Skip to main content
Top
Published in: European Radiology Experimental 1/2018

Open Access 01-12-2018 | Narrative review

Radiomics: the facts and the challenges of image analysis

Authors: Stefania Rizzo, Francesca Botta, Sara Raimondi, Daniela Origgi, Cristiana Fanciullo, Alessio Giuseppe Morganti, Massimo Bellomi

Published in: European Radiology Experimental | Issue 1/2018

Login to get access

Abstract

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and model building. Each step needs careful evaluation for the construction of robust and reliable models to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested with internal cross-validation and then validated on independent external cohorts. This article summarises the major issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.
Literature
1.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
2.
go back to reference Lambin P, Leijenaar RTH, Deist T et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef Lambin P, Leijenaar RTH, Deist T et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef
3.
go back to reference Rizzo S, Petrella F, Buscarino V et al (2016) CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol 26:32–42CrossRef Rizzo S, Petrella F, Buscarino V et al (2016) CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol 26:32–42CrossRef
4.
go back to reference Larue RTHM, van Timmeren JE, de Jong EEC et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56:1544–1553CrossRef Larue RTHM, van Timmeren JE, de Jong EEC et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56:1544–1553CrossRef
5.
go back to reference Ergen B, Baykara M (2014) Texture based feature extraction methods for content based medical image retrieval systems. Biomed Mater Eng 24:3055–3062. Ergen B, Baykara M (2014) Texture based feature extraction methods for content based medical image retrieval systems. Biomed Mater Eng 24:3055–3062.
6.
go back to reference Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621CrossRef Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621CrossRef
7.
go back to reference Balagurunathan Y, Kumar V, Gu Y et al (2014) Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 27:805–823CrossRef Balagurunathan Y, Kumar V, Gu Y et al (2014) Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 27:805–823CrossRef
8.
go back to reference Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179CrossRef Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179CrossRef
9.
go back to reference Ollers M, Bosmans G, van Baardwijk A et al (2008) The integration of PET–CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol 87:142–146CrossRef Ollers M, Bosmans G, van Baardwijk A et al (2008) The integration of PET–CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol 87:142–146CrossRef
10.
go back to reference Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10:257–273CrossRef Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10:257–273CrossRef
11.
go back to reference Peeken JC, Bernhofer M, Wiestler B et al (2018) Radiomics in radiooncology—challenging the medical physicist. Phys Med 48:27–36CrossRef Peeken JC, Bernhofer M, Wiestler B et al (2018) Radiomics in radiooncology—challenging the medical physicist. Phys Med 48:27–36CrossRef
12.
go back to reference Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15:512–520CrossRef Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15:512–520CrossRef
13.
go back to reference Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep 7:46349CrossRef Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep 7:46349CrossRef
14.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087CrossRef Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087CrossRef
15.
go back to reference Rizzo S, Botta F, Raimondi S et al (2018) Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol.
16.
go back to reference Huynh E, Coroller TP, Narayan V et al (2017) Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One 12:e0169172CrossRef Huynh E, Coroller TP, Narayan V et al (2017) Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One 12:e0169172CrossRef
17.
go back to reference Wilkinson L, Friendly M (2009) The history of the cluster heat map. Am Stat 63:179–184CrossRef Wilkinson L, Friendly M (2009) The history of the cluster heat map. Am Stat 63:179–184CrossRef
18.
go back to reference Jolliffe IT (2002) Principal component analysis, Series: Springer Series in Statistics, 2nd edn. Springer, New York, p 487 Jolliffe IT (2002) Principal component analysis, Series: Springer Series in Statistics, 2nd edn. Springer, New York, p 487
19.
go back to reference Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818CrossRef Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818CrossRef
21.
go back to reference Eschrich S, Yang I, Bloom G et al (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535CrossRef Eschrich S, Yang I, Bloom G et al (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535CrossRef
22.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 58:267–288 Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 58:267–288
23.
go back to reference Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827.CrossRef Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827.CrossRef
24.
go back to reference Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387CrossRef Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387CrossRef
25.
go back to reference Lee H, Palm J, Grimes SM, Ji HP (2015) The cancer genome atlas clinical explorer: a web and mobile interface for identifying clinical-genomic driver associations. Genome Med 7:112CrossRef Lee H, Palm J, Grimes SM, Ji HP (2015) The cancer genome atlas clinical explorer: a web and mobile interface for identifying clinical-genomic driver associations. Genome Med 7:112CrossRef
26.
go back to reference Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045e57CrossRef Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045e57CrossRef
27.
go back to reference Panth KM, Leijenaar RT, Carvalho S et al (2015) Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol 116:462–466CrossRef Panth KM, Leijenaar RT, Carvalho S et al (2015) Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol 116:462–466CrossRef
28.
go back to reference McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep 2014:6–23PubMedPubMedCentral McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep 2014:6–23PubMedPubMedCentral
29.
go back to reference Dalal T, Kalra MK, Rizzo SM et al (2005) Metallic prosthesis: technique to avoid increase in CT radiation dose with automatic tube current modulation in a phantom and patients. Radiology 236:671–675CrossRef Dalal T, Kalra MK, Rizzo SM et al (2005) Metallic prosthesis: technique to avoid increase in CT radiation dose with automatic tube current modulation in a phantom and patients. Radiology 236:671–675CrossRef
30.
go back to reference Rizzo SM, Kalra MK, Schmidt B et al (2005) CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics. Radiology 237:309–315CrossRef Rizzo SM, Kalra MK, Schmidt B et al (2005) CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics. Radiology 237:309–315CrossRef
31.
go back to reference Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765CrossRef Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765CrossRef
32.
go back to reference Theodorakou C, Horrocks JA, Marshall NW, Speller RD (2004) A novel method for producing x-ray test objects and phantoms. Phys Med Biol 49:1423–1438CrossRef Theodorakou C, Horrocks JA, Marshall NW, Speller RD (2004) A novel method for producing x-ray test objects and phantoms. Phys Med Biol 49:1423–1438CrossRef
33.
go back to reference van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data for radiomic feature stability analysis: generalizable or study-specific? Tomography 2:361–365 van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data for radiomic feature stability analysis: generalizable or study-specific? Tomography 2:361–365
34.
go back to reference Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRef Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRef
36.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present…any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRef Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present…any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRef
37.
go back to reference Shiri I, Rahmin A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509CrossRef Shiri I, Rahmin A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509CrossRef
38.
go back to reference Altazi BA, Zhang GG, Fernandez DC et al (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumour segmentation methods, gray-level discretization, and reconstruction algorithm. J Appl Clin Med Phys 18:32–48CrossRef Altazi BA, Zhang GG, Fernandez DC et al (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumour segmentation methods, gray-level discretization, and reconstruction algorithm. J Appl Clin Med Phys 18:32–48CrossRef
39.
go back to reference Reuzè S, Orlhac F, Chargari C et al (2017) Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 8:43169–43179CrossRef Reuzè S, Orlhac F, Chargari C et al (2017) Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 8:43169–43179CrossRef
41.
go back to reference Forgacs A, Pall Jonsson H, Dahlbom M et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11:e0164113CrossRef Forgacs A, Pall Jonsson H, Dahlbom M et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11:e0164113CrossRef
42.
go back to reference Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20SCrossRef Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20SCrossRef
43.
go back to reference Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33:3426–3434CrossRef Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33:3426–3434CrossRef
44.
go back to reference Mayerhoefer M, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 36:1236–1243CrossRef Mayerhoefer M, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 36:1236–1243CrossRef
45.
go back to reference Lerski RA, Schad LR, Luypaert R et al (1999) Multicentre magnetic resonance texture analysis trial using reticulated foam test objects. Magn Reson Imaging 17:1025–1031CrossRef Lerski RA, Schad LR, Luypaert R et al (1999) Multicentre magnetic resonance texture analysis trial using reticulated foam test objects. Magn Reson Imaging 17:1025–1031CrossRef
46.
go back to reference Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef
47.
go back to reference Hojjatoleslami S, Kittler J (1998) Region growing: a new approach. IEEE Trans Image Process 7:1079–1084CrossRef Hojjatoleslami S, Kittler J (1998) Region growing: a new approach. IEEE Trans Image Process 7:1079–1084CrossRef
48.
go back to reference Kalef-Ezra J, Karantanas A, Tsekeris P (1999) CT measurement of lung density. Acta Radiol 40:333–337CrossRef Kalef-Ezra J, Karantanas A, Tsekeris P (1999) CT measurement of lung density. Acta Radiol 40:333–337CrossRef
49.
go back to reference Sofka M, Wetzl J, Birkbeck N et al (2011) Multi-stage learning for robust lung segmentation in challenging CT volumes. Med Image Comput Comput Assist Interv 14:667–674PubMed Sofka M, Wetzl J, Birkbeck N et al (2011) Multi-stage learning for robust lung segmentation in challenging CT volumes. Med Image Comput Comput Assist Interv 14:667–674PubMed
50.
go back to reference Knollmann FD, Kumthekar R, Fetzer D, Socinski MA (2014) Assessing response to treatment in non-small-cell lung cancer: role of tumor volume evaluated by computed tomography. Clin Lung Cancer 15:103–109CrossRef Knollmann FD, Kumthekar R, Fetzer D, Socinski MA (2014) Assessing response to treatment in non-small-cell lung cancer: role of tumor volume evaluated by computed tomography. Clin Lung Cancer 15:103–109CrossRef
51.
go back to reference Gao H, Chae O (2010) Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognit 43:2406–2417CrossRef Gao H, Chae O (2010) Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognit 43:2406–2417CrossRef
52.
go back to reference Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21:2035–2046. Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21:2035–2046.
54.
go back to reference Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M (2010) Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Med Phys 37:2159CrossRef Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M (2010) Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Med Phys 37:2159CrossRef
55.
go back to reference Lu K, Higgins WE (2007) Interactive segmentation based on the live wire for 3D CT chest image analysis. Int J Comput Assist Radiol Surg 2:151–167CrossRef Lu K, Higgins WE (2007) Interactive segmentation based on the live wire for 3D CT chest image analysis. Int J Comput Assist Radiol Surg 2:151–167CrossRef
56.
go back to reference Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40:043502CrossRef Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40:043502CrossRef
57.
go back to reference Sun S, Bauer C, Beichel R (2012) Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging 31:449–460CrossRef Sun S, Bauer C, Beichel R (2012) Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging 31:449–460CrossRef
58.
go back to reference Velazquez ER, Parmar C, Jermoumi M et al (2013) Volumetric CT-based segmentation of NSCLC using 3D-slicer. Sci Rep 3:3529CrossRef Velazquez ER, Parmar C, Jermoumi M et al (2013) Volumetric CT-based segmentation of NSCLC using 3D-slicer. Sci Rep 3:3529CrossRef
Metadata
Title
Radiomics: the facts and the challenges of image analysis
Authors
Stefania Rizzo
Francesca Botta
Sara Raimondi
Daniela Origgi
Cristiana Fanciullo
Alessio Giuseppe Morganti
Massimo Bellomi
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
European Radiology Experimental / Issue 1/2018
Electronic ISSN: 2509-9280
DOI
https://doi.org/10.1186/s41747-018-0068-z

Other articles of this Issue 1/2018

European Radiology Experimental 1/2018 Go to the issue