Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Optimization of temporal sampling for 18F-choline uptake quantification in prostate cancer assessment

Authors: Xavier Palard-Novello, Anne-Lise Blin, Florence Le Jeune, Etienne Garin, Pierre-Yves Salaün, Anne Devillers, Giulio Gambarota, Solène Querellou, Patrick Bourguet, Hervé Saint-Jalmes

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Suboptimal temporal sampling of time-activity curves (TAC) from dynamic 18F-fluoromethylcholine (FCH) PET images may introduce bias in quantification of FCH uptake in prostate cancer assessment. We sought to define an optimal temporal sampling protocol for dynamic FCH PET imaging.
Seven different time samplings were tested: 5 × 60″, 10 × 30″, 15 × 15″–1 × 75″, 6 × 10″–8 × 30″, 12 × 5″–8 × 30″; 10 × 5″–4 × 10″–3 × 20″–5 × 30″, and 8 × 3″–8 × 12″–6 × 30″. First, the irreversible and reversible one-tissue compartment model with blood volume parameter (VB) (respectively, 1T1K+VB and 1T2k+VB, with K1 = transfer coefficient from the arterial blood to the tissue compartment and k2 = transfer coefficient from the tissue compartment to the arterial blood) were compared for 37 lesions from 32 patients who underwent FCH PET imaging for initial or recurrence assessment of prostate cancer, and the model was selected using the Akaike information criterion. To determine the optimal time sampling, K1 values extracted from 1000 noisy-simulated TAC using Monte Carlo method from the seven different time samplings were compared to a target K1 value which is the average of the K1 values extracted from the 37 lesions using an imaging-derived input function for each patient. K1 values extracted with the optimal time sampling for each tumoral lesion were compared to K1 values extracted from each of the other time samplings for the 37 lesions.

Results

The 1T2k + VB model was selected. The target K1 value as the objective was 0.506 mL/ccm/min (range 0.216–1.246). Results showed a significant difference between K1 values from the simulated TAC with the seven different time samplings analyzed. The closest K1 value from the simulated TAC to the target K1 value was obtained by the 12 × 5″–8 × 30″ time sampling. Concerning the clinical validation, K1 values extracted from the optimal time sampling (12 × 5″–8 × 30″) were significantly different with K1 values extracted from the other time samplings, except for the comparison with K1 values extracted from the 10 × 5″–4 × 10″–3 × 20″–5 × 30″ time sampling.

Conclusions

A two-phase framing of dynamic PET reconstruction with frame durations of 5 s (blood phase) and 30 s (tissue phase) could be used to sample the TAC for uptake quantification in prostate cancer assessment.
Literature
1.
go back to reference Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, Ferlay J, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer. 2016;138:1388–400.CrossRefPubMed Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, Ferlay J, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer. 2016;138:1388–400.CrossRefPubMed
2.
go back to reference Cimitan M, Evangelista L, Hodolic M, Mariani G, Baseric T, Bodanza V, et al. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1,000 patients. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:209–15.CrossRef Cimitan M, Evangelista L, Hodolic M, Mariani G, Baseric T, Bodanza V, et al. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1,000 patients. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:209–15.CrossRef
3.
go back to reference Oyen WJ, De Jong IJ. Molecular imaging of prostate cancer: tapping into the opportunities. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:169–70.CrossRef Oyen WJ, De Jong IJ. Molecular imaging of prostate cancer: tapping into the opportunities. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56:169–70.CrossRef
4.
go back to reference DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2001;42:1805–14. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2001;42:1805–14.
5.
go back to reference DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2002;43:92–6. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2002;43:92–6.
6.
go back to reference Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2011;52:81–9.CrossRef Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2011;52:81–9.CrossRef
7.
go back to reference Beheshti M, Haim S, Zakavi R, Steinmair M, Waldenberger P, Kunit T, et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2013;54:833–40.CrossRef Beheshti M, Haim S, Zakavi R, Steinmair M, Waldenberger P, Kunit T, et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2013;54:833–40.CrossRef
8.
go back to reference Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2014;55:233–41.CrossRef Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2014;55:233–41.CrossRef
9.
go back to reference Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2015;56:1185–90.CrossRef Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2015;56:1185–90.CrossRef
10.
go back to reference Beheshti M, Langsteger W. PET imaging of prostate cancer using radiolabeled choline. PET clinics. 2009;4:173–84.CrossRefPubMed Beheshti M, Langsteger W. PET imaging of prostate cancer using radiolabeled choline. PET clinics. 2009;4:173–84.CrossRefPubMed
11.
go back to reference Chondrogiannis S, Marzola MC, Grassetto G, Rampin L, Massaro A, Colletti PM, et al. Optimized protocol for (18)F-choline PET/CT in patients with biochemically relapsed prostate cancer: experiences on 250 consecutive cases. Clin Nucl Med. 2015;40:e308–12.CrossRefPubMed Chondrogiannis S, Marzola MC, Grassetto G, Rampin L, Massaro A, Colletti PM, et al. Optimized protocol for (18)F-choline PET/CT in patients with biochemically relapsed prostate cancer: experiences on 250 consecutive cases. Clin Nucl Med. 2015;40:e308–12.CrossRefPubMed
12.
go back to reference Schaefferkoetter JD, Wang Z, Stephenson MC, Roy S, Conti M, Eriksson L, et al. Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring. EJNMMI Res. 2017;7:25.CrossRefPubMedPubMedCentral Schaefferkoetter JD, Wang Z, Stephenson MC, Roy S, Conti M, Eriksson L, et al. Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring. EJNMMI Res. 2017;7:25.CrossRefPubMedPubMedCentral
13.
go back to reference Palard-Novello X, Blin AL, Bourhis D, Garin E, Salaun PY, Devillers A, et al. Comparison of choline influx from dynamic (18)F-choline PET/CT and clinicopathological parameters in prostate cancer initial assessment. Ann Nucl Med 2018 [Epub ahead of print]. Palard-Novello X, Blin AL, Bourhis D, Garin E, Salaun PY, Devillers A, et al. Comparison of choline influx from dynamic (18)F-choline PET/CT and clinicopathological parameters in prostate cancer initial assessment. Ann Nucl Med 2018 [Epub ahead of print].
14.
go back to reference Piert M, Montgomery J, Kunju LP, Siddiqui J, Rogers V, Rajendiran T, et al. 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2016;57:1065–70.CrossRef Piert M, Montgomery J, Kunju LP, Siddiqui J, Rogers V, Rajendiran T, et al. 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2016;57:1065–70.CrossRef
15.
go back to reference Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer—evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol. 2012;7:14.CrossRefPubMedPubMedCentral Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer—evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol. 2012;7:14.CrossRefPubMedPubMedCentral
16.
go back to reference Verwer EE, Oprea-Lager DE, van den Eertwegh AJ, van Moorselaar RJ, Windhorst AD, Schwarte LA, et al. Quantification of 18F-fluorocholine kinetics in patients with prostate cancer. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2015;56:365–71.CrossRef Verwer EE, Oprea-Lager DE, van den Eertwegh AJ, van Moorselaar RJ, Windhorst AD, Schwarte LA, et al. Quantification of 18F-fluorocholine kinetics in patients with prostate cancer. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2015;56:365–71.CrossRef
17.
go back to reference Takesh M. Kinetic modeling application to (18)F-fluoroethylcholine positron emission tomography in patients with primary and recurrent prostate cancer using two-tissue compartmental model. World journal of nuclear medicine. 2013;12:101–10.CrossRefPubMedPubMedCentral Takesh M. Kinetic modeling application to (18)F-fluoroethylcholine positron emission tomography in patients with primary and recurrent prostate cancer using two-tissue compartmental model. World journal of nuclear medicine. 2013;12:101–10.CrossRefPubMedPubMedCentral
18.
go back to reference Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.CrossRefPubMed Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.CrossRefPubMed
19.
go back to reference Choi JY, Yang J, Noworolski SM, Behr S, Chang AJ, Simko JP, et al. 18F Fluorocholine dynamic time-of-flight PET/MR imaging in patients with newly diagnosed intermediate- to high-risk prostate cancer: initial clinical-pathologic comparisons. Radiology. 2017;282:429–36.CrossRefPubMed Choi JY, Yang J, Noworolski SM, Behr S, Chang AJ, Simko JP, et al. 18F Fluorocholine dynamic time-of-flight PET/MR imaging in patients with newly diagnosed intermediate- to high-risk prostate cancer: initial clinical-pathologic comparisons. Radiology. 2017;282:429–36.CrossRefPubMed
20.
go back to reference Oprea-Lager DE, Vincent AD, van Moorselaar RJ, Gerritsen WR, van den Eertwegh AJ, Eriksson J, et al. Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One. 2012;7:e48430.CrossRefPubMedPubMedCentral Oprea-Lager DE, Vincent AD, van Moorselaar RJ, Gerritsen WR, van den Eertwegh AJ, Eriksson J, et al. Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One. 2012;7:e48430.CrossRefPubMedPubMedCentral
21.
go back to reference Colombie M, Campion L, Bailly C, Rusu D, Rousseau T, Mathieu C, et al. Prognostic value of metabolic parameters and clinical impact of (1)(8)F-fluorocholine PET/CT in biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:1784–93.CrossRefPubMed Colombie M, Campion L, Bailly C, Rusu D, Rousseau T, Mathieu C, et al. Prognostic value of metabolic parameters and clinical impact of (1)(8)F-fluorocholine PET/CT in biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:1784–93.CrossRefPubMed
22.
go back to reference Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235:623–8.CrossRefPubMed Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235:623–8.CrossRefPubMed
23.
go back to reference Massaro A, Ferretti A, Secchiero C, Cittadin S, Milan E, Tamiso L, et al. Optimising 18F-choline PET/CT acquisition protocol in prostate cancer patients. N Am J Med Sci. 2012;4:416–20.CrossRefPubMedPubMedCentral Massaro A, Ferretti A, Secchiero C, Cittadin S, Milan E, Tamiso L, et al. Optimising 18F-choline PET/CT acquisition protocol in prostate cancer patients. N Am J Med Sci. 2012;4:416–20.CrossRefPubMedPubMedCentral
24.
go back to reference Chondrogiannis S, Marzola MC, Grassetto G, Maffione AM, Rampin L, Veronese E, et al. New acquisition protocol of 18F-choline PET/CT in prostate cancer patients: review of the literature about methodology and proposal of standardization. Biomed Res Int. 2014;2014:215650.PubMedPubMedCentral Chondrogiannis S, Marzola MC, Grassetto G, Maffione AM, Rampin L, Veronese E, et al. New acquisition protocol of 18F-choline PET/CT in prostate cancer patients: review of the literature about methodology and proposal of standardization. Biomed Res Int. 2014;2014:215650.PubMedPubMedCentral
25.
go back to reference Huysse W, Lecouvet F, Castellucci P, Ost P, Lambrecht V, Artigas C, et al. Prospective comparison of F-18 choline PET/CT scan versus axial MRI for detecting bone metastasis in biochemically relapsed prostate cancer patients. Diagnostics. 2017;7:56.CrossRefPubMedCentral Huysse W, Lecouvet F, Castellucci P, Ost P, Lambrecht V, Artigas C, et al. Prospective comparison of F-18 choline PET/CT scan versus axial MRI for detecting bone metastasis in biochemically relapsed prostate cancer patients. Diagnostics. 2017;7:56.CrossRefPubMedCentral
26.
go back to reference Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34:4285–92.CrossRefPubMed Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34:4285–92.CrossRefPubMed
27.
go back to reference Haggstrom I, Axelsson J, Schmidtlein CR, Karlsson M, Garpebring A, Johansson L, et al. A Monte Carlo study of the dependence of early frame sampling on uncertainty and bias in pharmacokinetic parameters from dynamic PET. Journal of nuclear medicine technology. 2015;43:53–60.CrossRefPubMed Haggstrom I, Axelsson J, Schmidtlein CR, Karlsson M, Garpebring A, Johansson L, et al. A Monte Carlo study of the dependence of early frame sampling on uncertainty and bias in pharmacokinetic parameters from dynamic PET. Journal of nuclear medicine technology. 2015;43:53–60.CrossRefPubMed
28.
go back to reference Lee BC, Moody JB, Weinberg RL, Corbett JR, Ficaro EP, Murthy VL. Optimization of temporal sampling for (82)rubidium PET myocardial blood flow quantification. Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology. 2017;24:1517–29.CrossRef Lee BC, Moody JB, Weinberg RL, Corbett JR, Ficaro EP, Murthy VL. Optimization of temporal sampling for (82)rubidium PET myocardial blood flow quantification. Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology. 2017;24:1517–29.CrossRef
29.
go back to reference Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr. 1986;10:645–53.CrossRefPubMed Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr. 1986;10:645–53.CrossRefPubMed
30.
go back to reference Grkovski M, Gharzeddine K, Sawan P, Schoder H, Michaud L, Weber WA, et al. 11C-choline pharmacokinetics in recurrent prostate cancer. J Nucl Med: official publication, Society of Nuclear Medicine. 2018 [Epub ahead of print]. Grkovski M, Gharzeddine K, Sawan P, Schoder H, Michaud L, Weber WA, et al. 11C-choline pharmacokinetics in recurrent prostate cancer. J Nucl Med: official publication, Society of Nuclear Medicine. 2018 [Epub ahead of print].
31.
go back to reference Roivainen A, Forsback S, Grönroos T, Lehikoinen P, Kähkönen M, Sutinen E, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med Mol Imaging. 2000;27:25–32.CrossRef Roivainen A, Forsback S, Grönroos T, Lehikoinen P, Kähkönen M, Sutinen E, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med Mol Imaging. 2000;27:25–32.CrossRef
32.
go back to reference Razifar P, Sandstrom M, Schnieder H, Langstrom B, Maripuu E, Bengtsson E, et al. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM. BMC Med Imaging. 2005;5:5.CrossRefPubMedPubMedCentral Razifar P, Sandstrom M, Schnieder H, Langstrom B, Maripuu E, Bengtsson E, et al. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM. BMC Med Imaging. 2005;5:5.CrossRefPubMedPubMedCentral
Metadata
Title
Optimization of temporal sampling for 18F-choline uptake quantification in prostate cancer assessment
Authors
Xavier Palard-Novello
Anne-Lise Blin
Florence Le Jeune
Etienne Garin
Pierre-Yves Salaün
Anne Devillers
Giulio Gambarota
Solène Querellou
Patrick Bourguet
Hervé Saint-Jalmes
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0410-8

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue