Skip to main content
Top
Published in: European Spine Journal 5/2020

01-05-2020 | Magnetic Resonance Imaging | Original Article

Diagnostic value and clinical significance of magnetic resonance imaging with the FS-PD-TSE sequence in diagnosing lumbar cartilaginous endplate failure

Authors: Ruopeng Mai, Huanyu Tan, Yiwei Zhao, Jun Jia, Wubo Liu, Yonghao Tian, Suomao Yuan, Xinyu Liu

Published in: European Spine Journal | Issue 5/2020

Login to get access

Abstract

Purpose

The aims were to use magnetic resonance imaging (MRI) to compare the efficacy of fat-suppressed proton-density turbo-spin-echo (FS-PD-TSE) images and T1-weighted (T1WIs) and T2-weighted images (T2WIs) in identifying cartilaginous endplate failure (CEF), and to propose a modified Rajasekaran classification based on the FS-PD-TSE sequence.

Methods

Thirty-one lumbar disc herniation (LDH) cases were enrolled. Totally, 155 discs and 310 endplates were evaluated by MRI with T1W, T2W, and FS-PD-TSE sequences. Disc degeneration (DD), LDH grades, and the total endplate score (TEPS) of CEF were evaluated. Chi-square, Spearman rank correlation analysis, and multiclass logistic regression were used to compared the sensitivity in diagnosing CEF. A modified Rajasekaran classification based on FS-PD-TSE sequence was established to diagnose CEF. The multiclass logistic regression model was used to analyse the relationship between modified Rajasekaran classification and DD and LDH.

Results

There were 117 (75.5%) segments with CEF in T1WIs, 115 (74.2%) in T2WIs, and 127 (81.9%) in FS-PD-TSE, respectively. Chi-square test showed FS-PD-TSE images were more sensitive than T1WIs and T2WIs (P < 0.05). Spearman rank correlation analysis revealed a significant correlation between TEPS and LDH and DD in T1WIs, T2WIs, and FS-PD-TSE images (P < 0.05). A multiclass logistic regression model showed that the incidence of DD and LDH significantly increased accordingly with increases in modified Rajasekaran classification (P < 0.05).

Conclusion

The FS-PD-TSE sequence has high diagnostic value for lumbar CEF. CEF is a risk factor for LDH. The new classification for lumbar CEF based on the FS-PD-TSE sequence has good predictive ability for LDH and DD.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Hsiao CJ, Cherry DK, Beatty PC, Rechtsteiner EA (2010) National Ambulatory Medical Care Survey: 2007 summary. Natl Health Stat Rep 27:1–32 Hsiao CJ, Cherry DK, Beatty PC, Rechtsteiner EA (2010) National Ambulatory Medical Care Survey: 2007 summary. Natl Health Stat Rep 27:1–32
4.
go back to reference Froud R, Patterson S, Eldridge S et al (2014) A systematic review and meta-synthesis of the impact of low back pain on people's lives. BMC Musculoskelet Disord 15:50CrossRefPubMedPubMedCentral Froud R, Patterson S, Eldridge S et al (2014) A systematic review and meta-synthesis of the impact of low back pain on people's lives. BMC Musculoskelet Disord 15:50CrossRefPubMedPubMedCentral
5.
go back to reference Sahoo MM, Mahapatra SK, Kaur S, Sarangi J, Mohapatra M (2017) Significance of vertebral endplate failure in symptomatic lumbar disc herniation. Global Spine J 7(3):230–238CrossRefPubMedPubMedCentral Sahoo MM, Mahapatra SK, Kaur S, Sarangi J, Mohapatra M (2017) Significance of vertebral endplate failure in symptomatic lumbar disc herniation. Global Spine J 7(3):230–238CrossRefPubMedPubMedCentral
6.
go back to reference Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine (Phila Pa 1976) 21(18):2149–2155CrossRef Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine (Phila Pa 1976) 21(18):2149–2155CrossRef
7.
8.
go back to reference Schmid G, Witteler A, Willburger R, Kuhnen C, Jergas M, Koester O (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231(2):352–358CrossRefPubMed Schmid G, Witteler A, Willburger R, Kuhnen C, Jergas M, Koester O (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231(2):352–358CrossRefPubMed
10.
go back to reference Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15(Suppl 3):S333–S337CrossRefPubMed Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15(Suppl 3):S333–S337CrossRefPubMed
12.
go back to reference Brown S, Rodrigues S, Sharp C et al (2017) Staying connected: structural integration at the intervertebral disc-vertebra interface of human lumbar spines. Eur Spine J 26(1):248–258CrossRefPubMed Brown S, Rodrigues S, Sharp C et al (2017) Staying connected: structural integration at the intervertebral disc-vertebra interface of human lumbar spines. Eur Spine J 26(1):248–258CrossRefPubMed
13.
go back to reference Wang Y, Videman T, Battié MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37(17):1432–1439CrossRef Wang Y, Videman T, Battié MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37(17):1432–1439CrossRef
14.
go back to reference Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS Prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine (Phila Pa 1976) 38(17):1491–1500CrossRef Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS Prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine (Phila Pa 1976) 38(17):1491–1500CrossRef
15.
go back to reference Weiner BK, Vilendecic M, Ledic D et al (2015) Endplate changes following discectomy: natural history and associations between imaging and clinical data. Eur Spine J 24(11):2449–2457CrossRefPubMed Weiner BK, Vilendecic M, Ledic D et al (2015) Endplate changes following discectomy: natural history and associations between imaging and clinical data. Eur Spine J 24(11):2449–2457CrossRefPubMed
16.
go back to reference Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37(17):1490–1496CrossRef Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37(17):1490–1496CrossRef
17.
go back to reference Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643CrossRefPubMedPubMedCentral Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643CrossRefPubMedPubMedCentral
18.
go back to reference Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673(4):443–453CrossRefPubMed Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673(4):443–453CrossRefPubMed
19.
go back to reference Antoniou J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degradation of the nucleus pulposus of intervertebral discs. Spine (Phila Pa 1976) 31(14):1547–1554CrossRef Antoniou J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degradation of the nucleus pulposus of intervertebral discs. Spine (Phila Pa 1976) 31(14):1547–1554CrossRef
20.
go back to reference Pfirrmann CW, Metzdorf A, Elfering A, Hodler J, Boos N (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Orthop Res 24(5):1086–1094CrossRefPubMed Pfirrmann CW, Metzdorf A, Elfering A, Hodler J, Boos N (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Orthop Res 24(5):1086–1094CrossRefPubMed
21.
go back to reference Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine (Phila Pa 1976) 31(11):1253–1257CrossRef Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine (Phila Pa 1976) 31(11):1253–1257CrossRef
22.
go back to reference Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S (2010) In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63(5):1193–1200CrossRefPubMedPubMedCentral Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S (2010) In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63(5):1193–1200CrossRefPubMedPubMedCentral
23.
go back to reference Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM (2013) Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 22(8):1820–1828CrossRefPubMedPubMedCentral Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM (2013) Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 22(8):1820–1828CrossRefPubMedPubMedCentral
24.
go back to reference Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574CrossRefPubMedPubMedCentral Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574CrossRefPubMedPubMedCentral
25.
go back to reference Fields AJ, Han M, Krug R, Lotz JC (2015) Cartilaginous end plates: quantitative MR imaging with very short echo times-orientation dependence and correlation with biochemical composition. Radiology 274(2):482–489CrossRefPubMed Fields AJ, Han M, Krug R, Lotz JC (2015) Cartilaginous end plates: quantitative MR imaging with very short echo times-orientation dependence and correlation with biochemical composition. Radiology 274(2):482–489CrossRefPubMed
26.
go back to reference Law T, Anthony MP, Chan Q et al (2013) Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol 57(4):427–434CrossRefPubMed Law T, Anthony MP, Chan Q et al (2013) Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol 57(4):427–434CrossRefPubMed
27.
go back to reference van Eck CF, Kingston RS, Crues JV, Kharrazi FD (2017) Magnetic resonance imaging for patellofemoral chondromalacia: is there a role for T2 mapping. Orthop J Sports Med 5(11):2325967117740554PubMedPubMedCentral van Eck CF, Kingston RS, Crues JV, Kharrazi FD (2017) Magnetic resonance imaging for patellofemoral chondromalacia: is there a role for T2 mapping. Orthop J Sports Med 5(11):2325967117740554PubMedPubMedCentral
28.
go back to reference Schaefer FK, Kurz B, Schaefer PJ et al (2007) Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol 48(10):1131–1137CrossRefPubMed Schaefer FK, Kurz B, Schaefer PJ et al (2007) Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol 48(10):1131–1137CrossRefPubMed
29.
go back to reference Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 32(7):396–402CrossRefPubMed Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 32(7):396–402CrossRefPubMed
30.
go back to reference Khoury NJ, Mahfoud Z, Masrouha KZ et al (2011) Value of sagittal fat-suppressed proton-density fast-spin-echo of the knee joint as a limited protocol in evaluating internal knee derangements. J Comput Assist Tomogr 35(5):653–661CrossRefPubMed Khoury NJ, Mahfoud Z, Masrouha KZ et al (2011) Value of sagittal fat-suppressed proton-density fast-spin-echo of the knee joint as a limited protocol in evaluating internal knee derangements. J Comput Assist Tomogr 35(5):653–661CrossRefPubMed
31.
go back to reference Gray ML, Burstein D, Xia Y (2001) Biochemical (and functional) imaging of articular cartilage. Semin Musculoskelet Radiol 5(4):329–343CrossRefPubMed Gray ML, Burstein D, Xia Y (2001) Biochemical (and functional) imaging of articular cartilage. Semin Musculoskelet Radiol 5(4):329–343CrossRefPubMed
32.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878CrossRef
33.
go back to reference Mysliwiec LW, Cholewicki J, Winkelpleck MD, Eis GP (2010) MSU classification for herniated lumbar discs on MRI: toward developing objective criteria for surgical selection. Eur Spine J 19(7):1087–1093CrossRefPubMedPubMedCentral Mysliwiec LW, Cholewicki J, Winkelpleck MD, Eis GP (2010) MSU classification for herniated lumbar discs on MRI: toward developing objective criteria for surgical selection. Eur Spine J 19(7):1087–1093CrossRefPubMedPubMedCentral
34.
go back to reference Disler DG, Recht MP, McCauley TR (2000) MR imaging of articular cartilage. Skeletal Radiol 29(7):367–377CrossRefPubMed Disler DG, Recht MP, McCauley TR (2000) MR imaging of articular cartilage. Skeletal Radiol 29(7):367–377CrossRefPubMed
35.
go back to reference Hohe J, Faber S, Stammberger T, Reiser M, Englmeier KH, Eckstein F (2000) A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthr Cartil 8(6):426–433CrossRef Hohe J, Faber S, Stammberger T, Reiser M, Englmeier KH, Eckstein F (2000) A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthr Cartil 8(6):426–433CrossRef
36.
go back to reference Lama P, Zehra U, Balkovec C et al (2014) Significance of cartilage endplate within herniated disc tissue. Eur Spine J 23(9):1869–1877CrossRefPubMed Lama P, Zehra U, Balkovec C et al (2014) Significance of cartilage endplate within herniated disc tissue. Eur Spine J 23(9):1869–1877CrossRefPubMed
Metadata
Title
Diagnostic value and clinical significance of magnetic resonance imaging with the FS-PD-TSE sequence in diagnosing lumbar cartilaginous endplate failure
Authors
Ruopeng Mai
Huanyu Tan
Yiwei Zhao
Jun Jia
Wubo Liu
Yonghao Tian
Suomao Yuan
Xinyu Liu
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 5/2020
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-020-06338-2

Other articles of this Issue 5/2020

European Spine Journal 5/2020 Go to the issue