Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Pleural Mesothelioma | Protocol

NIPU: a randomised, open-label, phase II study evaluating nivolumab and ipilimumab combined with UV1 vaccination as second line treatment in patients with malignant mesothelioma

Authors: Vilde Drageset Haakensen, Anna K. Nowak, Espen Basmo Ellingsen, Saima Jamil Farooqi, Maria Moksnes Bjaanæs, Henrik Horndalsveen, Tine Mcculloch, Oscar Grundberg, Susana M. Cedres, Åslaug Helland

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour. For patients with inoperable disease, few treatment options are available after first line chemotherapy. The combination of ipilimumab and nivolumab has recently shown increased survival compared to standard chemotherapy, but most patients do not respond and improvements are called for. Telomerase is expressed in mesothelioma cells, but only sparsely in normal tissues and is therefore an attractive target for therapeutic vaccination. Vaccination against telomerase is tolerable and has shown to induce immune responses associated with increased survival in other cancer types. There is a well-founded scientific rationale for the combination of a telomerase vaccine and checkpoint inhibition to improve treatment response in MPM patients.

Methods

NIPU is a randomized, multi-centre, open-label, phase II study comparing the efficacy and safety of nivolumab and ipilimumab with or without telomerase vaccine in patients with inoperable malignant pleural mesothelioma after first-line platinum-based chemotherapy. Participants (n = 118) are randomized 1:1 into two treatment arms. All participants receive treatment with nivolumab (240 mg every 2 weeks) and ipilimumab (1 mg/kg every 6 weeks) until disease progression, unacceptable toxicity or for a maximum of 2 years. Patients randomised to the experimental arm receive 8 intradermal injections of UV1 vaccine during the first three months of treatment. Tumour tissue, blood, urine, faeces and imaging will be collected for biomarker analyses and exploration of mechanisms for response and resistance to therapy.

Discussion

Checkpoint inhibition is used for treatment of mesothelioma, but many patients still do not respond. Increasing therapy response to immunotherapy is an important goal. Possible approaches include combination with chemotherapy, radiotherapy, targeted therapy and other immunotherapeutic agents. Predictive biomarkers are necessary to ensure optimal treatment for each patient and to prevent unnecessary side effects. This trial seeks to improve treatment response by combining checkpoint inhibition with a telomerase vaccine and also to explore mechanisms for treatment response and resistance. Knowledge gained in the NIPU study may be transferred to the first line setting and to other cancers with limited benefit from immunotherapy.
Trial registration: ClinicalTrials.gov: NCT04300244, registered March 8th, 2020, https://​clinicaltrials.​gov/​ct2/​show/​NCT04300244?​term=​NIPU&​draw=​2&​rank=​1.
Literature
5.
go back to reference Alley EW, Lopez J, Santoro A, Morosky A, Saraf S, Piperdi B, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma ( KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet. 2017;18:623–30.CrossRef Alley EW, Lopez J, Santoro A, Morosky A, Saraf S, Piperdi B, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma ( KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet. 2017;18:623–30.CrossRef
9.
go back to reference Ranki T, Joensuu T, Elke J, Karbach J, Wahle C, Kairemo K, et al. Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8 C T-cell response, prominent in filtration of CD8 C lymphocytes and Th1 type polarization. Oncoimmunology. 2014;3:e958937.CrossRef Ranki T, Joensuu T, Elke J, Karbach J, Wahle C, Kairemo K, et al. Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8 C T-cell response, prominent in filtration of CD8 C lymphocytes and Th1 type polarization. Oncoimmunology. 2014;3:e958937.CrossRef
10.
go back to reference Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14:115–28.CrossRef Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14:115–28.CrossRef
15.
go back to reference Stewart SA, Hahn WC, Connor BFO, Banner EN, Lundberg AS, Modha P, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. PNAS. 2002;99:1–6.CrossRef Stewart SA, Hahn WC, Connor BFO, Banner EN, Lundberg AS, Modha P, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. PNAS. 2002;99:1–6.CrossRef
16.
go back to reference Dhaene K, Hübner R, Kumar-singh S, Weyn B, Van ME. Telomerase activity in human pleural mesothelioma. Thorax. 1998;53:915–8.CrossRef Dhaene K, Hübner R, Kumar-singh S, Weyn B, Van ME. Telomerase activity in human pleural mesothelioma. Thorax. 1998;53:915–8.CrossRef
18.
go back to reference Taga S, Osaki T, Ohgami A, Imoto H, Yasumoto K. Prognostic impact of telomerase activity in non-small cell lung cancers. Ann Surg. 1999;230:715–20.CrossRef Taga S, Osaki T, Ohgami A, Imoto H, Yasumoto K. Prognostic impact of telomerase activity in non-small cell lung cancers. Ann Surg. 1999;230:715–20.CrossRef
20.
go back to reference Clark GM, Osborne CK, Levitt D, Wu F, Kim NW. Telomerase activity and survival of patients with node-positive breast cancer. J Natl Cancer Inst. 1997;89:1874–81.CrossRef Clark GM, Osborne CK, Levitt D, Wu F, Kim NW. Telomerase activity and survival of patients with node-positive breast cancer. J Natl Cancer Inst. 1997;89:1874–81.CrossRef
25.
go back to reference Curran MA, Glisson BS. New hope for therapeutic cancer vaccines in the era of immune checkpoint modulation. Ann Rev Med. 2019;70:109–24.CrossRef Curran MA, Glisson BS. New hope for therapeutic cancer vaccines in the era of immune checkpoint modulation. Ann Rev Med. 2019;70:109–24.CrossRef
28.
go back to reference Disselhorst MJ, Quispel-janssen J, Lalezari F, Monkhorst K, De VJF, Van Der NV, et al. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE ): results of a prospective, single-arm, phase 2 trial. Lancet Respir Med. 2019;7:260–70.CrossRef Disselhorst MJ, Quispel-janssen J, Lalezari F, Monkhorst K, De VJF, Van Der NV, et al. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE ): results of a prospective, single-arm, phase 2 trial. Lancet Respir Med. 2019;7:260–70.CrossRef
32.
go back to reference Zitvogel L, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018;359:1366–70.CrossRef Zitvogel L, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018;359:1366–70.CrossRef
Metadata
Title
NIPU: a randomised, open-label, phase II study evaluating nivolumab and ipilimumab combined with UV1 vaccination as second line treatment in patients with malignant mesothelioma
Authors
Vilde Drageset Haakensen
Anna K. Nowak
Espen Basmo Ellingsen
Saima Jamil Farooqi
Maria Moksnes Bjaanæs
Henrik Horndalsveen
Tine Mcculloch
Oscar Grundberg
Susana M. Cedres
Åslaug Helland
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02905-3

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.