Skip to main content
Top
Published in: Journal of Nuclear Cardiology 5/2017

01-10-2017 | Original Article

Optimization of temporal sampling for 82rubidium PET myocardial blood flow quantification

Authors: Benjamin C. Lee, PhD, Jonathan B. Moody, PhD, Richard L. Weinberg, MD, PhD, James R. Corbett, MD, Edward P. Ficaro, PhD, Venkatesh L. Murthy, MD, PhD

Published in: Journal of Nuclear Cardiology | Issue 5/2017

Login to get access

Abstract

Background

Suboptimal temporal sampling of left ventricular (LV) blood pool and tissue time-activity curves (TACs) may introduce bias and increased variability in estimates of myocardial blood flow (MBF) and flow reserve (MFR) from dynamic PET myocardial perfusion images. We aimed to optimize temporal sampling for estimation of MBF and MFR.

Methods

Twenty-four normal volunteers and 32 patients underwent dynamic stress/rest rubidium-82 chloride (82Rb) PET imaging. Fine temporal sampling was used to estimate the full width at half maximum (FWHM) of the LV blood pool TAC. Fourier analysis was used to determine the longest sampling interval, T S, as a function of FWHM, which preserved the information content of the blood phase. Dynamic datasets were reconstructed with frame durations varying from 2 to 20 seconds over the first 2 minutes for the blood phase and 30 to 120 seconds for the tissue phase. The LV blood pool and tissue TACs were sampled using regions of interest (ROI) and fit to a compartment model for quantification of MBF and MFR. The effects of temporal sampling on MBF and MFR were evaluated using clinical data and simulations.

Results

T S increased linearly with input function FWHM (R = 0.93). Increasing the blood phase frame duration from 5 to 15 seconds resulted in MBF and MFR biases of 6-12% and increased variability of 14-24%. Frame durations <5 seconds had biases of less than 5% for both MBF and MFR values. Increasing the tissue phase frame durations from 30 to 120 seconds resulted in <5% biases.

Conclusions

A two-phase framing of dynamic 82Rb PET images with frame durations of 5 seconds (blood phase) and 120 seconds (tissue phase) optimally samples the blood pool TAC for modern 3D PET systems.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al Impaired myocardial flow reserve on 82Rb positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8. doi:10.1016/j.jacc.2011.01.065.CrossRefPubMed Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al Impaired myocardial flow reserve on 82Rb positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8. doi:10.​1016/​j.​jacc.​2011.​01.​065.CrossRefPubMed
4.
go back to reference Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJW, et al Does quantification of myocardial flow reserve using 82Rb positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80. doi:10.1007/s12350-011-9506-5.CrossRefPubMed Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJW, et al Does quantification of myocardial flow reserve using 82Rb positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80. doi:10.​1007/​s12350-011-9506-5.CrossRefPubMed
5.
go back to reference Raylman RR, Caraher JM, Hutchins GD. Sampling requirements for dynamic cardiac PET studies using image-derived input functions J Nucl Med. 1993;34:440-7.PubMed Raylman RR, Caraher JM, Hutchins GD. Sampling requirements for dynamic cardiac PET studies using image-derived input functions J Nucl Med. 1993;34:440-7.PubMed
8.
go back to reference Klein R, Beanlands R, deKemp R. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol 2010;17(4):555-70.CrossRefPubMed Klein R, Beanlands R, deKemp R. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol 2010;17(4):555-70.CrossRefPubMed
9.
go back to reference Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr 1986;10:645-53.CrossRefPubMed Mazoyer BM, Huesman RH, Budinger TF, Knittel BL. Dynamic PET data analysis. J Comput Assist Tomogr 1986;10:645-53.CrossRefPubMed
10.
go back to reference Herrero P, Markham J, Bergmann SR. Quantitation of myocardial blood flow with H 2 15 O and positron emission tomography: Assessment and error analysis of a mathematical approach. J Comput Assist Tomogr 1989;13:862-73.CrossRefPubMed Herrero P, Markham J, Bergmann SR. Quantitation of myocardial blood flow with H 2 15 O and positron emission tomography: Assessment and error analysis of a mathematical approach. J Comput Assist Tomogr 1989;13:862-73.CrossRefPubMed
11.
go back to reference Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using 82Rb PET imaging J Nucl Cardiol. 2012;19:997-1006.CrossRefPubMed Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using 82Rb PET imaging J Nucl Cardiol. 2012;19:997-1006.CrossRefPubMed
12.
go back to reference Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.CrossRefPubMed Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.CrossRefPubMed
14.
go back to reference Moody J, Lee B, Corbett J, Ficaro E, Murthy V. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Med 2015;22:935-51. doi:10.1007/s12350-015-0100-0. Moody J, Lee B, Corbett J, Ficaro E, Murthy V. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Med 2015;22:935-51. doi:10.​1007/​s12350-015-0100-0.
Metadata
Title
Optimization of temporal sampling for 82rubidium PET myocardial blood flow quantification
Authors
Benjamin C. Lee, PhD
Jonathan B. Moody, PhD
Richard L. Weinberg, MD, PhD
James R. Corbett, MD
Edward P. Ficaro, PhD
Venkatesh L. Murthy, MD, PhD
Publication date
01-10-2017
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 5/2017
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-017-0899-7

Other articles of this Issue 5/2017

Journal of Nuclear Cardiology 5/2017 Go to the issue

Technologist Corner

The EXXERT Study