Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring

Authors: Joshua D. Schaefferkoetter, Ziting Wang, Mary C. Stephenson, Sharmili Roy, Maurizio Conti, Lars Eriksson, David W. Townsend, Thomas Thamboo, Edmund Chiong

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

The use of radiolabeled choline as a positron emission tomography (PET) agent for imaging primary tumors in the prostate has been evaluated extensively over the past two decades. There are, however, conflicting reports of its sensitivity and the relationship between choline PET imaging and disease staging is not fully understood. Moreover, relatively few studies have investigated the correlation between tracer uptake and histological tumor grade. This work quantified 18F-fluorocholine in tumor and healthy prostate tissue using pharmacokinetic modeling and stratified uptake parameters by histology grade. Additionally, the effect of scan time on the estimation of the kinetic exchange rate constants was evaluated, and the tracer influx parameters from full compartmental analysis were compared to uptake values quantified by Patlak and standardized uptake value (SUV) analyses.
18F-fluorocholine was administered as a 222 MBq bolus injection to ten patients with biopsy-confirmed prostate tumors, and dynamic PET data were acquired for 60 min. Image-derived arterial input functions were scaled by discrete blood samples, and a 2-tissue, 4-parameter model accounting for blood volume (2T4k+Vb) was used to perform fully quantitative compartmental modeling on tumor, healthy prostate, and muscle tissue. Subsequently, all patients underwent radical prostatectomy, and histological analyses were performed on the prostate specimens; kinetic parameters for tumors were stratified by Gleason score. Correlations were investigated between compartmental K 1 and K i parameters and SUV and Patlak slope; the effect of scan time on parameter bias was also evaluated.

Results

Choline activity curves in seven tumors, eight healthy prostate regions, and nine muscle regions were analyzed. Net tracer influx was generally higher in tumor relative to healthy prostate, with the values in the highest grade tumors markedly higher than those in lower grade tumors. Influx terms from Patlak and full compartmental modeling showed good correlation within individual tissue groups. Kinetic parameters calculated from the entire 60-min scan data were accurately reproduced from the first 30 min of acquired data (R 2 ≈ 0.9).

