Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Review

Single cell sequencing: a distinct new field

Authors: Jian Wang, Yuanlin Song

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Single cell sequencing (SCS) has become a new approach to study biological heterogeneity. The advancement in technologies for single cell isolation, amplification of genome/transcriptome and next-generation sequencing enables SCS to reveal the inherent properties of a single cell from the large scale of the genome, transcriptome or epigenome at high resolution. Recently, SCS has been widely applied in various clinical and research fields, such as cancer biology and oncology, immunology, microbiology, neurobiology and prenatal diagnosis. In this review, we will discuss the development of SCS methods and focus on the latest clinical and research applications of SCS.
Literature
2.
go back to reference Coskun AF, Eser U, Islam S (2016) Cellular identity at the single-cell level. Mol Bio Syst 12(10):2965–2979 Coskun AF, Eser U, Islam S (2016) Cellular identity at the single-cell level. Mol Bio Syst 12(10):2965–2979
3.
go back to reference Bianconi E, Piovesan A, Facchin F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471PubMedCrossRef Bianconi E, Piovesan A, Facchin F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471PubMedCrossRef
4.
go back to reference Lindstrom S, Andersson-Svahn H (2010) Overview of single-cell analyses: microdevices and applications. Lab Chip 10(24):3363–3372PubMedCrossRef Lindstrom S, Andersson-Svahn H (2010) Overview of single-cell analyses: microdevices and applications. Lab Chip 10(24):3363–3372PubMedCrossRef
5.
go back to reference Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRef Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRef
7.
go back to reference Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885PubMedCrossRef Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885PubMedCrossRef
8.
go back to reference Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895PubMedCrossRef Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895PubMedCrossRef
9.
go back to reference Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64PubMedCrossRef Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64PubMedCrossRef
13.
go back to reference Zhang D, Wang X (2015) A simple protocol for single lung cancer cell isolation-making the single cell based lung cancer research feasible for individual investigator. In Single cell sequencing and systems immunology. Springer, Berlin Zhang D, Wang X (2015) A simple protocol for single lung cancer cell isolation-making the single cell based lung cancer research feasible for individual investigator. In Single cell sequencing and systems immunology. Springer, Berlin
14.
15.
16.
go back to reference von Boehmer L, Liu C, Ackerman S et al (2016) Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc 11(10):1908–1923CrossRef von Boehmer L, Liu C, Ackerman S et al (2016) Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc 11(10):1908–1923CrossRef
18.
go back to reference Wang J, Min Z, Jin M, et al (2015) Protocol for single cell isolation by flow cytometry. In Single cell sequencing and systems immunology. Springer, Berlin Wang J, Min Z, Jin M, et al (2015) Protocol for single cell isolation by flow cytometry. In Single cell sequencing and systems immunology. Springer, Berlin
19.
20.
go back to reference Le Gac S, Nordhoff V (2016) Microfluidics for mammalian embryo culture and selection: where do we stand now? Mol Hum Reprod 27:61 Le Gac S, Nordhoff V (2016) Microfluidics for mammalian embryo culture and selection: where do we stand now? Mol Hum Reprod 27:61
21.
22.
go back to reference Han L, Zi X, Garmire LX et al (2014) Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Sci Rep 4:6485PubMedPubMedCentralCrossRef Han L, Zi X, Garmire LX et al (2014) Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Sci Rep 4:6485PubMedPubMedCentralCrossRef
23.
go back to reference Wu AR, Kawahara TL, Rapicavoli NA et al (2012) High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12(12):2190–2198PubMedPubMedCentralCrossRef Wu AR, Kawahara TL, Rapicavoli NA et al (2012) High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12(12):2190–2198PubMedPubMedCentralCrossRef
24.
go back to reference Salafi T, Zeming KK, Zhang Y (2016) Advancements in microfluidics for nanoparticle separation. Lab Chip 17:11–33PubMedCrossRef Salafi T, Zeming KK, Zhang Y (2016) Advancements in microfluidics for nanoparticle separation. Lab Chip 17:11–33PubMedCrossRef
25.
go back to reference Zhang X, Marjani SL, Hu Z et al (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76(6):1305–1312PubMedCrossRef Zhang X, Marjani SL, Hu Z et al (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76(6):1305–1312PubMedCrossRef
26.
go back to reference Swennenhuis JF, van Dalum G, Zeune LL et al (2016) Improving the cell search(R) system. Expert Rev Mol Diagn 16(12):1291–1305PubMedCrossRef Swennenhuis JF, van Dalum G, Zeune LL et al (2016) Improving the cell search(R) system. Expert Rev Mol Diagn 16(12):1291–1305PubMedCrossRef
27.
go back to reference Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6(6):339–351PubMedCrossRef Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6(6):339–351PubMedCrossRef
28.
go back to reference Talasaz AH, Powell AA, Huber DE et al (2009) Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA 106(10):3970–3975PubMedPubMedCentralCrossRef Talasaz AH, Powell AA, Huber DE et al (2009) Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA 106(10):3970–3975PubMedPubMedCentralCrossRef
29.
go back to reference Altomare L, Borgatti M, Medoro G et al (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol Bioeng 82(4):474–479PubMedCrossRef Altomare L, Borgatti M, Medoro G et al (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol Bioeng 82(4):474–479PubMedCrossRef
30.
go back to reference Choi JH, Ogunniyi AO, Du M et al (2010) Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog 26(3):888–895PubMedCrossRef Choi JH, Ogunniyi AO, Du M et al (2010) Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog 26(3):888–895PubMedCrossRef
31.
go back to reference Adams DL, Adams DK, Alpaugh RK et al (2016) Circulating cancer-associated macrophage-like cells differentiate malignant breast cancer and benign breast conditions. Cancer Epidemiol Biomark Prev 25(7):1037–1042CrossRef Adams DL, Adams DK, Alpaugh RK et al (2016) Circulating cancer-associated macrophage-like cells differentiate malignant breast cancer and benign breast conditions. Cancer Epidemiol Biomark Prev 25(7):1037–1042CrossRef
32.
go back to reference Zhu W, Zhang XY, Marjani SL et al (2016) Next-generation molecular diagnosis: single-cell sequencing from bench to bedside. Cell Mol Life Sci 13:1 Zhu W, Zhang XY, Marjani SL et al (2016) Next-generation molecular diagnosis: single-cell sequencing from bench to bedside. Cell Mol Life Sci 13:1
33.
go back to reference Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626PubMedPubMedCentralCrossRef Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626PubMedPubMedCentralCrossRef
34.
go back to reference Liang J, Cai W, Sun Z (2014) Single-cell sequencing technologies: current and future. J Genet Genom 41(10):513–528CrossRef Liang J, Cai W, Sun Z (2014) Single-cell sequencing technologies: current and future. J Genet Genom 41(10):513–528CrossRef
35.
36.
go back to reference Grun D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810PubMedCrossRef Grun D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810PubMedCrossRef
37.
go back to reference Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725PubMedCrossRef Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725PubMedCrossRef
38.
go back to reference Huang L, Ma F, Chapman A et al (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genom Hum Genet 16:79–102CrossRef Huang L, Ma F, Chapman A et al (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genom Hum Genet 16:79–102CrossRef
39.
go back to reference Arneson N, Hughes S, Houlston R et al (2008) Whole-genome amplification by degenerate oligonucleotide primed PCR (DOP-PCR). CSH Protoc 2008:t4919 Arneson N, Hughes S, Houlston R et al (2008) Whole-genome amplification by degenerate oligonucleotide primed PCR (DOP-PCR). CSH Protoc 2008:t4919
40.
go back to reference Hou Y, Wu K, Shi X et al (2015) Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Gigascience 4:37PubMedPubMedCentralCrossRef Hou Y, Wu K, Shi X et al (2015) Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Gigascience 4:37PubMedPubMedCentralCrossRef
41.
go back to reference Baslan T, Hicks J (2014) Single cell sequencing approaches for complex biological systems. Curr Opin Genet Dev 26:59–65PubMedCrossRef Baslan T, Hicks J (2014) Single cell sequencing approaches for complex biological systems. Curr Opin Genet Dev 26:59–65PubMedCrossRef
42.
go back to reference Zhang DY, Zhang W, Li X et al (2001) Detection of rare DNA targets by isothermal ramification amplification. Gene 274(1–2):209–216PubMedCrossRef Zhang DY, Zhang W, Li X et al (2001) Detection of rare DNA targets by isothermal ramification amplification. Gene 274(1–2):209–216PubMedCrossRef
43.
go back to reference Aliotta JM, Pelletier JJ, Ware JL et al (1996) Thermostable Bst DNA polymerase I lacks a 3′ –> 5′ proofreading exonuclease activity. Genet Anal 12(5–6):185–195PubMedCrossRef Aliotta JM, Pelletier JJ, Ware JL et al (1996) Thermostable Bst DNA polymerase I lacks a 3′ –> 5′ proofreading exonuclease activity. Genet Anal 12(5–6):185–195PubMedCrossRef
44.
go back to reference Baner J, Nilsson M, Mendel-Hartvig M et al (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22):5073–5078PubMedPubMedCentralCrossRef Baner J, Nilsson M, Mendel-Hartvig M et al (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22):5073–5078PubMedPubMedCentralCrossRef
45.
go back to reference Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11(6):1095–1099PubMedPubMedCentralCrossRef Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11(6):1095–1099PubMedPubMedCentralCrossRef
46.
go back to reference Spits C, Le Caignec C, De Rycke M et al (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum Mutat 27(5):496–503PubMedCrossRef Spits C, Le Caignec C, De Rycke M et al (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum Mutat 27(5):496–503PubMedCrossRef
47.
go back to reference Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266PubMedPubMedCentralCrossRef Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266PubMedPubMedCentralCrossRef
49.
51.
go back to reference Kurimoto K, Yabuta Y, Ohinata Y et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34(5):e42PubMedPubMedCentralCrossRef Kurimoto K, Yabuta Y, Ohinata Y et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34(5):e42PubMedPubMedCentralCrossRef
52.
go back to reference Iscove NN, Barbara M, Gu M et al (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20(9):940–943PubMedCrossRef Iscove NN, Barbara M, Gu M et al (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20(9):940–943PubMedCrossRef
53.
go back to reference Tang F, Barbacioru C, Nordman E et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5(3):516–535PubMedCrossRef Tang F, Barbacioru C, Nordman E et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5(3):516–535PubMedCrossRef
54.
go back to reference Ramskold D, Luo S, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782PubMedPubMedCentralCrossRef Ramskold D, Luo S, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782PubMedPubMedCentralCrossRef
55.
go back to reference Zhu YY, Machleder EM, Chenchik A et al (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30(4):892–897PubMed Zhu YY, Machleder EM, Chenchik A et al (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30(4):892–897PubMed
56.
go back to reference Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with Smart-Seq. Nat Biotechnol 30(8):763–765PubMedCrossRef Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with Smart-Seq. Nat Biotechnol 30(8):763–765PubMedCrossRef
57.
go back to reference Picelli S, Bjorklund AK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098PubMedCrossRef Picelli S, Bjorklund AK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098PubMedCrossRef
58.
go back to reference Islam S, Kjallquist U, Moliner A et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167PubMedPubMedCentralCrossRef Islam S, Kjallquist U, Moliner A et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167PubMedPubMedCentralCrossRef
59.
go back to reference Hashimshony T, Wagner F, Sher N et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2(3):666–673PubMedCrossRef Hashimshony T, Wagner F, Sher N et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2(3):666–673PubMedCrossRef
60.
go back to reference Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630PubMedCrossRef Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630PubMedCrossRef
61.
go back to reference Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166PubMedCrossRef Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166PubMedCrossRef
62.
go back to reference Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214PubMedPubMedCentralCrossRef Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214PubMedPubMedCentralCrossRef
63.
go back to reference Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201PubMedPubMedCentralCrossRef Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201PubMedPubMedCentralCrossRef
64.
go back to reference Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33(5):433–435PubMedCrossRef Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33(5):433–435PubMedCrossRef
65.
go back to reference Coombe L, Warren RL, Jackman SD et al (2016) Assembly of the complete Sitka Spruce chloroplast genome using 10× genomics’ GemCode sequencing data. PLoS ONE 11(9):e163059CrossRef Coombe L, Warren RL, Jackman SD et al (2016) Assembly of the complete Sitka Spruce chloroplast genome using 10× genomics’ GemCode sequencing data. PLoS ONE 11(9):e163059CrossRef
67.
go back to reference Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638PubMedCrossRef Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638PubMedCrossRef
68.
go back to reference Guo H, Zhu P, Guo F et al (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10(5):645–659PubMedCrossRef Guo H, Zhu P, Guo F et al (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10(5):645–659PubMedCrossRef
69.
go back to reference Guo H, Zhu P, Wu X et al (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135PubMedPubMedCentralCrossRef Guo H, Zhu P, Wu X et al (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135PubMedPubMedCentralCrossRef
70.
go back to reference Smallwood SA, Lee HJ, Angermueller C et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820PubMedPubMedCentralCrossRef Smallwood SA, Lee HJ, Angermueller C et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820PubMedPubMedCentralCrossRef
71.
73.
go back to reference Park SY, Gonen M, Kim HJ et al (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120(2):636–644PubMedPubMedCentralCrossRef Park SY, Gonen M, Kim HJ et al (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120(2):636–644PubMedPubMedCentralCrossRef
74.
go back to reference Eirew P, Steif A, Khattra J et al (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518(7539):422–426PubMedCrossRef Eirew P, Steif A, Khattra J et al (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518(7539):422–426PubMedCrossRef
75.
go back to reference Kim KT, Lee HW, Lee HO et al (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16:127PubMedPubMedCentralCrossRef Kim KT, Lee HW, Lee HO et al (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16:127PubMedPubMedCentralCrossRef
76.
go back to reference Tirosh I, Venteicher AS, Hebert C et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539(7628):309–313PubMedCrossRef Tirosh I, Venteicher AS, Hebert C et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539(7628):309–313PubMedCrossRef
77.
go back to reference Yu C, Yu J, Yao X et al (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24(6):701–712PubMedPubMedCentralCrossRef Yu C, Yu J, Yao X et al (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24(6):701–712PubMedPubMedCentralCrossRef
78.
go back to reference Li Y, Xu X, Song L et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1(1):12PubMedPubMedCentralCrossRef Li Y, Xu X, Song L et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1(1):12PubMedPubMedCentralCrossRef
79.
go back to reference Hughes AE, Magrini V, Demeter R et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10(7):e1004462PubMedPubMedCentralCrossRef Hughes AE, Magrini V, Demeter R et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10(7):e1004462PubMedPubMedCentralCrossRef
80.
go back to reference Paguirigan AL, Smith J, Meshinchi S et al (2015) Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med 7(281):281r–282rCrossRef Paguirigan AL, Smith J, Meshinchi S et al (2015) Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med 7(281):281r–282rCrossRef
81.
go back to reference Gerber T, Willscher E, Loeffler-Wirth H et al (2016) Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget 26:8 Gerber T, Willscher E, Loeffler-Wirth H et al (2016) Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget 26:8
82.
go back to reference Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110(52):21083–21088PubMedPubMedCentralCrossRef Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110(52):21083–21088PubMedPubMedCentralCrossRef
83.
go back to reference Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484PubMedPubMedCentralCrossRef Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484PubMedPubMedCentralCrossRef
84.
go back to reference Jiang R, Lu YT, Ho H et al (2015) A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 6(42):44781–44793PubMedPubMedCentral Jiang R, Lu YT, Ho H et al (2015) A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 6(42):44781–44793PubMedPubMedCentral
85.
go back to reference Polzer B, Medoro G, Pasch S et al (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386PubMedPubMedCentralCrossRef Polzer B, Medoro G, Pasch S et al (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386PubMedPubMedCentralCrossRef
86.
go back to reference Court CM, Ankeny JS, Sho S et al (2016) Reality of single circulating tumor cell sequencing for molecular diagnostics in pancreatic cancer. J Mol Diagn 18(5):688–696PubMedCrossRef Court CM, Ankeny JS, Sho S et al (2016) Reality of single circulating tumor cell sequencing for molecular diagnostics in pancreatic cancer. J Mol Diagn 18(5):688–696PubMedCrossRef
87.
go back to reference Lohr JG, Kim S, Gould J et al (2016) Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med 8(363):147r–363rCrossRef Lohr JG, Kim S, Gould J et al (2016) Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med 8(363):147r–363rCrossRef
88.
go back to reference Miyamoto DT, Zheng Y, Wittner BS et al (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349(6254):1351–1356PubMedPubMedCentralCrossRef Miyamoto DT, Zheng Y, Wittner BS et al (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349(6254):1351–1356PubMedPubMedCentralCrossRef
89.
go back to reference Proserpio V, Mahata B (2016) Single-cell technologies to study the immune system. Immunology 147(2):133–140PubMedCrossRef Proserpio V, Mahata B (2016) Single-cell technologies to study the immune system. Immunology 147(2):133–140PubMedCrossRef
90.
go back to reference Mahata B, Zhang X, Kolodziejczyk AA et al (2014) Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 7(4):1130–1142PubMedPubMedCentralCrossRef Mahata B, Zhang X, Kolodziejczyk AA et al (2014) Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 7(4):1130–1142PubMedPubMedCentralCrossRef
91.
go back to reference Douek DC, Betts MR, Brenchley JM et al (2002) A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J Immunol 168(6):3099–3104PubMedCrossRef Douek DC, Betts MR, Brenchley JM et al (2002) A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J Immunol 168(6):3099–3104PubMedCrossRef
92.
go back to reference Han A, Glanville J, Hansmann L et al (2014) Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684–692PubMedPubMedCentralCrossRef Han A, Glanville J, Hansmann L et al (2014) Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684–692PubMedPubMedCentralCrossRef
93.
go back to reference Shalek AK, Satija R, Adiconis X et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240PubMedPubMedCentralCrossRef Shalek AK, Satija R, Adiconis X et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240PubMedPubMedCentralCrossRef
94.
go back to reference Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369PubMedPubMedCentral Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369PubMedPubMedCentral
95.
96.
go back to reference Podar M, Abulencia CB, Walcher M et al (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73(10):3205–3214PubMedPubMedCentralCrossRef Podar M, Abulencia CB, Walcher M et al (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73(10):3205–3214PubMedPubMedCentralCrossRef
97.
go back to reference Marcy Y, Ouverney C, Bik EM et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104(29):11889–11894PubMedPubMedCentralCrossRef Marcy Y, Ouverney C, Bik EM et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104(29):11889–11894PubMedPubMedCentralCrossRef
98.
go back to reference Youssef NH, Blainey PC, Quake SR et al (2011) Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl Environ Microbiol 77(21):7804–7814PubMedPubMedCentralCrossRef Youssef NH, Blainey PC, Quake SR et al (2011) Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl Environ Microbiol 77(21):7804–7814PubMedPubMedCentralCrossRef
99.
go back to reference Campbell JH, O’Donoghue P, Campbell AG et al (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci USA 110(14):5540–5545PubMedPubMedCentralCrossRef Campbell JH, O’Donoghue P, Campbell AG et al (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci USA 110(14):5540–5545PubMedPubMedCentralCrossRef
100.
go back to reference McLean JS, Lombardo MJ, Badger JH et al (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110(26):E2390–E2399PubMedPubMedCentralCrossRef McLean JS, Lombardo MJ, Badger JH et al (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110(26):E2390–E2399PubMedPubMedCentralCrossRef
101.
go back to reference Dodsworth JA, Blainey PC, Murugapiran SK et al (1854) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 2013:4 Dodsworth JA, Blainey PC, Murugapiran SK et al (1854) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 2013:4
102.
go back to reference Mussmann M, Hu FZ, Richter M et al (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5(9):e230PubMedPubMedCentralCrossRef Mussmann M, Hu FZ, Richter M et al (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5(9):e230PubMedPubMedCentralCrossRef
103.
go back to reference Mason OU, Hazen TC, Borglin S et al (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J 6(9):1715–1727PubMedPubMedCentralCrossRef Mason OU, Hazen TC, Borglin S et al (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J 6(9):1715–1727PubMedPubMedCentralCrossRef
104.
go back to reference Wells D, Kaur K, Grifo J et al (2014) Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet 51(8):553–562PubMedPubMedCentralCrossRef Wells D, Kaur K, Grifo J et al (2014) Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet 51(8):553–562PubMedPubMedCentralCrossRef
105.
go back to reference Fiorentino F, Biricik A, Bono S et al (2014) Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 101(5):1375–1382PubMedCrossRef Fiorentino F, Biricik A, Bono S et al (2014) Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 101(5):1375–1382PubMedCrossRef
106.
go back to reference Fiorentino F, Bono S, Biricik A et al (2014) Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod 29(12):2802–2813PubMedCrossRef Fiorentino F, Bono S, Biricik A et al (2014) Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod 29(12):2802–2813PubMedCrossRef
107.
go back to reference Vera-Rodriguez M, Michel CE, Mercader A et al (2016) Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril 105(4):1047–1055PubMedCrossRef Vera-Rodriguez M, Michel CE, Mercader A et al (2016) Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril 105(4):1047–1055PubMedCrossRef
108.
go back to reference Lu S, Zong C, Fan W et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338(6114):1627–1630PubMedPubMedCentralCrossRef Lu S, Zong C, Fan W et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338(6114):1627–1630PubMedPubMedCentralCrossRef
109.
110.
go back to reference Zhang C, Zhang C, Chen S et al (2013) A single cell level based method for copy number variation analysis by low coverage massively parallel sequencing. PLoS ONE 8(1):e54236PubMedPubMedCentralCrossRef Zhang C, Zhang C, Chen S et al (2013) A single cell level based method for copy number variation analysis by low coverage massively parallel sequencing. PLoS ONE 8(1):e54236PubMedPubMedCentralCrossRef
111.
go back to reference Hua R, Barrett AN, Tan TZ et al (2015) Detection of aneuploidy from single fetal nucleated red blood cells using whole genome sequencing. Prenat Diagn 35(7):637–644PubMedCrossRef Hua R, Barrett AN, Tan TZ et al (2015) Detection of aneuploidy from single fetal nucleated red blood cells using whole genome sequencing. Prenat Diagn 35(7):637–644PubMedCrossRef
112.
go back to reference Poulin JF, Tasic B, Hjerling-Leffler J et al (2016) Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19(9):1131–1141PubMedCrossRef Poulin JF, Tasic B, Hjerling-Leffler J et al (2016) Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19(9):1131–1141PubMedCrossRef
114.
go back to reference Zeisel A, Munoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142PubMedCrossRef Zeisel A, Munoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142PubMedCrossRef
115.
116.
go back to reference Johnson MB, Walsh CA (2016) Cerebral cortical neuron diversity and development at single-cell resolution. Curr Opin Neurobiol 42:9–16PubMedCrossRef Johnson MB, Walsh CA (2016) Cerebral cortical neuron diversity and development at single-cell resolution. Curr Opin Neurobiol 42:9–16PubMedCrossRef
117.
go back to reference Darmanis S, Sloan SA, Zhang Y et al (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 112(23):7285–7290PubMedPubMedCentralCrossRef Darmanis S, Sloan SA, Zhang Y et al (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 112(23):7285–7290PubMedPubMedCentralCrossRef
118.
go back to reference Lake BB, Ai R, Kaeser GE et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352(6293):1586–1590PubMedPubMedCentralCrossRef Lake BB, Ai R, Kaeser GE et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352(6293):1586–1590PubMedPubMedCentralCrossRef
120.
go back to reference Cai X, Evrony GD, Lehmann HS et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289PubMedPubMedCentralCrossRef Cai X, Evrony GD, Lehmann HS et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289PubMedPubMedCentralCrossRef
Metadata
Title
Single cell sequencing: a distinct new field
Authors
Jian Wang
Yuanlin Song
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0139-4

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue