. (2020). New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Frontiers in Molecular Biosciences, 7, 71.PubMedPubMedCentral Bhatia, S., Wang, P., Toh, A., & Thompson, E. W. (2020). New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Frontiers in Molecular Biosciences, 7, 71.PubMedPubMedCentral
69.
go back to reference Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.PubMedPubMedCentral Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.PubMedPubMedCentral
70.
go back to reference Jehanno, C., Vulin, M., Richina, V., Richina, F., & Bentires-Alj, M. (2022). Phenotypic plasticity during metastatic colonization. Trends in Cell Biology. Jehanno, C., Vulin, M., Richina, V., Richina, F., & Bentires-Alj, M. (2022). Phenotypic plasticity during metastatic colonization. Trends in Cell Biology.
71.
go back to reference Ocaña, O. H., Corcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., et al. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22(6), 709–724.PubMed Ocaña, O. H., Corcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., et al. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22(6), 709–724.PubMed
72.
go back to reference Mani, S. A., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentral Mani, S. A., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentral
73.
go back to reference Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., et al. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12(9), e1001945.PubMedPubMedCentral Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., et al. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12(9), e1001945.PubMedPubMedCentral
74.
go back to reference Feng, Y.-X., Jin, D. X., Sokol, E. S., Reinhardt, F., Miller, D. H., & Gupta, P. B. (2017). Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nature Communications, 8(1), 1079.PubMedPubMedCentral Feng, Y.-X., Jin, D. X., Sokol, E. S., Reinhardt, F., Miller, D. H., & Gupta, P. B. (2017). Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nature Communications, 8(1), 1079.PubMedPubMedCentral
75.
go back to reference Goldman, A. (2016). Tailoring combinatorial cancer therapies to target the origins of adaptive resistance. Molecular & cellular oncology, 3(1), e1030534. Goldman, A. (2016). Tailoring combinatorial cancer therapies to target the origins of adaptive resistance. Molecular & cellular oncology, 3(1), e1030534.
76.
go back to reference Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228.PubMedPubMedCentral Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228.PubMedPubMedCentral
77.
go back to reference Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral
78.
go back to reference Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., et al. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221. e3211 Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., et al. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221. e3211
79.
go back to reference Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentral Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentral
80.
go back to reference Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., et al. (2018). Identification of the tumour transition states occurring during EMT. Nature, 556(7702), 463–468.PubMed Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., et al. (2018). Identification of the tumour transition states occurring during EMT. Nature, 556(7702), 463–468.PubMed
81.
go back to reference Shi, Z.-D., Pang, K., Wu, Z.-X., Dong, Y., Hao, L., Qin, J.-X., et al. (2023). Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduction and Targeted Therapy, 8(1), 113.PubMedPubMedCentral Shi, Z.-D., Pang, K., Wu, Z.-X., Dong, Y., Hao, L., Qin, J.-X., et al. (2023). Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduction and Targeted Therapy, 8(1), 113.PubMedPubMedCentral
82.
go back to reference Merrell, A. J., & Stanger, B. Z. (2016). Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nature Reviews Molecular Cell Biology, 17(7), 413–425.PubMedPubMedCentral Merrell, A. J., & Stanger, B. Z. (2016). Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nature Reviews Molecular Cell Biology, 17(7), 413–425.PubMedPubMedCentral
83.
go back to reference Das, M., & Law, S. (2018). Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. The International Journal of Biochemistry & Cell Biology, 103, 115–124. Das, M., & Law, S. (2018). Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. The International Journal of Biochemistry & Cell Biology, 103, 115–124.
84.
go back to reference Yochum, Z. A., Cades, J., Wang, H., Chatterjee, S., Simons, B. W., O’Brien, J. P., et al. (2019). Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 38(5), 656–670.PubMed Yochum, Z. A., Cades, J., Wang, H., Chatterjee, S., Simons, B. W., O’Brien, J. P., et al. (2019). Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 38(5), 656–670.PubMed
85.
go back to reference Dai, C., Heemers, H., & Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452.PubMedPubMedCentral Dai, C., Heemers, H., & Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452.PubMedPubMedCentral
86.
go back to reference Lee, H., Jeong, A. J., & Ye, S.-K. (2019). Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 52(7), 415.PubMedPubMedCentral Lee, H., Jeong, A. J., & Ye, S.-K. (2019). Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 52(7), 415.PubMedPubMedCentral
87.
go back to reference East, M. P., & Johnson, G. L. (2022). Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. Journal of Biological Chemistry, 298(2), 101525.PubMed East, M. P., & Johnson, G. L. (2022). Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. Journal of Biological Chemistry, 298(2), 101525.PubMed
88.
go back to reference Salaritabar, A., Berindan-Neagoe, I., Darvish, B., Hadjiakhoondi, F., Manayi, A., Devi, K. P., et al. (2019). Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 141, 466–480.PubMed Salaritabar, A., Berindan-Neagoe, I., Darvish, B., Hadjiakhoondi, F., Manayi, A., Devi, K. P., et al. (2019). Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 141, 466–480.PubMed
90.
go back to reference Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., et al. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT. International Journal of Oncology, 60(6), 1–17. Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., et al. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT. International Journal of Oncology, 60(6), 1–17.
91.
go back to reference Knoechel, B., Roderick, J. E., Williamson, K. E., Zhu, J., Lohr, J. G., Cotton, M. J., et al. (2014). An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genetics, 46(4), 364–370.PubMedPubMedCentral Knoechel, B., Roderick, J. E., Williamson, K. E., Zhu, J., Lohr, J. G., Cotton, M. J., et al. (2014). An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genetics, 46(4), 364–370.PubMedPubMedCentral
92.
go back to reference Guo, L., Lee, Y.-T., Zhou, Y., & Huang, Y. (2022). Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. In Seminars in Cancer Biology, (Vol. 83, pp. 487–502): Elsevier Guo, L., Lee, Y.-T., Zhou, Y., & Huang, Y. (2022). Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. In Seminars in Cancer Biology, (Vol. 83, pp. 487–502): Elsevier
93.
go back to reference Yosifov, D. Y., Bloehdorn, J., Döhner, H., Lichter, P., Stilgenbauer, S., & Mertens, D. (2020). DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 7(1), 133.PubMedPubMedCentral Yosifov, D. Y., Bloehdorn, J., Döhner, H., Lichter, P., Stilgenbauer, S., & Mertens, D. (2020). DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 7(1), 133.PubMedPubMedCentral
94.
go back to reference Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 23(3), 1353.PubMedPubMedCentral Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 23(3), 1353.PubMedPubMedCentral
96.
go back to reference Howe, L. R., Watanabe, O., Leonard, J., & Brown, A. M. (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Research, 63(8), 1906–1913.PubMed Howe, L. R., Watanabe, O., Leonard, J., & Brown, A. M. (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Research, 63(8), 1906–1913.PubMed
97.
go back to reference Saad, S., Stanners, S., Yong, R., Tang, O., & Pollock, C. (2010). Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. The International Journal of Biochemistry & Cell Biology, 42(7), 1115–1122. Saad, S., Stanners, S., Yong, R., Tang, O., & Pollock, C. (2010). Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. The International Journal of Biochemistry & Cell Biology, 42(7), 1115–1122.
98.
go back to reference Deshmukh, A. P., Vasaikar, S. V., Tomczak, K., Tripathi, S., Den Hollander, P., Arslan, E., et al. (2021). Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences, 118(19), e2102050118. Deshmukh, A. P., Vasaikar, S. V., Tomczak, K., Tripathi, S., Den Hollander, P., Arslan, E., et al. (2021). Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences, 118(19), e2102050118.
99.
go back to reference von Arx, C., Capozzi, M., López-Jiménez, E., Ottaiano, A., Tatangelo, F., Di Mauro, A., et al. (2019). Updates on the role of molecular alterations and NOTCH signalling in the development of neuroendocrine neoplasms. Journal of Clinical Medicine, 8(9), 1277. von Arx, C., Capozzi, M., López-Jiménez, E., Ottaiano, A., Tatangelo, F., Di Mauro, A., et al. (2019). Updates on the role of molecular alterations and NOTCH signalling in the development of neuroendocrine neoplasms. Journal of Clinical Medicine, 8(9), 1277.
100.
go back to reference Noman, M. Z., Hasmim, M., Lequeux, A., Xiao, M., Duhem, C., Chouaib, S., et al. (2019). Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells, 8(9), 1083.PubMedPubMedCentral Noman, M. Z., Hasmim, M., Lequeux, A., Xiao, M., Duhem, C., Chouaib, S., et al. (2019). Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells, 8(9), 1083.PubMedPubMedCentral
101.
go back to reference Zheng, X., Yu, C., & Xu, M. (2021). Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Frontiers in Oncology, 11, 678333.PubMedPubMedCentral Zheng, X., Yu, C., & Xu, M. (2021). Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Frontiers in Oncology, 11, 678333.PubMedPubMedCentral
102.
go back to reference Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMed Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMed
104.
go back to reference Xu, W., Yang, Z., & Lu, N. (2015). A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhesion & Migration, 9(4), 317–324. Xu, W., Yang, Z., & Lu, N. (2015). A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhesion & Migration, 9(4), 317–324.
105.
go back to reference Lee, M. K., Pardoux, C., Hall, M. C., Lee, P. S., Warburton, D., Qing, J., et al. (2007). TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. The EMBO Journal, 26(17), 3957–3967.PubMedPubMedCentral Lee, M. K., Pardoux, C., Hall, M. C., Lee, P. S., Warburton, D., Qing, J., et al. (2007). TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. The EMBO Journal, 26(17), 3957–3967.PubMedPubMedCentral
106.
go back to reference Zhang, J., & Ma, L. (2012). MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer and Metastasis Reviews, 31, 653–662.PubMed Zhang, J., & Ma, L. (2012). MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer and Metastasis Reviews, 31, 653–662.PubMed
115.
119.
130.
go back to reference Yu, G., Chen, L., Hu, Y., Yuan, Z., Luo, Y., & Xiong, Y. (2021). Antitumor effects of baicalein and its mechanism via TGF<i>β</i> pathway in cervical cancer HeLa Cells. Evidence-based Complementary and Alternative Medicine, 2021, https://doi.org/10.1155/2021/5527190 Yu, G., Chen, L., Hu, Y., Yuan, Z., Luo, Y., & Xiong, Y. (2021). Antitumor effects of baicalein and its mechanism via TGF<i>β</i> pathway in cervical cancer HeLa Cells. Evidence-based Complementary and Alternative Medicine, 2021, https://​doi.​org/​10.​1155/​2021/​5527190
132.
go back to reference Xing-Cong, M., Yan, W., Zhi-Jun, D., Gao, X., Ma, Y., Xu, Q., et al. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Design, Development and Therapy, 10, 1419–1441. https://doi.org/10.2147/DDDT.S102541CrossRef Xing-Cong, M., Yan, W., Zhi-Jun, D., Gao, X., Ma, Y., Xu, Q., et al. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Design, Development and Therapy, 10, 1419–1441. https://​doi.​org/​10.​2147/​DDDT.​S102541CrossRef
133.
go back to reference Zheng, L., Zhou, Z. Y., & He, Z. K. (2016). Baicalin inhibits TGF-beta 1-induced epithelial-to-mesenchymal transition and suppresses pancreatic cancer cell migration and invasion. International Journal of Clinical and Experimental Pathology, 9(2), 1054–1060. Zheng, L., Zhou, Z. Y., & He, Z. K. (2016). Baicalin inhibits TGF-beta 1-induced epithelial-to-mesenchymal transition and suppresses pancreatic cancer cell migration and invasion. International Journal of Clinical and Experimental Pathology, 9(2), 1054–1060.
135.
go back to reference Weichao, D., Fan, Y., Hou, T., Wei, Y., Liu, B., Que, T., et al. (2022). Silibinin inhibits the migration, invasion and epithelial-mesenchymal transition of prostate cancer by activating the autophagic degradation of YAP. Journal of Cancer, 13(13), 3415–3426. https://doi.org/10.7150/jca.63514CrossRef Weichao, D., Fan, Y., Hou, T., Wei, Y., Liu, B., Que, T., et al. (2022). Silibinin inhibits the migration, invasion and epithelial-mesenchymal transition of prostate cancer by activating the autophagic degradation of YAP. Journal of Cancer, 13(13), 3415–3426. https://​doi.​org/​10.​7150/​jca.​63514CrossRef
137.
go back to reference Chen, J. W., & Qiu, H. (2021). Analysis of inhibitory effects of kaempferol on migration and epithelial-mesenchymal transition in human lung cancer. Latin American Journal of Pharmacy, 40(1), 108–113. Chen, J. W., & Qiu, H. (2021). Analysis of inhibitory effects of kaempferol on migration and epithelial-mesenchymal transition in human lung cancer. Latin American Journal of Pharmacy, 40(1), 108–113.
139.
go back to reference Zhang, Z., Qiao, Y., Yang, L., Chen, Z., Li, T., Gu, M., et al. (2021). Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytotherapy Research, 35(11), 6310–6323. https://doi.org/10.1002/ptr.7278CrossRefPubMed Zhang, Z., Qiao, Y., Yang, L., Chen, Z., Li, T., Gu, M., et al. (2021). Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytotherapy Research, 35(11), 6310–6323. https://​doi.​org/​10.​1002/​ptr.​7278CrossRefPubMed
140.
go back to reference Wei, R., Penso, N. E. C., Hackman, R. M., Wang, Y., & Mackenzie, G. G. (2019). Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 11(8), https://doi.org/10.3390/nu11081856 Wei, R., Penso, N. E. C., Hackman, R. M., Wang, Y., & Mackenzie, G. G. (2019). Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 11(8), https://​doi.​org/​10.​3390/​nu11081856
141.
go back to reference Shi, J., Liu, F., Zhang, W., Liu, X., Lin, B., & Tang, X. (2015). Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncology Reports, 33(6), 2972–2980. https://doi.org/10.3892/or.2015.3889CrossRefPubMed Shi, J., Liu, F., Zhang, W., Liu, X., Lin, B., & Tang, X. (2015). Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncology Reports, 33(6), 2972–2980. https://​doi.​org/​10.​3892/​or.​2015.​3889CrossRefPubMed
150.
151.
go back to reference Prasad, P., Vasas, A., Hohmann, J., Bishayee, A., & Sinha, D. (2019). Cirsiliol suppressed epithelial to mesenchymal transition in B16F10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. International Journal of Molecular Sciences, 20(3), https://doi.org/10.3390/ijms20030608. Prasad, P., Vasas, A., Hohmann, J., Bishayee, A., & Sinha, D. (2019). Cirsiliol suppressed epithelial to mesenchymal transition in B16F10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. International Journal of Molecular Sciences, 20(3), https://​doi.​org/​10.​3390/​ijms20030608.
160.
161.
go back to reference Singh, T., Prasad, R., & Katiyar, S. K. (2016). Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. American Journal of Cancer Research, 6(6), 1287–1301.PubMedPubMedCentral Singh, T., Prasad, R., & Katiyar, S. K. (2016). Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. American Journal of Cancer Research, 6(6), 1287–1301.PubMedPubMedCentral
163.
go back to reference Jia, H., Liu, M. Y., Wang, X. Y., Jiang, Q. Y., Wang, S., Santhanam, R. K., et al. (2021). Cimigenoside functions as a novel gamma-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by gamma-secretase/Notch axis. Pharmacological Research, 169, https://doi.org/10.1016/j.phrs.2021.105686 Jia, H., Liu, M. Y., Wang, X. Y., Jiang, Q. Y., Wang, S., Santhanam, R. K., et al. (2021). Cimigenoside functions as a novel gamma-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by gamma-secretase/Notch axis. Pharmacological Research, 169, https://​doi.​org/​10.​1016/​j.​phrs.​2021.​105686
165.
go back to reference Lee, J., Jin, H., Lee, W. S., Nagappan, A., Choi, Y. H., Kim, G. S., et al. (2016). Morin, a flavonoid from moraceae, inhibits cancer cell adhesion to endothelial cells and EMT by downregulating VCAM1 and Ncadherin. Asian Pacific Journal of Cancer Prevention, 17(7), 3071–3075.PubMed Lee, J., Jin, H., Lee, W. S., Nagappan, A., Choi, Y. H., Kim, G. S., et al. (2016). Morin, a flavonoid from moraceae, inhibits cancer cell adhesion to endothelial cells and EMT by downregulating VCAM1 and Ncadherin. Asian Pacific Journal of Cancer Prevention, 17(7), 3071–3075.PubMed
179.
go back to reference Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://doi.org/10.1016/j.fct.2016.09.006CrossRefPubMed Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://​doi.​org/​10.​1016/​j.​fct.​2016.​09.​006CrossRefPubMed
182.
go back to reference Chen, H. Y., Chiang, Y. F., Huang, J. S., Huang, T. C., Shih, Y. H., Wang, K. L., et al. (2021). Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers (Basel), 13(6). https://doi.org/10.3390/cancers13061236 Chen, H. Y., Chiang, Y. F., Huang, J. S., Huang, T. C., Shih, Y. H., Wang, K. L., et al. (2021). Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers (Basel), 13(6). https://​doi.​org/​10.​3390/​cancers13061236
183.
go back to reference Chen, S. M., Feng, J. N., Zhao, C. K., Yao, L. C., Wang, L. X., Meng, L., et al. (2022). A multi-targeting natural product, aiphanol, inhibits tumor growth and metastasis. American Journal of Cancer Research, 12(11), 4930–4953.PubMedPubMedCentral Chen, S. M., Feng, J. N., Zhao, C. K., Yao, L. C., Wang, L. X., Meng, L., et al. (2022). A multi-targeting natural product, aiphanol, inhibits tumor growth and metastasis. American Journal of Cancer Research, 12(11), 4930–4953.PubMedPubMedCentral
185.
go back to reference López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59.PubMed López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59.PubMed
190.
go back to reference Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9), https://doi.org/10.3390/nu8090529. Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9), https://​doi.​org/​10.​3390/​nu8090529.
194.
go back to reference Morshed, A., Paul, S., Hossain, A., Basak, T., Hossain, M. S., Hasan, M. M., et al. (2023). Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers (Basel), 15(7), https://doi.org/10.3390/cancers15072128 Morshed, A., Paul, S., Hossain, A., Basak, T., Hossain, M. S., Hasan, M. M., et al. (2023). Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers (Basel), 15(7), https://​doi.​org/​10.​3390/​cancers15072128
199.
go back to reference Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 299–331. https://doi.org/10.2147/IJN.S347187 Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 299–331. https://​doi.​org/​10.​2147/​IJN.​S347187
200.
go back to reference Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238.PubMedPubMedCentral Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238.PubMedPubMedCentral
201.
go back to reference Sajadimajd, S., Moradi, S. Z., Akbari, V., Aghaz, F., & Farzaei, M. H. (2022). Nanoformulated herbal bioactives for the treatment of neurodegenerative disorders. In Herbal bioactive-based drug delivery systems (pp. 371–391): Elsevier. Sajadimajd, S., Moradi, S. Z., Akbari, V., Aghaz, F., & Farzaei, M. H. (2022). Nanoformulated herbal bioactives for the treatment of neurodegenerative disorders. In Herbal bioactive-based drug delivery systems (pp. 371–391): Elsevier.
204.
205.
go back to reference Kubina, R., Krzykawski, K., Kabała-Dzik, A., Wojtyczka, R. D., Chodurek, E., & Dziedzic, A. (2022). Fisetin, a potent anticancer flavonol exhibiting cytotoxic activity against neoplastic malignant cells and cancerous conditions: A scoping, comprehensive review. Nutrients, 14(13), https://doi.org/10.3390/nu14132604 Kubina, R., Krzykawski, K., Kabała-Dzik, A., Wojtyczka, R. D., Chodurek, E., & Dziedzic, A. (2022). Fisetin, a potent anticancer flavonol exhibiting cytotoxic activity against neoplastic malignant cells and cancerous conditions: A scoping, comprehensive review. Nutrients, 14(13), https://​doi.​org/​10.​3390/​nu14132604
208.
210.
go back to reference Liu, C. H., Tang, W. C., Sia, P., Huang, C. C., Yang, P. M., Wu, M. H., et al. (2015). Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. International Journal of Medical Sciences, 12(1), 63–71. https://doi.org/10.7150/ijms.9982CrossRefPubMedPubMedCentral Liu, C. H., Tang, W. C., Sia, P., Huang, C. C., Yang, P. M., Wu, M. H., et al. (2015). Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. International Journal of Medical Sciences, 12(1), 63–71. https://​doi.​org/​10.​7150/​ijms.​9982CrossRefPubMedPubMedCentral
212.
214.
go back to reference Liu, T., Li, K., Zhang, Z., Peng, J., Yang, J., Law, B. Y. K., et al. (2023). Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via SOD1/ROS signaling pathway. The American Journal of Chinese Medicine, 1–20. https://doi.org/10.1142/s0192415x23500222 Liu, T., Li, K., Zhang, Z., Peng, J., Yang, J., Law, B. Y. K., et al. (2023). Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via SOD1/ROS signaling pathway. The American Journal of Chinese Medicine, 1–20. https://​doi.​org/​10.​1142/​s0192415x2350022​2
215.
go back to reference Zhang, Z., Liu, T., Yu, M., Li, K., & Li, W. (2018). The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. Journal of Experimental & Clinical Cancer Research, 37(1), 7. https://doi.org/10.1186/s13046-018-0678-6CrossRef Zhang, Z., Liu, T., Yu, M., Li, K., & Li, W. (2018). The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. Journal of Experimental & Clinical Cancer Research, 37(1), 7. https://​doi.​org/​10.​1186/​s13046-018-0678-6CrossRef
216.
go back to reference Zhao, B., Hui, X., Wang, J., Zeng, H., Yan, Y., Hu, Q., et al. (2021). Matrine suppresses lung cancer metastasis via targeting M2-like tumour-associated-macrophages polarization. American Journal of Cancer Research, 11(9), 4308–4328.PubMedPubMedCentral Zhao, B., Hui, X., Wang, J., Zeng, H., Yan, Y., Hu, Q., et al. (2021). Matrine suppresses lung cancer metastasis via targeting M2-like tumour-associated-macrophages polarization. American Journal of Cancer Research, 11(9), 4308–4328.PubMedPubMedCentral
220.
go back to reference He, J., Chen, S., Yu, T., Chen, W., Huang, J., Peng, C., et al. (2022). Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition. American Journal of Cancer Research, 12(6), 2612–2626.PubMedPubMedCentral He, J., Chen, S., Yu, T., Chen, W., Huang, J., Peng, C., et al. (2022). Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition. American Journal of Cancer Research, 12(6), 2612–2626.PubMedPubMedCentral
221.
go back to reference Shi, S., Li, C., Zhang, Y., Deng, C., Tan, M., Pan, G., et al. (2021). Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21(Cip1/WAF1). American Journal of Cancer Research, 11(4), 1391–1409.PubMedPubMedCentral Shi, S., Li, C., Zhang, Y., Deng, C., Tan, M., Pan, G., et al. (2021). Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21(Cip1/WAF1). American Journal of Cancer Research, 11(4), 1391–1409.PubMedPubMedCentral
222.
go back to reference Yuan, X. H., Zhang, P., Yu, T. T., Huang, H. K., Zhang, L. L., Yang, C. M., et al. (2020). Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. American Journal of Translational Research, 12(9), 5381–5398.PubMedPubMedCentral Yuan, X. H., Zhang, P., Yu, T. T., Huang, H. K., Zhang, L. L., Yang, C. M., et al. (2020). Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. American Journal of Translational Research, 12(9), 5381–5398.PubMedPubMedCentral
223.
go back to reference Kun-Hung, S., Jui-Hsiang, H., Liao, Y.-C., Shu-Ting, T., Wu, M.-J., & Chen, P.-S. (2020). Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. International Journal of Molecular Sciences, 21(9), 3080. https://doi.org/10.3390/ijms21093080CrossRef Kun-Hung, S., Jui-Hsiang, H., Liao, Y.-C., Shu-Ting, T., Wu, M.-J., & Chen, P.-S. (2020). Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. International Journal of Molecular Sciences, 21(9), 3080. https://​doi.​org/​10.​3390/​ijms21093080CrossRef
224.
go back to reference Li, H. M., Lin, Z. K., Bai, Y. X., Chi, X. M., Fu, H. L., Sun, R., et al. (2017). Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/beta-catenin pathway via targeting MCM2. RSC Advances, 7(79), 50017–50026. https://doi.org/10.1039/c7ra10057dCrossRef Li, H. M., Lin, Z. K., Bai, Y. X., Chi, X. M., Fu, H. L., Sun, R., et al. (2017). Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/beta-catenin pathway via targeting MCM2. RSC Advances, 7(79), 50017–50026. https://​doi.​org/​10.​1039/​c7ra10057dCrossRef
226.
go back to reference Lee, H., Ko, J. H., Baek, S. H., Nam, D., Lee, S. G., Lee, J., et al. (2016). Embelin inhibits invasion and migration of MDA-MB-231 breast cancer cells by suppression of CXC chemokine receptor 4, matrix metalloproteinases-9/2, and epithelial-mesenchymal transition. Phytotherapy Research, 30(6), 1021–1032. https://doi.org/10.1002/ptr.5612CrossRefPubMed Lee, H., Ko, J. H., Baek, S. H., Nam, D., Lee, S. G., Lee, J., et al. (2016). Embelin inhibits invasion and migration of MDA-MB-231 breast cancer cells by suppression of CXC chemokine receptor 4, matrix metalloproteinases-9/2, and epithelial-mesenchymal transition. Phytotherapy Research, 30(6), 1021–1032. https://​doi.​org/​10.​1002/​ptr.​5612CrossRefPubMed
229.
go back to reference Rajendran, P., Rebai Ben, A., Fatma, J. A. S., Maged Elsayed, M., Islam, M. I. H., & Saeed, Y. A. R. (2020). Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. Journal of Cellular and Molecular Medicine (Online), 24(24), 14525–14538. https://doi.org/10.1111/jcmm.16079CrossRef Rajendran, P., Rebai Ben, A., Fatma, J. A. S., Maged Elsayed, M., Islam, M. I. H., & Saeed, Y. A. R. (2020). Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. Journal of Cellular and Molecular Medicine (Online), 24(24), 14525–14538. https://​doi.​org/​10.​1111/​jcmm.​16079CrossRef
230.
go back to reference Young Yun, J., Chakrabhavi, D. M., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891. https://doi.org/10.3390/biom12070891CrossRef Young Yun, J., Chakrabhavi, D. M., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891. https://​doi.​org/​10.​3390/​biom12070891CrossRef
242.
go back to reference Fakhri, S., Darvish, E., Narimani, F., Moradi, S. Z., Abbaszadeh, F., & Khan, H. (2023). The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Briefings in Functional Genomics, 22(2), 143–160. Fakhri, S., Darvish, E., Narimani, F., Moradi, S. Z., Abbaszadeh, F., & Khan, H. (2023). The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Briefings in Functional Genomics22(2), 143–160.
243.
go back to reference Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664.PubMed Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664.PubMed
244.
go back to reference Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. In Semin Cancer Biol, (Vol. 80, pp. 276–305): Elsevier Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. In Semin Cancer Biol, (Vol. 80, pp. 276–305): Elsevier
245.
go back to reference Fakhri, S., Moradi, S. Z., Nouri, Z., Cao, H., Wang, H., Khan, H., et al. (2022). Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 1–25. https://doi.org/10.1080/10408398.2022.2118226 Fakhri, S., Moradi, S. Z., Nouri, Z., Cao, H., Wang, H., Khan, H., et al. (2022). Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 1–25. https://​doi.​org/​10.​1080/​10408398.​2022.​2118226
246.
go back to reference Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Frontiers in Oncology, 12, 834072.PubMedPubMedCentral Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Frontiers in Oncology, 12, 834072.PubMedPubMedCentral
250.
254.
go back to reference Xu, L., Bi, Y., Xu, Y., Zhang, Z., Xu, W., Zhang, S., et al. (2020). Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine (Online), 24(8), 4480–4493. https://doi.org/10.1111/jcmm.15106CrossRef Xu, L., Bi, Y., Xu, Y., Zhang, Z., Xu, W., Zhang, S., et al. (2020). Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine (Online), 24(8), 4480–4493. https://​doi.​org/​10.​1111/​jcmm.​15106CrossRef
259.
go back to reference Hu, J. H., Yang, D. S., Ren, X. Q., Wang, C. Y., He, Z. K., & Zhang, X. F. (2016). ArdipusillosideIinhibits the growth, invasion and epithelial-to-mesenchymal transitionof gastric cancer cells through the JAK/STAT3 signaling pathway. International Journal of Clinical and Experimental Medicine, 9(2), 1801–1807. Hu, J. H., Yang, D. S., Ren, X. Q., Wang, C. Y., He, Z. K., & Zhang, X. F. (2016). ArdipusillosideIinhibits the growth, invasion and epithelial-to-mesenchymal transitionof gastric cancer cells through the JAK/STAT3 signaling pathway. International Journal of Clinical and Experimental Medicine, 9(2), 1801–1807.
260.
262.
go back to reference Subramani, R., Gonzalez, E., Arumugam, A., Nandy, S., Gonzalez, V., Medel, J., et al. (2016). Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Scientific Reports (Nature Publisher Group), 6, 19819. https://doi.org/10.1038/srep19819CrossRef Subramani, R., Gonzalez, E., Arumugam, A., Nandy, S., Gonzalez, V., Medel, J., et al. (2016). Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Scientific Reports (Nature Publisher Group), 6, 19819. https://​doi.​org/​10.​1038/​srep19819CrossRef
266.
go back to reference Lee, J., Hwangbo, C., Lee, J. J., Seo, J., & Lee, J. H. (2010). The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression. Oncology Reports, 23(1), 229–237.PubMed Lee, J., Hwangbo, C., Lee, J. J., Seo, J., & Lee, J. H. (2010). The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression. Oncology Reports, 23(1), 229–237.PubMed
271.
go back to reference Jiang, S. Y., Yu, J., Zhu, M., Zhang, X. M., Zhang, Y. Y., Zhang, Q., et al. (2022). Gambogic acid inhibits epithelial-mesenchymal transition in breast cancer cells through upregulation of SIRT1 expression in vitro. Precision Medical Sciences, 11(1), 14–22. https://doi.org/10.1002/prm2.12057CrossRef Jiang, S. Y., Yu, J., Zhu, M., Zhang, X. M., Zhang, Y. Y., Zhang, Q., et al. (2022). Gambogic acid inhibits epithelial-mesenchymal transition in breast cancer cells through upregulation of SIRT1 expression in vitro. Precision Medical Sciences, 11(1), 14–22. https://​doi.​org/​10.​1002/​prm2.​12057CrossRef
274.
275.
go back to reference Cao, Z. Q., Wang, X. X., Lu, L., Xu, J. W., Li, X. B., Zhang, G. R., et al. (2018). β-Sitosterol and gemcitabine exhibit synergistic anti-pancreatic cancer activity by modulating apoptosis and inhibiting epithelial-mesenchymal transition by deactivating Akt/GSK-3β signaling. Frontiers in Pharmacology, 9, 1525. https://doi.org/10.3389/fphar.2018.01525CrossRefPubMed Cao, Z. Q., Wang, X. X., Lu, L., Xu, J. W., Li, X. B., Zhang, G. R., et al. (2018). β-Sitosterol and gemcitabine exhibit synergistic anti-pancreatic cancer activity by modulating apoptosis and inhibiting epithelial-mesenchymal transition by deactivating Akt/GSK-3β signaling. Frontiers in Pharmacology, 9, 1525. https://​doi.​org/​10.​3389/​fphar.​2018.​01525CrossRefPubMed
283.
go back to reference Ghanbari-Movahed, M., Mondal, A., Farzaei, M. H., & Bishayee, A. (2022). Quercetin-and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 97, 153909.PubMed Ghanbari-Movahed, M., Mondal, A., Farzaei, M. H., & Bishayee, A. (2022). Quercetin-and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 97, 153909.PubMed
284.
go back to reference Ghanbari-Movahed, M., Kaceli, T., Mondal, A., Farzaei, M. H., & Bishayee, A. (2021). Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 9(5), 480.PubMedPubMedCentral Ghanbari-Movahed, M., Kaceli, T., Mondal, A., Farzaei, M. H., & Bishayee, A. (2021). Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 9(5), 480.PubMedPubMedCentral
285.
go back to reference Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In Semin Cancer Biol, (Vol. 69, pp. 5–23): Elsevier Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In Semin Cancer Biol, (Vol. 69, pp. 5–23): Elsevier
286.
go back to reference Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382.PubMed Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382.PubMed
Metadata
Title
Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals
Authors
Sajad Fakhri
Seyed Zachariah Moradi
Fatemeh Abbaszadeh
Farahnaz Faraji
Roshanak Amirian
Dona Sinha
Emily G. McMahon
Anupam Bishayee
Publication date
03-01-2024
Publisher
Springer US
Keyword
Metastasis
Published in
Cancer and Metastasis Reviews / Issue 1/2024
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10161-8

Other articles of this Issue 1/2024

Cancer and Metastasis Reviews 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine