Skip to main content
Top
Published in: European Spine Journal 8/2013

01-08-2013 | Original Article

Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging

Authors: Sung M. Moon, Jonathon H. Yoder, Alexander C. Wright, Lachlan J. Smith, Edward J. Vresilovic, Dawn M. Elliott

Published in: European Spine Journal | Issue 8/2013

Login to get access

Abstract

Purpose

The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence.

Methods

MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP.

Results

CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc.

Conclusions

This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.
Literature
3.
go back to reference Louma K, Riihimaki H, Luukkonen R et al (2000) Low back pain in relation to lumbar disc degeneration. Spine 24:487–492CrossRef Louma K, Riihimaki H, Luukkonen R et al (2000) Low back pain in relation to lumbar disc degeneration. Spine 24:487–492CrossRef
4.
go back to reference Peng B, Hou S, Wu W et al (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587PubMedCrossRef Peng B, Hou S, Wu W et al (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587PubMedCrossRef
5.
go back to reference Videman T, Nurminen M (2004) The occurrence of annular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 29:2668–2676PubMedCrossRef Videman T, Nurminen M (2004) The occurrence of annular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 29:2668–2676PubMedCrossRef
6.
go back to reference Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44PubMedCrossRef Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44PubMedCrossRef
7.
go back to reference Roberts S, Menage J, Urban JPG (1989) Biomechanical and structural properties of the catilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRef Roberts S, Menage J, Urban JPG (1989) Biomechanical and structural properties of the catilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRef
8.
go back to reference Francois RJ, Bywaters EGL, Aufdermaur M (1985) Illustrated glossary for spinal anatomy. Rheumatol Int 5:241–245PubMedCrossRef Francois RJ, Bywaters EGL, Aufdermaur M (1985) Illustrated glossary for spinal anatomy. Rheumatol Int 5:241–245PubMedCrossRef
9.
go back to reference Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the vertebral end-plate in adult greyhound dogs. Spine 9:702–706PubMedCrossRef Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the vertebral end-plate in adult greyhound dogs. Spine 9:702–706PubMedCrossRef
10.
go back to reference Roberts S, Menage J, Einstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Ortho Res 11:747–757CrossRef Roberts S, Menage J, Einstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Ortho Res 11:747–757CrossRef
12.
go back to reference Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthr Res Therapy 5:120–130CrossRef Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthr Res Therapy 5:120–130CrossRef
13.
go back to reference Grignon B, Grignon Y, Mainard D et al (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat 22:13–19PubMedCrossRef Grignon B, Grignon Y, Mainard D et al (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat 22:13–19PubMedCrossRef
14.
go back to reference Bibby SRS, Jones DA, Lee RB et al (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68:537–542PubMedCrossRef Bibby SRS, Jones DA, Lee RB et al (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68:537–542PubMedCrossRef
15.
go back to reference Nachemson A, Lewin T, Maroudas A et al (1970) In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand 41:589–607PubMedCrossRef Nachemson A, Lewin T, Maroudas A et al (1970) In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand 41:589–607PubMedCrossRef
16.
go back to reference Roberts S, Urban JPG, Evans H et al (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420PubMedCrossRef Roberts S, Urban JPG, Evans H et al (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420PubMedCrossRef
17.
go back to reference Accadbled F, Laffosse J-M, Ambard D et al (2008) Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of cerebral end plates. Spine 33:612–619PubMedCrossRef Accadbled F, Laffosse J-M, Ambard D et al (2008) Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of cerebral end plates. Spine 33:612–619PubMedCrossRef
18.
go back to reference Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102PubMedCrossRef Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102PubMedCrossRef
19.
go back to reference Benneker LM, Heini PF, Alini M et al (2005) Vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173PubMedCrossRef Benneker LM, Heini PF, Alini M et al (2005) Vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173PubMedCrossRef
20.
go back to reference Martin MD, Boxell CM (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:1–6CrossRef Martin MD, Boxell CM (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:1–6CrossRef
21.
go back to reference Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161PubMedCrossRef Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161PubMedCrossRef
22.
go back to reference Ariga K, Miyamoto S, Nakase T et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420PubMedCrossRef Ariga K, Miyamoto S, Nakase T et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420PubMedCrossRef
23.
go back to reference Lyons G, Einstein SM, Sweet MBE (1981) Biochemical changes in intervertebral disc degeneration. Biochimica et Biophys Acta 673:443–453CrossRef Lyons G, Einstein SM, Sweet MBE (1981) Biochemical changes in intervertebral disc degeneration. Biochimica et Biophys Acta 673:443–453CrossRef
24.
go back to reference Antoniu J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degeneration of the nucleus pulposus of intervertebral discs. Spine 31:1547–1554CrossRef Antoniu J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degeneration of the nucleus pulposus of intervertebral discs. Spine 31:1547–1554CrossRef
25.
go back to reference Pfirrmann CWA, Metzdorf A, Elfering A et al (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Ortho Res 24:1086–1094CrossRef Pfirrmann CWA, Metzdorf A, Elfering A et al (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Ortho Res 24:1086–1094CrossRef
26.
go back to reference Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31:1253–1257PubMedCrossRef Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31:1253–1257PubMedCrossRef
27.
go back to reference Blumenkrantz G, Zuo J, Li X et al (2010) In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200PubMedCrossRef Blumenkrantz G, Zuo J, Li X et al (2010) In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200PubMedCrossRef
28.
go back to reference Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. JMR 67(2):258–266 Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. JMR 67(2):258–266
29.
go back to reference Gatehouse PD, He T, Hughes SPF et al (2004) MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. MAGMA 16:160–166PubMedCrossRef Gatehouse PD, He T, Hughes SPF et al (2004) MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. MAGMA 16:160–166PubMedCrossRef
30.
go back to reference Dathe H, Helms G (2010) Exact algebraization of the signal equation of spoiled gradient echo MRI. Phys Med Biol 55:4231–4245PubMedCrossRef Dathe H, Helms G (2010) Exact algebraization of the signal equation of spoiled gradient echo MRI. Phys Med Biol 55:4231–4245PubMedCrossRef
31.
go back to reference Helms G, Dathe H, Dechent P (2008) Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 59:667–672PubMedCrossRef Helms G, Dathe H, Dechent P (2008) Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 59:667–672PubMedCrossRef
32.
go back to reference Iatridis JC, Setton LA, Weidenbaum M et al (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30(10):1005–1013PubMedCrossRef Iatridis JC, Setton LA, Weidenbaum M et al (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30(10):1005–1013PubMedCrossRef
33.
go back to reference Rodriguez AG, Slichter CK, Acosta FL et al (2011) Human disc nucleus properties and vertebral endplate permeability. Spine 36(7):512–520PubMedCrossRef Rodriguez AG, Slichter CK, Acosta FL et al (2011) Human disc nucleus properties and vertebral endplate permeability. Spine 36(7):512–520PubMedCrossRef
34.
go back to reference O’Connell GD, Vresilovic EJ, Elliott DM (2011) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555PubMedCrossRef O’Connell GD, Vresilovic EJ, Elliott DM (2011) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555PubMedCrossRef
35.
go back to reference Wright AC, Lemdiasov R, Connick TJ et al (2011) Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. J Magn Reson 210:113–122PubMedCrossRef Wright AC, Lemdiasov R, Connick TJ et al (2011) Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. J Magn Reson 210:113–122PubMedCrossRef
36.
go back to reference Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digital Imaging 17:205–216CrossRef Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digital Imaging 17:205–216CrossRef
37.
go back to reference Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574PubMedCrossRef Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574PubMedCrossRef
Metadata
Title
Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging
Authors
Sung M. Moon
Jonathon H. Yoder
Alexander C. Wright
Lachlan J. Smith
Edward J. Vresilovic
Dawn M. Elliott
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 8/2013
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-2798-1

Other articles of this Issue 8/2013

European Spine Journal 8/2013 Go to the issue