Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Original Article

Development and clinical utility analysis of a prostate zonal segmentation model on T2-weighted imaging: a multicenter study

Authors: Lili Xu, Gumuyang Zhang, Daming Zhang, Jiahui Zhang, Xiaoxiao Zhang, Xin Bai, Li Chen, Qianyu Peng, Ru Jin, Li Mao, Xiuli Li, Zhengyu Jin, Hao Sun

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Objectives

To automatically segment prostate central gland (CG) and peripheral zone (PZ) on T2-weighted imaging using deep learning and assess the model’s clinical utility by comparing it with a radiologist annotation and analyzing relevant influencing factors, especially the prostate zonal volume.

Methods

A 3D U-Net-based model was trained with 223 patients from one institution and tested using one internal testing group (n = 93) and two external testing datasets, including one public dataset (ETDpub, n = 141) and one private dataset from two centers (ETDpri, n = 59). The Dice similarity coefficients (DSCs), 95th Hausdorff distance (95HD), and average boundary distance (ABD) were calculated to evaluate the model’s performance and further compared with a junior radiologist’s performance in ETDpub. To investigate factors influencing the model performance, patients’ clinical characteristics, prostate morphology, and image parameters in ETDpri were collected and analyzed using beta regression.

Results

The DSCs in the internal testing group, ETDpub, and ETDpri were 0.909, 0.889, and 0.869 for CG, and 0.844, 0.755, and 0.764 for PZ, respectively. The mean 95HD and ABD were less than 7.0 and 1.3 for both zones. The U-Net model outperformed the junior radiologist, having a higher DSC (0.769 vs. 0.706) and higher intraclass correlation coefficient for volume estimation in PZ (0.836 vs. 0.668). CG volume and Magnetic Resonance (MR) vendor were significant influencing factors for CG and PZ segmentation.

Conclusions

The 3D U-Net model showed good performance for CG and PZ auto-segmentation in all the testing groups and outperformed the junior radiologist for PZ segmentation. The model performance was susceptible to prostate morphology and MR scanner parameters.
Appendix
Available only for authorised users
Literature
1.
go back to reference Almeida G, Tavares J (2020) Deep learning in radiation oncology treatment planning for prostate cancer: a systematic review. J Med Syst 44:179CrossRefPubMed Almeida G, Tavares J (2020) Deep learning in radiation oncology treatment planning for prostate cancer: a systematic review. J Med Syst 44:179CrossRefPubMed
2.
go back to reference Sonn GA, Margolis DJ, Marks LS (2014) Target detection: magnetic resonance imaging-ultrasound fusion-guided prostate biopsy. Urol Oncol 32:903–911CrossRefPubMed Sonn GA, Margolis DJ, Marks LS (2014) Target detection: magnetic resonance imaging-ultrasound fusion-guided prostate biopsy. Urol Oncol 32:903–911CrossRefPubMed
3.
go back to reference Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 69:16–40CrossRefPubMed Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 69:16–40CrossRefPubMed
4.
go back to reference Patel P, Mathew MS, Trilisky I, Oto A (2018) Multiparametric MR imaging of the prostate after treatment of prostate cancer. Radiographics 38:437–449CrossRefPubMed Patel P, Mathew MS, Trilisky I, Oto A (2018) Multiparametric MR imaging of the prostate after treatment of prostate cancer. Radiographics 38:437–449CrossRefPubMed
5.
go back to reference Hamzaoui D, Montagne S, Granger B et al (2022) Prostate volume prediction on MRI: tools, accuracy and variability. Eur Radiol 32:4931–4941CrossRefPubMed Hamzaoui D, Montagne S, Granger B et al (2022) Prostate volume prediction on MRI: tools, accuracy and variability. Eur Radiol 32:4931–4941CrossRefPubMed
6.
go back to reference Matsugasumi T, Fujihara A, Ushijima S et al (2017) Morphometric analysis of prostate zonal anatomy using magnetic resonance imaging: impact on age-related changes in patients in Japan and the USA. BJU Int 120:497–504CrossRefPubMed Matsugasumi T, Fujihara A, Ushijima S et al (2017) Morphometric analysis of prostate zonal anatomy using magnetic resonance imaging: impact on age-related changes in patients in Japan and the USA. BJU Int 120:497–504CrossRefPubMed
7.
go back to reference Montagne S, Hamzaoui D, Allera A et al (2021) Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights Imaging 12:71CrossRefPubMedPubMedCentral Montagne S, Hamzaoui D, Allera A et al (2021) Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights Imaging 12:71CrossRefPubMedPubMedCentral
8.
go back to reference Adams LC, Makowski MR, Engel G et al (2022) Prostate158 - an expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Comput Biol Med 148:105817CrossRefPubMed Adams LC, Makowski MR, Engel G et al (2022) Prostate158 - an expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Comput Biol Med 148:105817CrossRefPubMed
9.
go back to reference Zabihollahy F, Schieda N, Krishna JS, Ukwatta E (2019) Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets. Med Phys 46:3078–3090CrossRefPubMed Zabihollahy F, Schieda N, Krishna JS, Ukwatta E (2019) Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets. Med Phys 46:3078–3090CrossRefPubMed
10.
go back to reference Lee DK, Sung DJ, Kim CS et al (2020) Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula. AJR Am J Roentgenol 214:1229–1238CrossRefPubMed Lee DK, Sung DJ, Kim CS et al (2020) Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula. AJR Am J Roentgenol 214:1229–1238CrossRefPubMed
11.
go back to reference Hamzaoui D, Montagne S, Renard-Penna R, Ayache N, Delingette H (2022) Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use. J Med Imaging 9:024001CrossRef Hamzaoui D, Montagne S, Renard-Penna R, Ayache N, Delingette H (2022) Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use. J Med Imaging 9:024001CrossRef
12.
go back to reference Nai YH, Teo BW, Tan NL et al (2020) Evaluation of multimodal algorithms for the segmentation of multiparametric MRI prostate images. Comput Math Methods Med 2020:8861035CrossRefPubMedPubMedCentral Nai YH, Teo BW, Tan NL et al (2020) Evaluation of multimodal algorithms for the segmentation of multiparametric MRI prostate images. Comput Math Methods Med 2020:8861035CrossRefPubMedPubMedCentral
13.
go back to reference Clark K, Vendt B, Smith K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057CrossRefPubMedPubMedCentral Clark K, Vendt B, Smith K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057CrossRefPubMedPubMedCentral
14.
go back to reference Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H (2017) ProstateX challenge data. In: Archive TCI (ed) Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H (2017) ProstateX challenge data. In: Archive TCI (ed)
15.
go back to reference Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed
16.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef
17.
go back to reference Rouviere O, Moldovan PC, Vlachomitrou A et al (2022) Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation. Eur Radiol 32:3248–3259CrossRefPubMed Rouviere O, Moldovan PC, Vlachomitrou A et al (2022) Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation. Eur Radiol 32:3248–3259CrossRefPubMed
18.
go back to reference Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24CrossRef Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24CrossRef
19.
go back to reference Mehta P, Antonelli M, Singh S et al (2021) AutoProstate: towards automated reporting of prostate MRI for prostate cancer assessment using deep learning. Cancers 13:6138CrossRefPubMedPubMedCentral Mehta P, Antonelli M, Singh S et al (2021) AutoProstate: towards automated reporting of prostate MRI for prostate cancer assessment using deep learning. Cancers 13:6138CrossRefPubMedPubMedCentral
20.
go back to reference Qin X, Zhu Y, Wang W, Gui S, Zheng B, Wang P (2020) 3D multi-scale discriminative network with multi-directional edge loss for prostate zonal segmentation in bi-parametric MR images. Neurocomputing 418:148–161CrossRef Qin X, Zhu Y, Wang W, Gui S, Zheng B, Wang P (2020) 3D multi-scale discriminative network with multi-directional edge loss for prostate zonal segmentation in bi-parametric MR images. Neurocomputing 418:148–161CrossRef
21.
go back to reference Sanford TH, Zhang L, Harmon SA et al (2020) Data augmentation and transfer learning to improve generalizability of an automated prostate segmentation model. AJR Am J Roentgenol 215:1403–1410CrossRefPubMedPubMedCentral Sanford TH, Zhang L, Harmon SA et al (2020) Data augmentation and transfer learning to improve generalizability of an automated prostate segmentation model. AJR Am J Roentgenol 215:1403–1410CrossRefPubMedPubMedCentral
22.
go back to reference Liu Y, Yang G, Hosseiny M et al (2020) Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation. IEEE Access 8:151817–151828CrossRefPubMedPubMedCentral Liu Y, Yang G, Hosseiny M et al (2020) Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation. IEEE Access 8:151817–151828CrossRefPubMedPubMedCentral
23.
go back to reference Becker AS, Chaitanya K, Schawkat K et al (2019) Variability of manual segmentation of the prostate in axial T2-weighted MRI: a multi-reader study. Eur J Radiol 121:108716CrossRefPubMed Becker AS, Chaitanya K, Schawkat K et al (2019) Variability of manual segmentation of the prostate in axial T2-weighted MRI: a multi-reader study. Eur J Radiol 121:108716CrossRefPubMed
24.
go back to reference Sunoqrot MRS, Selnaes KM, Sandsmark E et al (2021) The reproducibility of deep learning-based segmentation of the prostate gland and zones on T2-weighted MR images. Diagnostics 11:1690CrossRefPubMedPubMedCentral Sunoqrot MRS, Selnaes KM, Sandsmark E et al (2021) The reproducibility of deep learning-based segmentation of the prostate gland and zones on T2-weighted MR images. Diagnostics 11:1690CrossRefPubMedPubMedCentral
25.
26.
go back to reference Nordstrom T, Akre O, Aly M, Gronberg H, Eklund M (2018) Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis 21:57–63CrossRefPubMed Nordstrom T, Akre O, Aly M, Gronberg H, Eklund M (2018) Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis 21:57–63CrossRefPubMed
27.
go back to reference Osman M, Shebel H, Sankineni S et al (2014) Whole prostate volume and shape changes with the use of an inflatable and flexible endorectal coil. Radiol Res Pract 2014:903747PubMedPubMedCentral Osman M, Shebel H, Sankineni S et al (2014) Whole prostate volume and shape changes with the use of an inflatable and flexible endorectal coil. Radiol Res Pract 2014:903747PubMedPubMedCentral
Metadata
Title
Development and clinical utility analysis of a prostate zonal segmentation model on T2-weighted imaging: a multicenter study
Authors
Lili Xu
Gumuyang Zhang
Daming Zhang
Jiahui Zhang
Xiaoxiao Zhang
Xin Bai
Li Chen
Qianyu Peng
Ru Jin
Li Mao
Xiuli Li
Zhengyu Jin
Hao Sun
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01394-w

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue