Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Neuroblastoma | Original Article

Radiomics analysis of contrast-enhanced computed tomography in predicting the International Neuroblastoma Pathology Classification in neuroblastoma

Authors: Haoru Wang, Mingye Xie, Xin Chen, Jin Zhu, Li Zhang, Hao Ding, Zhengxia Pan, Ling He

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Purpose

To predict the International Neuroblastoma Pathology Classification (INPC) in neuroblastoma using a computed tomography (CT)-based radiomics approach.

Methods

We enrolled 297 patients with neuroblastoma retrospectively and divided them into a training group (n = 208) and a testing group (n = 89). To balance the classes in the training group, a Synthetic Minority Over-sampling Technique was applied. A logistic regression radiomics model based on the radiomics features after dimensionality reduction was then constructed and validated in both the training and testing groups. To evaluate the diagnostic performance of the radiomics model, the receiver operating characteristic curve and calibration curve were utilized. Moreover, the decision curve analysis to assess the net benefits of the radiomics model at different high-risk thresholds was employed.

Results

Seventeen radiomics features were used to construct radiomics model. In the training group, radiomics model achieved an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.851 (95% confidence interval (CI) 0.805–0.897), 0.770, 0.694, and 0.847, respectively. In the testing group, radiomics model achieved an AUC, accuracy, sensitivity, and specificity of 0.816 (95% CI 0.725–0.906), 0.787, 0.793, and 0.778, respectively. The calibration curve indicated that the radiomics model was well fitted in both the training and testing groups (p > 0.05). Decision curve analysis further confirmed that the radiomics model performed well at different high-risk thresholds.

Conclusion

Radiomics analysis of contrast-enhanced CT demonstrates favorable diagnostic capabilities in distinguishing the INPC subgroups of neuroblastoma.

Graphical Abstract

Critical relevance statement

Radiomics features of contrast-enhanced CT images correlate with the International Neuroblastoma Pathology Classification (INPC) of neuroblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Park JR, Eggert A, Caron H (2010) Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am 24(1):65–86CrossRefPubMed Park JR, Eggert A, Caron H (2010) Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am 24(1):65–86CrossRefPubMed
2.
go back to reference Sokol E, Desai AV (2019) The evolution of risk classification for neuroblastoma. Children (Basel) 6(2):27PubMed Sokol E, Desai AV (2019) The evolution of risk classification for neuroblastoma. Children (Basel) 6(2):27PubMed
3.
go back to reference Shimada H, Ambros IM, Dehner LP et al (1999) The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86(2):364–372CrossRefPubMed Shimada H, Ambros IM, Dehner LP et al (1999) The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86(2):364–372CrossRefPubMed
4.
go back to reference Shimada H, Umehara S, Monobe Y et al (2001) International Neuroblastoma Pathology Classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer 92(9):2451–2461CrossRefPubMed Shimada H, Umehara S, Monobe Y et al (2001) International Neuroblastoma Pathology Classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer 92(9):2451–2461CrossRefPubMed
5.
go back to reference Sano H, Bonadio J, Gerbing RB et al (2006) International Neuroblastoma Pathology Classification adds independent prognostic information beyond the prognostic contribution of age. Eur J Cancer 42(8):1113–1119CrossRefPubMed Sano H, Bonadio J, Gerbing RB et al (2006) International Neuroblastoma Pathology Classification adds independent prognostic information beyond the prognostic contribution of age. Eur J Cancer 42(8):1113–1119CrossRefPubMed
6.
go back to reference Nakazawa A, Haga C, Ohira M, Okita H, Kamijo T, Nakagawara A (2015) Correlation between the International Neuroblastoma Pathology Classification and genomic signature in neuroblastoma. Cancer Sci 106(6):766–771CrossRefPubMedPubMedCentral Nakazawa A, Haga C, Ohira M, Okita H, Kamijo T, Nakagawara A (2015) Correlation between the International Neuroblastoma Pathology Classification and genomic signature in neuroblastoma. Cancer Sci 106(6):766–771CrossRefPubMedPubMedCentral
7.
go back to reference Irwin MS, Naranjo A, Zhang FF et al (2021) Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39(29):3229–3241CrossRefPubMedPubMedCentral Irwin MS, Naranjo A, Zhang FF et al (2021) Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39(29):3229–3241CrossRefPubMedPubMedCentral
8.
go back to reference Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN (2009) Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recogn 42(6):1093–1103CrossRef Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN (2009) Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recogn 42(6):1093–1103CrossRef
9.
go back to reference Liu Y, Jia Y, Hou C et al (2022) Pathological prognosis classification of patients with neuroblastoma using computational pathology analysis. Comput Biol Med 149:105980CrossRefPubMed Liu Y, Jia Y, Hou C et al (2022) Pathological prognosis classification of patients with neuroblastoma using computational pathology analysis. Comput Biol Med 149:105980CrossRefPubMed
10.
go back to reference Joshi VV (2000) Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (Modification of shimada classification). Pediatr Dev Pathol 3(2):184–199CrossRefPubMed Joshi VV (2000) Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (Modification of shimada classification). Pediatr Dev Pathol 3(2):184–199CrossRefPubMed
11.
go back to reference Bhardwaj N, Rohilla M, Trehan A, Bansal D, Kakkar N, Srinivasan R (2022) Mitosis-Karyorrhexis Index evaluation by digital image visual analysis for application of International Neuroblastoma Pathology Classification in FNA biopsy. Cancer Cytopathol 130(2):128–135CrossRefPubMed Bhardwaj N, Rohilla M, Trehan A, Bansal D, Kakkar N, Srinivasan R (2022) Mitosis-Karyorrhexis Index evaluation by digital image visual analysis for application of International Neuroblastoma Pathology Classification in FNA biopsy. Cancer Cytopathol 130(2):128–135CrossRefPubMed
12.
go back to reference Saleh M, Bhosale PR, Yano M et al (2022) New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol (NY) 47(9):3078–3100CrossRefPubMed Saleh M, Bhosale PR, Yano M et al (2022) New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol (NY) 47(9):3078–3100CrossRefPubMed
13.
go back to reference Ak M, Toll SA, Hein KZ, Colen RR, Khatua S (2022) Evolving role and translation of radiomics and radiogenomics in adult and pediatric neuro-oncology. AJNR Am J Neuroradiol 43(6):792–801CrossRefPubMedPubMedCentral Ak M, Toll SA, Hein KZ, Colen RR, Khatua S (2022) Evolving role and translation of radiomics and radiogenomics in adult and pediatric neuro-oncology. AJNR Am J Neuroradiol 43(6):792–801CrossRefPubMedPubMedCentral
14.
go back to reference Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R (2021) Artificial intelligence and radiomics in pediatric molecular imaging. Methods 188:37–43CrossRefPubMed Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R (2021) Artificial intelligence and radiomics in pediatric molecular imaging. Methods 188:37–43CrossRefPubMed
15.
go back to reference Liu G, Poon M, Zapala MA et al (2022) Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma. J Digit Imaging 35(3):605–612CrossRefPubMedPubMedCentral Liu G, Poon M, Zapala MA et al (2022) Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma. J Digit Imaging 35(3):605–612CrossRefPubMedPubMedCentral
16.
go back to reference Wang H, Chen X, Liu H, Yu C, He L (2021) Computed tomography-based radiomics for differential of retroperitoneal neuroblastoma and ganglioneuroblastoma in children. Nan Fang Yi Ke Da Xue Xue Bao 41(10):1569–1576PubMed Wang H, Chen X, Liu H, Yu C, He L (2021) Computed tomography-based radiomics for differential of retroperitoneal neuroblastoma and ganglioneuroblastoma in children. Nan Fang Yi Ke Da Xue Xue Bao 41(10):1569–1576PubMed
17.
go back to reference Tan E, Merchant K, Kn BP et al (2022) CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma. Childs Nerv Syst 38(8):1487–1495CrossRefPubMed Tan E, Merchant K, Kn BP et al (2022) CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma. Childs Nerv Syst 38(8):1487–1495CrossRefPubMed
18.
go back to reference Qian LD, Feng LJ, Zhang SX et al (2023) 18F-FDG PET/CT imaging of pediatric peripheral neuroblastic tumor: a combined model to predict the International Neuroblastoma Pathology Classification. Quant Imaging Med Surg 13(1):94–107CrossRefPubMed Qian LD, Feng LJ, Zhang SX et al (2023) 18F-FDG PET/CT imaging of pediatric peripheral neuroblastic tumor: a combined model to predict the International Neuroblastoma Pathology Classification. Quant Imaging Med Surg 13(1):94–107CrossRefPubMed
19.
go back to reference Peuchmaur M, d’Amore ES, Joshi VV et al (2003) Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98(10):2274–2281CrossRefPubMed Peuchmaur M, d’Amore ES, Joshi VV et al (2003) Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98(10):2274–2281CrossRefPubMed
21.
go back to reference Wu H, Wu C, Zheng H et al (2021) Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics signature in predicting MYCN amplification. Eur Radiol 31(5):3080–3089CrossRefPubMed Wu H, Wu C, Zheng H et al (2021) Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics signature in predicting MYCN amplification. Eur Radiol 31(5):3080–3089CrossRefPubMed
22.
go back to reference Chen X, Wang H, Huang K et al (2021) CT-based radiomics signature with machine learning predicts MYCN amplification in pediatric abdominal neuroblastoma. Front Oncol 11:687884CrossRefPubMedPubMedCentral Chen X, Wang H, Huang K et al (2021) CT-based radiomics signature with machine learning predicts MYCN amplification in pediatric abdominal neuroblastoma. Front Oncol 11:687884CrossRefPubMedPubMedCentral
23.
go back to reference Feng L, Qian L, Yang S et al (2022) Prediction for Mitosis-Karyorrhexis index status of pediatric neuroblastoma via machine learning based 18F-FDG PET/CT radiomics. Diagnostics (Basel) 12(2):262CrossRefPubMed Feng L, Qian L, Yang S et al (2022) Prediction for Mitosis-Karyorrhexis index status of pediatric neuroblastoma via machine learning based 18F-FDG PET/CT radiomics. Diagnostics (Basel) 12(2):262CrossRefPubMed
24.
go back to reference Feng L, Yang X, Lu X et al (2022) 18F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma. Insights Imaging 13(1):144CrossRefPubMedPubMedCentral Feng L, Yang X, Lu X et al (2022) 18F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma. Insights Imaging 13(1):144CrossRefPubMedPubMedCentral
25.
go back to reference Thibault G, Angulo J, Meyer F (2014) Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng 61(3):630–637CrossRefPubMed Thibault G, Angulo J, Meyer F (2014) Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng 61(3):630–637CrossRefPubMed
26.
go back to reference Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59(12):1061–1069CrossRefPubMed Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59(12):1061–1069CrossRefPubMed
27.
go back to reference Wang H, Xie M, Chen X et al (2023) Development and validation of a CT-based radiomics signature for identifying high-risk neuroblastomas under the revised Children’s Oncology Group classification system. Pediatr Blood Cancer 70(5):e30280CrossRefPubMed Wang H, Xie M, Chen X et al (2023) Development and validation of a CT-based radiomics signature for identifying high-risk neuroblastomas under the revised Children’s Oncology Group classification system. Pediatr Blood Cancer 70(5):e30280CrossRefPubMed
28.
go back to reference Nakazawa A (2021) Biological categories of neuroblastoma based on the international neuroblastoma pathology classification for treatment stratification. Pathol Int 71(4):232–244CrossRefPubMed Nakazawa A (2021) Biological categories of neuroblastoma based on the international neuroblastoma pathology classification for treatment stratification. Pathol Int 71(4):232–244CrossRefPubMed
Metadata
Title
Radiomics analysis of contrast-enhanced computed tomography in predicting the International Neuroblastoma Pathology Classification in neuroblastoma
Authors
Haoru Wang
Mingye Xie
Xin Chen
Jin Zhu
Li Zhang
Hao Ding
Zhengxia Pan
Ling He
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01418-5

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue