Skip to main content
Top
Published in: European Radiology 11/2017

01-11-2017 | Nuclear Medicine

The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies

Authors: Isaac Shiri, Arman Rahmim, Pardis Ghaffarian, Parham Geramifar, Hamid Abdollahi, Ahmad Bitarafan-Rajabi

Published in: European Radiology | Issue 11/2017

Login to get access

Abstract

Objectives

The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings.

Methods

Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV).

Results

Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively.

Conclusions

Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies.

Key Points

PET/CT image radiomics is a quantitative approach assessing different aspects of tumour uptake.
Radiomic features robustness is an important issue over different image reconstruction settings.
Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent.
Robust radiomic features can be considered as good candidates for tumour quantification
Appendix
Available only for authorised users
Literature
1.
go back to reference Wahl RL (2008) Principles and practice of PET and PET/CT. Lippincott Williams & Wilkins, Philadelphia Wahl RL (2008) Principles and practice of PET and PET/CT. Lippincott Williams & Wilkins, Philadelphia
2.
go back to reference Rahmim A, Wahl R (2006) An overview of clinical PET/CT. Iran J Nucl Med 14:1–14 Rahmim A, Wahl R (2006) An overview of clinical PET/CT. Iran J Nucl Med 14:1–14
3.
go back to reference Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D et al (2015) F-18-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRef Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D et al (2015) F-18-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRef
4.
go back to reference Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP et al (2011) Intratumor heterogeneity characterized by textural features on baseline (18)F-FDG pet images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRef Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP et al (2011) Intratumor heterogeneity characterized by textural features on baseline (18)F-FDG pet images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRef
5.
go back to reference Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V (2014) Radiomics in PET: principles and applications. Clin Transl Imaging 2:269–276CrossRef Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V (2014) Radiomics in PET: principles and applications. Clin Transl Imaging 2:269–276CrossRef
6.
go back to reference Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef
7.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef
8.
go back to reference Kumar V, Gu YH, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef Kumar V, Gu YH, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef
9.
go back to reference Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A et al (2016) Robustness of radiomic features in [11C]Choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945CrossRef Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A et al (2016) Robustness of radiomic features in [11C]Choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945CrossRef
10.
go back to reference Oh J, Apte A, Folkerts M, Kohutek Z, Wu A, Rimmer A, Lee N, Deasy J. (2014) FDG-PET-based radiomics to predict local control and survival following radiotherapy. Annual Meeting of The American Association of Physicists in Medicine 2014 Oh J, Apte A, Folkerts M, Kohutek Z, Wu A, Rimmer A, Lee N, Deasy J. (2014) FDG-PET-based radiomics to predict local control and survival following radiotherapy. Annual Meeting of The American Association of Physicists in Medicine 2014
11.
go back to reference Leijenaar RTH, Carvalho S, Velazquez ER, Van Elmpt WJC, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRef Leijenaar RTH, Carvalho S, Velazquez ER, Van Elmpt WJC, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRef
12.
go back to reference Soufi M, Kamali-Asl A, Geramifar P, Rahmim A (2016) A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [18F]FDG PET imaging. Molec Imag Biol. In Press. doi:10.1007/s11307-016-1015-0 CrossRef Soufi M, Kamali-Asl A, Geramifar P, Rahmim A (2016) A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [18F]FDG PET imaging. Molec Imag Biol. In Press. doi:10.​1007/​s11307-016-1015-0 CrossRef
13.
go back to reference Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJR (2013) Quantifying tumour heterogeneity in F-18-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRef Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJR (2013) Quantifying tumour heterogeneity in F-18-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRef
14.
go back to reference El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef
15.
go back to reference Hatt M, Le Pogam A, Visvikis D, Pradier O, Le Rest CC (2012) Impact of partial-volume effect correction on the predictive and prognostic value of baseline F-18-FDG PET images in esophageal cancer. J Nucl Med 53:12–20CrossRef Hatt M, Le Pogam A, Visvikis D, Pradier O, Le Rest CC (2012) Impact of partial-volume effect correction on the predictive and prognostic value of baseline F-18-FDG PET images in esophageal cancer. J Nucl Med 53:12–20CrossRef
16.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the presenta… any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRef Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the presenta… any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRef
18.
go back to reference Vallières M, Freeman C, Skamene S, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471CrossRef Vallières M, Freeman C, Skamene S, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471CrossRef
19.
go back to reference Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727CrossRef Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727CrossRef
20.
go back to reference Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F] FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 85:1375–1382CrossRef Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F] FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 85:1375–1382CrossRef
21.
go back to reference Ashrafinia S, Gonzalez EM, Mohy-ud-Din H, Jha A, Subramaniam RM, Rahmim A (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. Proc Soc Nuc Med Med Imag Ann Meet 57:497 Ashrafinia S, Gonzalez EM, Mohy-ud-Din H, Jha A, Subramaniam RM, Rahmim A (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. Proc Soc Nuc Med Med Imag Ann Meet 57:497
22.
go back to reference Shiri IRA, Abdollahi H, Ghafarian P, Bitarafan-Rajabi A, AY MR, BakhshaieshKaram M, (Suppl 1) (2016) Radiomics texture features variability and reproducibility in advance image reconstruction setting of oncological PET/CT. Eur J Nucl Med Mol Imaging 43:S1-S734 Shiri IRA, Abdollahi H, Ghafarian P, Bitarafan-Rajabi A, AY MR, BakhshaieshKaram M, (Suppl 1) (2016) Radiomics texture features variability and reproducibility in advance image reconstruction setting of oncological PET/CT. Eur J Nucl Med Mol Imaging 43:S1-S734
23.
go back to reference Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R et al (2015) The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRef Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R et al (2015) The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRef
24.
go back to reference van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795CrossRef van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795CrossRef
25.
go back to reference Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524–534CrossRef Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524–534CrossRef
26.
go back to reference Rahmim A, Qi J, Sossi V (2013) Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 40:064301CrossRef Rahmim A, Qi J, Sossi V (2013) Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 40:064301CrossRef
27.
go back to reference Tong S, Alessio AM, Kinahan PE (2010) Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol 55:1453–1473CrossRef Tong S, Alessio AM, Kinahan PE (2010) Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol 55:1453–1473CrossRef
28.
go back to reference Alessio A, Rahmim A, Orton CG (2013) Resolution modeling enhances PET imaging (point/counterpoint). Med Phys 40:120601CrossRef Alessio A, Rahmim A, Orton CG (2013) Resolution modeling enhances PET imaging (point/counterpoint). Med Phys 40:120601CrossRef
29.
go back to reference Schaefferkoetter J, Casey M, Townsend D, El Fakhri G (2013) Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 58:1465–1478CrossRef Schaefferkoetter J, Casey M, Townsend D, El Fakhri G (2013) Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 58:1465–1478CrossRef
30.
go back to reference Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50:1315–1323CrossRef Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50:1315–1323CrossRef
31.
go back to reference Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci 50:1325–1330CrossRef Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci 50:1325–1330CrossRef
32.
go back to reference Surti S (2015) Update on time-of-Flight PET imaging. J Nucl Med 56:98–105CrossRef Surti S (2015) Update on time-of-Flight PET imaging. J Nucl Med 56:98–105CrossRef
33.
go back to reference Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642CrossRef Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642CrossRef
34.
go back to reference Kotasidis FA, Tsoumpas C, Rahmim A (2014) Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging 2:219–237CrossRef Kotasidis FA, Tsoumpas C, Rahmim A (2014) Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging 2:219–237CrossRef
35.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Bio 58:7391–7418CrossRef Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Bio 58:7391–7418CrossRef
37.
go back to reference Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE (2015) Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging 2:041002CrossRef Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE (2015) Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging 2:041002CrossRef
38.
go back to reference Cheng N-M, Fang Y-HD, Tsan D-L, Hsu C-H, Yen T-C (2016) Respiration-averaged CT for attenuation correction of PET images–impact on PET texture features in non-small cell lung cancer patients. PLoS One 11, e0150509CrossRef Cheng N-M, Fang Y-HD, Tsan D-L, Hsu C-H, Yen T-C (2016) Respiration-averaged CT for attenuation correction of PET images–impact on PET texture features in non-small cell lung cancer patients. PLoS One 11, e0150509CrossRef
39.
go back to reference Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ (2015) The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol 25:2805–2812CrossRef Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ (2015) The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol 25:2805–2812CrossRef
40.
go back to reference Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST et al (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56:1667–1673CrossRef Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST et al (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56:1667–1673CrossRef
41.
go back to reference Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11, e0159984CrossRef Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11, e0159984CrossRef
42.
go back to reference Cortes-Rodicio J, Sanchez-Merino G, Garcia-Fidalgo M, Tobalina-Larrea I (2016) Identification of low variability textural features for heterogeneity quantification of 18 F-FDG PET/CT imaging. Rev Esp Med Nucl Imagen Mol 35:379–384PubMed Cortes-Rodicio J, Sanchez-Merino G, Garcia-Fidalgo M, Tobalina-Larrea I (2016) Identification of low variability textural features for heterogeneity quantification of 18 F-FDG PET/CT imaging. Rev Esp Med Nucl Imagen Mol 35:379–384PubMed
43.
go back to reference Forgacs A, Jonsson HP, Dahlbom M, Daver F, DiFranco MD, Opposits G et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11, e0164113CrossRef Forgacs A, Jonsson HP, Dahlbom M, Daver F, DiFranco MD, Opposits G et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11, e0164113CrossRef
44.
go back to reference Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRef Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRef
45.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRef Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRef
46.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA, Suppl_1 (2009) From RECIST to PERCIST: evolving considerations for pet response criteria in solid tumors. J Nucl Med 50:122S-50SCrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA, Suppl_1 (2009) From RECIST to PERCIST: evolving considerations for pet response criteria in solid tumors. J Nucl Med 50:122S-50SCrossRef
Metadata
Title
The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies
Authors
Isaac Shiri
Arman Rahmim
Pardis Ghaffarian
Parham Geramifar
Hamid Abdollahi
Ahmad Bitarafan-Rajabi
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4859-z

Other articles of this Issue 11/2017

European Radiology 11/2017 Go to the issue