Conclusions

Strong correlations were observed between K i and Patlak slope in tumor tissue, and K 1 and SUV were also correlated but to a lesser degree. Reliable estimates of all kinetic parameters can be achieved from the first 30 min of dynamic 18F-choline data. Although SUV, K 1, K i, and Patlak slope were found to be poor differentiators of low-grade tumor compared to healthy prostate tissue, they are strong indicators of aggressive disease.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular imaging of prostate cancer. Radio Graphics. 2015;36:142–59. Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular imaging of prostate cancer. Radio Graphics. 2015;36:142–59.
3.
go back to reference Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, Degrado TR. Comparison of [18F] fluorocholine and [18F] fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol. 2002;168:273–80.CrossRefPubMed Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, Degrado TR. Comparison of [18F] fluorocholine and [18F] fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol. 2002;168:273–80.CrossRefPubMed
5.
go back to reference Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41.CrossRefPubMedPubMedCentral Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41.CrossRefPubMedPubMedCentral
6.
go back to reference Jadvar H. Prostate cancer: PET with 18F-FDG, 18F-or 11C-acetate, and 18F-or 11C-choline. J Nucl Med. 2011;52:81–9.CrossRefPubMed Jadvar H. Prostate cancer: PET with 18F-FDG, 18F-or 11C-acetate, and 18F-or 11C-choline. J Nucl Med. 2011;52:81–9.CrossRefPubMed
7.
go back to reference Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012;15:45–55.CrossRefPubMed Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012;15:45–55.CrossRefPubMed
8.
go back to reference Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.PubMed Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.PubMed
9.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG. PET imaging of prostate cancer with 11C-acetate. J Nucl Med. 2003;44:556–8.PubMed Dimitrakopoulou-Strauss A, Strauss LG. PET imaging of prostate cancer with 11C-acetate. J Nucl Med. 2003;44:556–8.PubMed
10.
go back to reference Schiepers C, Hoh CK, Nuyts J, et al. 1-11C-acetate kinetics of prostate cancer. J Nucl Med. 2008;49:206–15.CrossRefPubMed Schiepers C, Hoh CK, Nuyts J, et al. 1-11C-acetate kinetics of prostate cancer. J Nucl Med. 2008;49:206–15.CrossRefPubMed
11.
go back to reference Nilsson S, Kalkner M, Ginman C, et al. 11C-methionine positron emission tomography in the management of prostatic carcinoma. Antib Immunoconjug Radiopharm. 1995;8:23. Nilsson S, Kalkner M, Ginman C, et al. 11C-methionine positron emission tomography in the management of prostatic carcinoma. Antib Immunoconjug Radiopharm. 1995;8:23.
12.
go back to reference Macapinlac HA, Humm JL, Akhurst T, et al. Differential metabolism and pharmacokinetics of L-[1-11C]-methionine and 2-[18F] fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imag. 1999;2:173–81.CrossRef Macapinlac HA, Humm JL, Akhurst T, et al. Differential metabolism and pharmacokinetics of L-[1-11C]-methionine and 2-[18F] fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imag. 1999;2:173–81.CrossRef
13.
go back to reference Bonasera TA, O’Neil JP, Xu M, et al. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med. 1996;37:1009–15.PubMed Bonasera TA, O’Neil JP, Xu M, et al. Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med. 1996;37:1009–15.PubMed
14.
go back to reference Larson SM, Morris M, Gunther I, et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45:366–73.PubMed Larson SM, Morris M, Gunther I, et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45:366–73.PubMed
15.
go back to reference Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [11C] acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492–5.CrossRefPubMed Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [11C] acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492–5.CrossRefPubMed
16.
17.
go back to reference Perner S, Hofer MD, Kim R, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38:696–701.CrossRefPubMed Perner S, Hofer MD, Kim R, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38:696–701.CrossRefPubMed
18.
go back to reference Wright GL, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–34.CrossRefPubMed Wright GL, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–34.CrossRefPubMed
19.
go back to reference Chang SS, Reuter VE, Heston W, Gaudin PB. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology. 2001;57:801–5.CrossRefPubMed Chang SS, Reuter VE, Heston W, Gaudin PB. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology. 2001;57:801–5.CrossRefPubMed
20.
go back to reference Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.CrossRefPubMed Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.CrossRefPubMed
21.
go back to reference Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68Ga] gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.CrossRefPubMed Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68Ga] gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.CrossRefPubMed
22.
go back to reference Mease RC, Dusich CL, Foss CA, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F] DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.CrossRefPubMedPubMedCentral Mease RC, Dusich CL, Foss CA, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F] DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.CrossRefPubMedPubMedCentral
23.
go back to reference Cho SY, Gage KL, Mease RC, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.CrossRefPubMedPubMedCentral Cho SY, Gage KL, Mease RC, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.CrossRefPubMedPubMedCentral
24.
go back to reference Rowe SP, Gage KL, Faraj SF, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.CrossRefPubMedPubMedCentral Rowe SP, Gage KL, Faraj SF, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.CrossRefPubMedPubMedCentral
25.
go back to reference Szabo Z, Mena E, Rowe SP, et al. Initial evaluation of [18F] DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17:565–74.CrossRefPubMedPubMedCentral Szabo Z, Mena E, Rowe SP, et al. Initial evaluation of [18F] DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17:565–74.CrossRefPubMedPubMedCentral
26.
go back to reference Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with (methyl-11C) choline. J Nucl Med. 1997;38:842.PubMed Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with (methyl-11C) choline. J Nucl Med. 1997;38:842.PubMed
27.
go back to reference Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990.PubMed Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990.PubMed
28.
go back to reference Reske SN, Blumstein NM, Neumaier B, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47:1249–54.PubMed Reske SN, Blumstein NM, Neumaier B, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47:1249–54.PubMed
29.
go back to reference Scher B, Seitz M, Albinger W, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:45–53.CrossRefPubMed Scher B, Seitz M, Albinger W, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:45–53.CrossRefPubMed
30.
go back to reference De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med. 2003;44:331–5.PubMed De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med. 2003;44:331–5.PubMed
31.
go back to reference Scattoni V, Picchio M, Suardi N, et al. Detection of lymph-node metastases with integrated [11C] choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52:423–9.CrossRefPubMed Scattoni V, Picchio M, Suardi N, et al. Detection of lymph-node metastases with integrated [11C] choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52:423–9.CrossRefPubMed
32.
go back to reference Husarik DB, Miralbell R, Dubs M, et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253–63.CrossRefPubMed Husarik DB, Miralbell R, Dubs M, et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253–63.CrossRefPubMed
33.
go back to reference Krause B, Souvatzoglou M, Tuncel M, et al. The detection rate of [11C] choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23.CrossRefPubMed Krause B, Souvatzoglou M, Tuncel M, et al. The detection rate of [11C] choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23.CrossRefPubMed
34.
go back to reference Castellucci P, Fuccio C, Nanni C, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.CrossRefPubMed Castellucci P, Fuccio C, Nanni C, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.CrossRefPubMed
35.
go back to reference Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:18–27.CrossRef Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:18–27.CrossRef
36.
go back to reference Eschmann S, Schlemmer H, Pfannenberg A, et al. Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. J Nucl Med. 2006;47:181P. Eschmann S, Schlemmer H, Pfannenberg A, et al. Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. J Nucl Med. 2006;47:181P.
37.
go back to reference Beer AJ, Eiber M, Souvatzoglou M, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in 11C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol. 2011;13:352–61.CrossRefPubMed Beer AJ, Eiber M, Souvatzoglou M, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in 11C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol. 2011;13:352–61.CrossRefPubMed
38.
go back to reference Yamaguchi T, Lee J, Uemura H, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32:742–8.CrossRefPubMed Yamaguchi T, Lee J, Uemura H, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32:742–8.CrossRefPubMed
39.
go back to reference DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med. 2002;43:92–6.PubMed DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med. 2002;43:92–6.PubMed
40.
go back to reference Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [11C] choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.CrossRefPubMed Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [11C] choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.CrossRefPubMed
41.
go back to reference Verwer EE, Oprea-Lager DE, van den Eertwegh AJ, et al. Quantification of 18F-fluorocholine kinetics in patients with prostate cancer. J Nucl Med. 2015;56:365–71.CrossRefPubMed Verwer EE, Oprea-Lager DE, van den Eertwegh AJ, et al. Quantification of 18F-fluorocholine kinetics in patients with prostate cancer. J Nucl Med. 2015;56:365–71.CrossRefPubMed
42.
go back to reference Souvatzoglou M, Gaertner FC, Schwarzenboeck S, Beer AJ, Schwaiger M, Krause BJ. PET/CT for the diagnosis, staging and restaging of prostate cancer. Imaging in Medicine. 2011;3:571–85.CrossRef Souvatzoglou M, Gaertner FC, Schwarzenboeck S, Beer AJ, Schwaiger M, Krause BJ. PET/CT for the diagnosis, staging and restaging of prostate cancer. Imaging in Medicine. 2011;3:571–85.CrossRef
43.
go back to reference Farsad M, Schiavina R, Castellucci P, et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.PubMed Farsad M, Schiavina R, Castellucci P, et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.PubMed
44.
go back to reference Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18 fluorine fluorocholine positron emission tomography. J Urol. 2005;173:252–5.CrossRefPubMed Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18 fluorine fluorocholine positron emission tomography. J Urol. 2005;173:252–5.CrossRefPubMed
45.
go back to reference Wu H-M, Hoh CK, Choi Y, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–22.PubMed Wu H-M, Hoh CK, Choi Y, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–22.PubMed
46.
go back to reference Schiepers C, Hoh CK, Nuyts J, Wu HM, Phelps ME, Dahlbom M. Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in-and output functions. Nucl Sci IEEE Trans. 2002;49:2338–43.CrossRef Schiepers C, Hoh CK, Nuyts J, Wu HM, Phelps ME, Dahlbom M. Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in-and output functions. Nucl Sci IEEE Trans. 2002;49:2338–43.CrossRef
47.
go back to reference Roivainen A, Forsback S, Grönroos T, et al. Blood metabolism of [methyl-11C] choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med. 2000;27:25–32.CrossRefPubMed Roivainen A, Forsback S, Grönroos T, et al. Blood metabolism of [methyl-11C] choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med. 2000;27:25–32.CrossRefPubMed
48.
go back to reference Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL, Committee IG. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.CrossRefPubMed Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL, Committee IG. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.CrossRefPubMed
49.
go back to reference Bostwick DG, Cheng L. Urologic surgical pathology. Elsevier Health Sciences; 2008. Bostwick DG, Cheng L. Urologic surgical pathology. Elsevier Health Sciences; 2008.
50.
go back to reference Slaets D, De Vos F. Comparison between kinetic modelling and graphical analysis for the quantification of [18F] fluoromethylcholine uptake in mice. EJNMMI Res. 2013;3:66.CrossRefPubMedPubMedCentral Slaets D, De Vos F. Comparison between kinetic modelling and graphical analysis for the quantification of [18F] fluoromethylcholine uptake in mice. EJNMMI Res. 2013;3:66.CrossRefPubMedPubMedCentral
51.
go back to reference Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34:4285–92.CrossRefPubMed Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys. 2007;34:4285–92.CrossRefPubMed
Metadata
Title
Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring
Authors
Joshua D. Schaefferkoetter
Ziting Wang
Mary C. Stephenson
Sharmili Roy
Maurizio Conti
Lars Eriksson
David W. Townsend
Thomas Thamboo
Edmund Chiong
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0269-0

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue