Skip to main content
Top
Published in: Gut Pathogens 1/2022

Open Access 01-12-2022 | Colorectal Cancer | Review

The emerging role of neutrophilic extracellular traps in intestinal disease

Authors: Feng Chen, Yongqiang Liu, Yajing Shi, Jianmin Zhang, Xin Liu, Zhenzhen Liu, Jipeng Lv, Yufang Leng

Published in: Gut Pathogens | Issue 1/2022

Login to get access

Abstract

Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap, immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance, excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases, including intestinal infections, inflammatory bowel disease, intestinal ischemia–reperfusion injury, sepsis, necrotizing enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential directional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and targeted therapies.
Literature
1.
go back to reference Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.PubMedCrossRef Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.PubMedCrossRef
2.
go back to reference Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.PubMedCrossRef Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.PubMedCrossRef
3.
go back to reference Dwyer M, Shan Q, D’Ortona S, et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun. 2014;6(6):765–79.PubMedPubMedCentralCrossRef Dwyer M, Shan Q, D’Ortona S, et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun. 2014;6(6):765–79.PubMedPubMedCentralCrossRef
4.
go back to reference Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62.PubMedPubMedCentralCrossRef Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62.PubMedPubMedCentralCrossRef
5.
6.
go back to reference Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.PubMedCrossRef Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.PubMedCrossRef
7.
go back to reference Bruschi M, Moroni G, Sinico RA, et al. Neutrophil Extracellular Traps in the Autoimmunity Context. Front Med (Lausanne). 2021;8:614829.CrossRef Bruschi M, Moroni G, Sinico RA, et al. Neutrophil Extracellular Traps in the Autoimmunity Context. Front Med (Lausanne). 2021;8:614829.CrossRef
8.
go back to reference Domínguez-Díaz C, Varela-Trinidad GU, Muñoz-Sánchez G, et al. To trap a pathogen: neutrophil extracellular traps and their role in mucosal epithelial and skin diseases. Cells. 2021;10(6):56.CrossRef Domínguez-Díaz C, Varela-Trinidad GU, Muñoz-Sánchez G, et al. To trap a pathogen: neutrophil extracellular traps and their role in mucosal epithelial and skin diseases. Cells. 2021;10(6):56.CrossRef
9.
go back to reference Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53.PubMedPubMedCentralCrossRef Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53.PubMedPubMedCentralCrossRef
10.
go back to reference O’sullivan KM, Holdsworth SR. Neutrophil Extracellular Traps: A Potential Therapeutic Target in MPO-ANCA Associated Vasculitis? Front Immunol. 2021;12:635188.PubMedPubMedCentralCrossRef O’sullivan KM, Holdsworth SR. Neutrophil Extracellular Traps: A Potential Therapeutic Target in MPO-ANCA Associated Vasculitis? Front Immunol. 2021;12:635188.PubMedPubMedCentralCrossRef
11.
go back to reference Liang Y, Wang X, He D, et al. Ameliorating gut microenvironment through staphylococcal nuclease-mediated intestinal NETs degradation for prevention of type 1 diabetes in NOD mice. Life Sci. 2019;221:301–10.PubMedCrossRef Liang Y, Wang X, He D, et al. Ameliorating gut microenvironment through staphylococcal nuclease-mediated intestinal NETs degradation for prevention of type 1 diabetes in NOD mice. Life Sci. 2019;221:301–10.PubMedCrossRef
12.
go back to reference Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–71.PubMedPubMedCentral Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–71.PubMedPubMedCentral
13.
go back to reference Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.PubMedCrossRef Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.PubMedCrossRef
14.
go back to reference Bennike TB, Carlsen TG, Ellingsen T, et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies. Inflamm Bowel Dis. 2015;21(9):2052–67.PubMedCrossRef Bennike TB, Carlsen TG, Ellingsen T, et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies. Inflamm Bowel Dis. 2015;21(9):2052–67.PubMedCrossRef
15.
go back to reference Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229–40.PubMedCrossRef Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229–40.PubMedCrossRef
16.
go back to reference Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef
17.
go back to reference Boeltz S, Amini P, Anders HJ, et al. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019;26(3):395–408.PubMedPubMedCentralCrossRef Boeltz S, Amini P, Anders HJ, et al. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019;26(3):395–408.PubMedPubMedCentralCrossRef
18.
go back to reference Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81.PubMedPubMedCentralCrossRef Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81.PubMedPubMedCentralCrossRef
19.
go back to reference Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:6409.CrossRef Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:6409.CrossRef
20.
go back to reference Naffahdesouza C, Breda LCD, Khan MA, et al. Alkaline pH Promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front Immunol. 1849;2017:8. Naffahdesouza C, Breda LCD, Khan MA, et al. Alkaline pH Promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front Immunol. 1849;2017:8.
22.
go back to reference Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236–40.PubMedPubMedCentralCrossRef Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236–40.PubMedPubMedCentralCrossRef
23.
go back to reference McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–33.PubMedCrossRef McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–33.PubMedCrossRef
25.
27.
go back to reference Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47.PubMedCrossRef Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47.PubMedCrossRef
28.
go back to reference Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91.PubMedPubMedCentralCrossRef Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91.PubMedPubMedCentralCrossRef
30.
go back to reference Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 2013;4:38.PubMedPubMedCentralCrossRef Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 2013;4:38.PubMedPubMedCentralCrossRef
31.
go back to reference Pieterse E, Rother N, Yanginlar C, et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77(12):1790–8.PubMedCrossRef Pieterse E, Rother N, Yanginlar C, et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77(12):1790–8.PubMedCrossRef
32.
go back to reference Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44.PubMedCrossRef Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44.PubMedCrossRef
33.
go back to reference Amini P, Stojkov D, Felser A, et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat Commun. 2018;9(1):2958.PubMedPubMedCentralCrossRef Amini P, Stojkov D, Felser A, et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat Commun. 2018;9(1):2958.PubMedPubMedCentralCrossRef
34.
go back to reference Wu SY, Weng CL, Jheng MJ, et al. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLoS Pathog. 2019;15(11): e1008096.PubMedPubMedCentralCrossRef Wu SY, Weng CL, Jheng MJ, et al. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLoS Pathog. 2019;15(11): e1008096.PubMedPubMedCentralCrossRef
35.
go back to reference Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93.PubMedPubMedCentralCrossRef Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25.PubMedCrossRef Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25.PubMedCrossRef
38.
go back to reference Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817–22.PubMedPubMedCentralCrossRef Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817–22.PubMedPubMedCentralCrossRef
39.
go back to reference Hirschfeld J, Roberts HM, Chapple IL, et al. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on neutrophil migration and extracellular trap formation. J Oral Microbiol. 2016;8:33070.PubMedCrossRef Hirschfeld J, Roberts HM, Chapple IL, et al. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on neutrophil migration and extracellular trap formation. J Oral Microbiol. 2016;8:33070.PubMedCrossRef
40.
go back to reference Björnsdottir H, Dahlstrand Rudin A, Klose FP, et al. Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus induce rapid formation of neutrophil extracellular traps through a reactive oxygen species-independent pathway. Front Immunol. 2017;8:257.PubMedPubMedCentralCrossRef Björnsdottir H, Dahlstrand Rudin A, Klose FP, et al. Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus induce rapid formation of neutrophil extracellular traps through a reactive oxygen species-independent pathway. Front Immunol. 2017;8:257.PubMedPubMedCentralCrossRef
41.
go back to reference Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.PubMedCrossRef Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.PubMedCrossRef
42.
43.
go back to reference Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–7.PubMedCrossRef Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–7.PubMedCrossRef
44.
go back to reference Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):23.CrossRef Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):23.CrossRef
45.
go back to reference Amulic B, Knackstedt SL, Abuabed U, et al. Cell-cycle proteins control production of neutrophil extracellular traps. Dev Cell. 2017;43(4):449–62.PubMedCrossRef Amulic B, Knackstedt SL, Abuabed U, et al. Cell-cycle proteins control production of neutrophil extracellular traps. Dev Cell. 2017;43(4):449–62.PubMedCrossRef
46.
go back to reference Gupta AK, Giaglis S, Hasler P, et al. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS ONE. 2014;9(5): e97088.PubMedPubMedCentralCrossRef Gupta AK, Giaglis S, Hasler P, et al. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS ONE. 2014;9(5): e97088.PubMedPubMedCentralCrossRef
47.
go back to reference Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8(3):883–96.PubMedPubMedCentralCrossRef Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8(3):883–96.PubMedPubMedCentralCrossRef
48.
go back to reference Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–13.PubMedPubMedCentralCrossRef Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–13.PubMedPubMedCentralCrossRef
49.
go back to reference Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol. 2016;7:461.PubMedPubMedCentral Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol. 2016;7:461.PubMedPubMedCentral
50.
go back to reference Martinod K, Witsch T, Farley K, et al. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost. 2016;14(3):551–8.PubMedPubMedCentralCrossRef Martinod K, Witsch T, Farley K, et al. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost. 2016;14(3):551–8.PubMedPubMedCentralCrossRef
51.
go back to reference Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326–37.PubMedPubMedCentralCrossRef Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326–37.PubMedPubMedCentralCrossRef
52.
go back to reference Li Y, Li M, Weigel B, et al. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly. EMBO Rep. 2020;21(8): e48779.PubMedPubMedCentral Li Y, Li M, Weigel B, et al. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly. EMBO Rep. 2020;21(8): e48779.PubMedPubMedCentral
54.
go back to reference Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–96.PubMedCrossRef Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–96.PubMedCrossRef
55.
go back to reference Crane JK, Broome JE, Lis A. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli. Infect Immun. 2016;84(4):976–88.PubMedPubMedCentralCrossRef Crane JK, Broome JE, Lis A. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli. Infect Immun. 2016;84(4):976–88.PubMedPubMedCentralCrossRef
56.
go back to reference Kolaczkowska E, Jenne CN, Surewaard BG, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015;6:6673.PubMedCrossRef Kolaczkowska E, Jenne CN, Surewaard BG, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015;6:6673.PubMedCrossRef
57.
go back to reference Marin-Esteban V, Turbica I, Dufour G, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun. 2012;80(5):1891–9.PubMedPubMedCentralCrossRef Marin-Esteban V, Turbica I, Dufour G, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun. 2012;80(5):1891–9.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Saha P, Yeoh BS, Olvera RA, et al. Bacterial Siderophores Hijack Neutrophil Functions. J Immunol. 2017;198(11):4293–303.PubMedCrossRef Saha P, Yeoh BS, Olvera RA, et al. Bacterial Siderophores Hijack Neutrophil Functions. J Immunol. 2017;198(11):4293–303.PubMedCrossRef
60.
go back to reference Vong L, Pinnell LJ, MääTTäNEN P, et al. Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309(3):G181–92.PubMedCrossRef Vong L, Pinnell LJ, MääTTäNEN P, et al. Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309(3):G181–92.PubMedCrossRef
61.
go back to reference Seper A, Hosseinzadeh A, Gorkiewicz G, et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog. 2013;9(9): e1003614.PubMedPubMedCentralCrossRef Seper A, Hosseinzadeh A, Gorkiewicz G, et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog. 2013;9(9): e1003614.PubMedPubMedCentralCrossRef
62.
go back to reference Seydel KB, Zhang T, Stanley SL. Neutrophils play a critical role in early resistance to amebic liver abscesses in severe combined immunodeficient mice. Infect Immun. 1997;65(9):3951–3.PubMedPubMedCentralCrossRef Seydel KB, Zhang T, Stanley SL. Neutrophils play a critical role in early resistance to amebic liver abscesses in severe combined immunodeficient mice. Infect Immun. 1997;65(9):3951–3.PubMedPubMedCentralCrossRef
63.
go back to reference Velazquez C, Shibayama-Salas M, Aguirre-Garcia J, et al. Role of neutrophils in innate resistance to Entamoeba histolytica liver infection in mice. Parasite Immunol. 1998;20(6):255–62.PubMedCrossRef Velazquez C, Shibayama-Salas M, Aguirre-Garcia J, et al. Role of neutrophils in innate resistance to Entamoeba histolytica liver infection in mice. Parasite Immunol. 1998;20(6):255–62.PubMedCrossRef
64.
go back to reference Pacheco-Yépez J, Rivera-Aguilar V, Barbosa-Cabrera E, et al. Myeloperoxidase binds to and kills Entamoeba histolytica trophozoites. Parasite Immunol. 2011;33(5):255–64.PubMedCrossRef Pacheco-Yépez J, Rivera-Aguilar V, Barbosa-Cabrera E, et al. Myeloperoxidase binds to and kills Entamoeba histolytica trophozoites. Parasite Immunol. 2011;33(5):255–64.PubMedCrossRef
65.
go back to reference Ventura-Juarez J, Campos-Esparza M, Pacheco-Yepez J, et al. Entamoeba histolytica induces human neutrophils to form NETs. Parasite Immunol. 2016;38(8):503–9.PubMedCrossRef Ventura-Juarez J, Campos-Esparza M, Pacheco-Yepez J, et al. Entamoeba histolytica induces human neutrophils to form NETs. Parasite Immunol. 2016;38(8):503–9.PubMedCrossRef
66.
go back to reference Díaz-Godínez C, Fonseca Z, Néquiz M, et al. Entamoeba histolytica Trophozoites Induce a Rapid Non-classical NETosis Mechanism Independent of NOX2-Derived Reactive Oxygen Species and PAD4 Activity. Front Cell Infect Microbiol. 2018;8:184.PubMedPubMedCentralCrossRef Díaz-Godínez C, Fonseca Z, Néquiz M, et al. Entamoeba histolytica Trophozoites Induce a Rapid Non-classical NETosis Mechanism Independent of NOX2-Derived Reactive Oxygen Species and PAD4 Activity. Front Cell Infect Microbiol. 2018;8:184.PubMedPubMedCentralCrossRef
67.
go back to reference Löffler J, Ebel F. Size matters - how the immune system deals with fungal hyphae. Microbes Infect. 2018;20(9–10):521–5.PubMedCrossRef Löffler J, Ebel F. Size matters - how the immune system deals with fungal hyphae. Microbes Infect. 2018;20(9–10):521–5.PubMedCrossRef
68.
go back to reference Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–25.PubMedPubMedCentralCrossRef Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–25.PubMedPubMedCentralCrossRef
69.
go back to reference Urban CF, Reichard U, Brinkmann V, et al. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8(4):668–76.PubMedCrossRef Urban CF, Reichard U, Brinkmann V, et al. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8(4):668–76.PubMedCrossRef
70.
go back to reference McCormick A, Heesemann L, Wagener J, et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 2010;12(12–13):928–36.PubMedCrossRef McCormick A, Heesemann L, Wagener J, et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 2010;12(12–13):928–36.PubMedCrossRef
71.
go back to reference Desai J, Mulay SR, Nakazawa D, et al. Matters of life and death How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73(11–12):2211–9.PubMedCrossRef Desai J, Mulay SR, Nakazawa D, et al. Matters of life and death How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73(11–12):2211–9.PubMedCrossRef
72.
73.
go back to reference Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944–52.PubMedPubMedCentral Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944–52.PubMedPubMedCentral
74.
go back to reference Silva JC, Rodrigues NC, Thompson-Souza GA, et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J Leukoc Biol. 2020;107(1):69–83.PubMedCrossRef Silva JC, Rodrigues NC, Thompson-Souza GA, et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J Leukoc Biol. 2020;107(1):69–83.PubMedCrossRef
75.
go back to reference Saithong S, Saisorn W, Visitchanakun P, et al. A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in Candida Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus. J Inflamm Res. 2021;14:2333–52.PubMedPubMedCentralCrossRef Saithong S, Saisorn W, Visitchanakun P, et al. A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in Candida Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus. J Inflamm Res. 2021;14:2333–52.PubMedPubMedCentralCrossRef
76.
go back to reference Gao X, Hao S, Yan H, et al. Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats. J Surg Res. 2015;195(1):211–8.PubMedCrossRef Gao X, Hao S, Yan H, et al. Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats. J Surg Res. 2015;195(1):211–8.PubMedCrossRef
77.
go back to reference McDonald B, Davis RP, Kim SJ, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.PubMedPubMedCentralCrossRef McDonald B, Davis RP, Kim SJ, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.PubMedPubMedCentralCrossRef
79.
go back to reference Liang Y, Pan B, Alam HB, et al. Inhibition of peptidylarginine deiminase alleviates LPS-induced pulmonary dysfunction and improves survival in a mouse model of lethal endotoxemia. Eur J Pharmacol. 2018;833:432–40.PubMedPubMedCentralCrossRef Liang Y, Pan B, Alam HB, et al. Inhibition of peptidylarginine deiminase alleviates LPS-induced pulmonary dysfunction and improves survival in a mouse model of lethal endotoxemia. Eur J Pharmacol. 2018;833:432–40.PubMedPubMedCentralCrossRef
80.
go back to reference Sun S, Duan Z, Wang X, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12(6):606.PubMedPubMedCentralCrossRef Sun S, Duan Z, Wang X, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12(6):606.PubMedPubMedCentralCrossRef
81.
go back to reference Chu C, Yang C, Wang X, et al. Early intravenous administration of tranexamic acid ameliorates intestinal barrier injury induced by neutrophil extracellular traps in a rat model of trauma/hemorrhagic shock. Surgery. 2020;167(2):340–51.PubMedCrossRef Chu C, Yang C, Wang X, et al. Early intravenous administration of tranexamic acid ameliorates intestinal barrier injury induced by neutrophil extracellular traps in a rat model of trauma/hemorrhagic shock. Surgery. 2020;167(2):340–51.PubMedCrossRef
82.
go back to reference Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.PubMedPubMedCentralCrossRef Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.PubMedPubMedCentralCrossRef
83.
go back to reference Schattner M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response. J Leukoc Biol. 2019;105(5):873–80.PubMedCrossRef Schattner M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response. J Leukoc Biol. 2019;105(5):873–80.PubMedCrossRef
84.
go back to reference Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29.PubMedCrossRef Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29.PubMedCrossRef
85.
go back to reference Aldabbous L, Abdul-Salam V, McKinnon T, et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2016;36(10):2078–87.PubMedCrossRef Aldabbous L, Abdul-Salam V, McKinnon T, et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2016;36(10):2078–87.PubMedCrossRef
86.
go back to reference Folco EJ, Mawson TL, Vromman A, et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018;38(8):1901–12.PubMedPubMedCentralCrossRef Folco EJ, Mawson TL, Vromman A, et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018;38(8):1901–12.PubMedPubMedCentralCrossRef
87.
go back to reference Campos J, Ponomaryov T, de Prendergast A, et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021;5(9):2319–24.PubMedPubMedCentralCrossRef Campos J, Ponomaryov T, de Prendergast A, et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021;5(9):2319–24.PubMedPubMedCentralCrossRef
88.
go back to reference Hu Q, Ren H, Hong Z, et al. Early enteral nutrition preserves intestinal barrier function through reducing the formation of neutrophil extracellular traps (NETs) in Critically Ill Surgical Patients. Oxid Med Cell Longev. 2020;2020:8815655.PubMedPubMedCentral Hu Q, Ren H, Hong Z, et al. Early enteral nutrition preserves intestinal barrier function through reducing the formation of neutrophil extracellular traps (NETs) in Critically Ill Surgical Patients. Oxid Med Cell Longev. 2020;2020:8815655.PubMedPubMedCentral
89.
go back to reference Abrams ST, Morton B, Alhamdi Y, et al. A Novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am J Respir Crit Care Med. 2019;200(7):869–80.PubMedPubMedCentralCrossRef Abrams ST, Morton B, Alhamdi Y, et al. A Novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am J Respir Crit Care Med. 2019;200(7):869–80.PubMedPubMedCentralCrossRef
90.
go back to reference Khadaroo RG, Churchill TA, Tso V, et al. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury. PLoS ONE. 2017;12(6): e0179326.PubMedPubMedCentralCrossRef Khadaroo RG, Churchill TA, Tso V, et al. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury. PLoS ONE. 2017;12(6): e0179326.PubMedPubMedCentralCrossRef
91.
go back to reference Wang J, Zhang W, Wu G. Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother. 2021;138:111482.PubMedCrossRef Wang J, Zhang W, Wu G. Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother. 2021;138:111482.PubMedCrossRef
92.
go back to reference Oklu R, Albadawi H, Jones JE, et al. Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps. J Vasc Surg. 2013;58(6):1627–36.PubMedCrossRef Oklu R, Albadawi H, Jones JE, et al. Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps. J Vasc Surg. 2013;58(6):1627–36.PubMedCrossRef
93.
go back to reference Boettcher M, Eschenburg G, Mietzsch S, et al. Therapeutic targeting of extracellular DNA improves the outcome of intestinal ischemic reperfusion injury in neonatal rats. Sci Rep. 2017;7(1):15377.PubMedPubMedCentralCrossRef Boettcher M, Eschenburg G, Mietzsch S, et al. Therapeutic targeting of extracellular DNA improves the outcome of intestinal ischemic reperfusion injury in neonatal rats. Sci Rep. 2017;7(1):15377.PubMedPubMedCentralCrossRef
94.
go back to reference Wang S, Xie T, Sun S, et al. DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury. Sci Rep. 2018;8(1):17788.PubMedPubMedCentralCrossRef Wang S, Xie T, Sun S, et al. DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury. Sci Rep. 2018;8(1):17788.PubMedPubMedCentralCrossRef
95.
go back to reference Ascher S, Wilms E, Pontarollo G, et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol. 2020;40(9):2279–92.PubMedPubMedCentralCrossRef Ascher S, Wilms E, Pontarollo G, et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol. 2020;40(9):2279–92.PubMedPubMedCentralCrossRef
96.
go back to reference Íñiguez-Gutiérrez L, Godínez-Méndez LA, Fafutis-Morris M, et al. Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int J Immunopathol Pharmacol. 2020;34:2058738420958949.PubMedPubMedCentralCrossRef Íñiguez-Gutiérrez L, Godínez-Méndez LA, Fafutis-Morris M, et al. Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int J Immunopathol Pharmacol. 2020;34:2058738420958949.PubMedPubMedCentralCrossRef
97.
go back to reference Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13(1):1968257.PubMedPubMedCentralCrossRef Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13(1):1968257.PubMedPubMedCentralCrossRef
98.
go back to reference Wu Y, You Q, Fei J, et al. Changes in the gut microbiota: a possible factor influencing peripheral blood immune indexes in non-obese diabetic mice. Antonie Van Leeuwenhoek. 2021;114(10):1669–82.PubMedCrossRef Wu Y, You Q, Fei J, et al. Changes in the gut microbiota: a possible factor influencing peripheral blood immune indexes in non-obese diabetic mice. Antonie Van Leeuwenhoek. 2021;114(10):1669–82.PubMedCrossRef
99.
go back to reference Nakazawa D, Kumar SV, Marschner J, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J Am Soc Nephrol. 2017;28(6):1753–68.PubMedPubMedCentralCrossRef Nakazawa D, Kumar SV, Marschner J, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J Am Soc Nephrol. 2017;28(6):1753–68.PubMedPubMedCentralCrossRef
100.
go back to reference Hayase N, Doig K, Hiruma T, et al. recombinant thrombomodulin on neutrophil extracellular traps in murine intestinal ischemia-reperfusion. Anesthesiology. 2019;131(4):866–82.PubMedCrossRef Hayase N, Doig K, Hiruma T, et al. recombinant thrombomodulin on neutrophil extracellular traps in murine intestinal ischemia-reperfusion. Anesthesiology. 2019;131(4):866–82.PubMedCrossRef
102.
go back to reference Zhan Y, Ling Y, Deng Q, et al. HMGB1-mediated neutrophil extracellular trap formation exacerbates intestinal ischemia/reperfusion-induced acute lung injury. J Immunol. 2022;208(4):968–78.PubMedCrossRef Zhan Y, Ling Y, Deng Q, et al. HMGB1-mediated neutrophil extracellular trap formation exacerbates intestinal ischemia/reperfusion-induced acute lung injury. J Immunol. 2022;208(4):968–78.PubMedCrossRef
103.
go back to reference Chaaban H, Burge K, Eckert J, et al. Neutrophil extracellular trap inhibition increases inflammation, bacteraemia and mortality in murine necrotizing enterocolitis. J Cell Mol Med. 2020;34:56. Chaaban H, Burge K, Eckert J, et al. Neutrophil extracellular trap inhibition increases inflammation, bacteraemia and mortality in murine necrotizing enterocolitis. J Cell Mol Med. 2020;34:56.
104.
go back to reference Vincent D, Klinke M, Eschenburg G, et al. NEC is likely a NETs dependent process and markers of NETosis are predictive of NEC in mice and humans. Sci Rep. 2018;8(1):12612.PubMedPubMedCentralCrossRef Vincent D, Klinke M, Eschenburg G, et al. NEC is likely a NETs dependent process and markers of NETosis are predictive of NEC in mice and humans. Sci Rep. 2018;8(1):12612.PubMedPubMedCentralCrossRef
105.
go back to reference Klinke M, Vincent D, Trochimiuk M, et al. Degradation of Extracellular DNA Significantly Ameliorates Necrotizing Enterocolitis Severity in Mice. J Surg Res. 2019;235:513–20.PubMedCrossRef Klinke M, Vincent D, Trochimiuk M, et al. Degradation of Extracellular DNA Significantly Ameliorates Necrotizing Enterocolitis Severity in Mice. J Surg Res. 2019;235:513–20.PubMedCrossRef
106.
go back to reference Polin RA, Pollack PF, Barlow B, et al. Necrotizing enterocolitis in term infants. J Pediatr. 1976;89(3):460–2.PubMedCrossRef Polin RA, Pollack PF, Barlow B, et al. Necrotizing enterocolitis in term infants. J Pediatr. 1976;89(3):460–2.PubMedCrossRef
107.
go back to reference Young CM, Kingma SD, Neu J. Ischemia-reperfusion and neonatal intestinal injury. J Pediatr. 2011;158(2 Suppl):e25–8.PubMedCrossRef Young CM, Kingma SD, Neu J. Ischemia-reperfusion and neonatal intestinal injury. J Pediatr. 2011;158(2 Suppl):e25–8.PubMedCrossRef
108.
go back to reference Klinke M, Wiskemann H, Bay B, et al. Cardiac and inflammatory necrotizing enterocolitis in newborns are not the same entity. Front Pediatr. 2020;8:593926.PubMedCrossRef Klinke M, Wiskemann H, Bay B, et al. Cardiac and inflammatory necrotizing enterocolitis in newborns are not the same entity. Front Pediatr. 2020;8:593926.PubMedCrossRef
109.
go back to reference Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78.PubMedCrossRef Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78.PubMedCrossRef
110.
go back to reference Jones GR, Lyons M, Plevris N, et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019;68(11):1953–60.PubMedCrossRef Jones GR, Lyons M, Plevris N, et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019;68(11):1953–60.PubMedCrossRef
111.
go back to reference Warnatsch A, Ioannou M, Wang Q, et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–20.PubMedPubMedCentralCrossRef Warnatsch A, Ioannou M, Wang Q, et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–20.PubMedPubMedCentralCrossRef
112.
go back to reference Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.PubMedPubMedCentralCrossRef Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.PubMedPubMedCentralCrossRef
113.
go back to reference Drury B, Hardisty G, Gray RD, et al. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33.PubMedPubMedCentralCrossRef Drury B, Hardisty G, Gray RD, et al. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33.PubMedPubMedCentralCrossRef
114.
go back to reference Bennike TB, Carlsen TG, Ellingsen T, et al. Proteomics dataset: The colon mucosa from inflammatory bowel disease patients, gastrointestinal asymptomic rheumatoid arthritis patients, and controls. Data Brief. 2017;15:511–6.PubMedPubMedCentralCrossRef Bennike TB, Carlsen TG, Ellingsen T, et al. Proteomics dataset: The colon mucosa from inflammatory bowel disease patients, gastrointestinal asymptomic rheumatoid arthritis patients, and controls. Data Brief. 2017;15:511–6.PubMedPubMedCentralCrossRef
115.
go back to reference Kirov S, Sasson A, Zhang C, et al. Degradation of the extracellular matrix is part of the pathology of ulcerative colitis. Mol Omics. 2019;15(1):67–76.PubMedCrossRef Kirov S, Sasson A, Zhang C, et al. Degradation of the extracellular matrix is part of the pathology of ulcerative colitis. Mol Omics. 2019;15(1):67–76.PubMedCrossRef
116.
go back to reference Abdelhafez A, Mohamed AS, Shehta A, et al. Neutrophil extracellular traps-associated protein peptidyl arginine deaminase 4 immunohistochemical expression in ulcerative colitis and its association with the prognostic predictors. Pathol Res Pract. 2020;216(10):153102.CrossRef Abdelhafez A, Mohamed AS, Shehta A, et al. Neutrophil extracellular traps-associated protein peptidyl arginine deaminase 4 immunohistochemical expression in ulcerative colitis and its association with the prognostic predictors. Pathol Res Pract. 2020;216(10):153102.CrossRef
117.
go back to reference Dinallo V, Marafini I, di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J Crohns Colitis. 2019;13(6):772–84.PubMedCrossRef Dinallo V, Marafini I, di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J Crohns Colitis. 2019;13(6):772–84.PubMedCrossRef
118.
go back to reference Li T, Wang C, Liu Y, et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohns Colitis. 2020;14(2):240–53.PubMedCrossRef Li T, Wang C, Liu Y, et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohns Colitis. 2020;14(2):240–53.PubMedCrossRef
119.
go back to reference Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/Autophagy Pathway Is Associated with Neutrophil-Driven IL-1β Inflammatory Response in Active Ulcerative Colitis. J Immunol. 2018;200(12):3950–61.PubMedCrossRef Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/Autophagy Pathway Is Associated with Neutrophil-Driven IL-1β Inflammatory Response in Active Ulcerative Colitis. J Immunol. 2018;200(12):3950–61.PubMedCrossRef
120.
go back to reference Maronek M, Gromova B, Liptak R, et al. Extracellular DNA Correlates with Intestinal Inflammation in Chemically Induced Colitis in Mice. Cells. 2021;10(1):38.CrossRef Maronek M, Gromova B, Liptak R, et al. Extracellular DNA Correlates with Intestinal Inflammation in Chemically Induced Colitis in Mice. Cells. 2021;10(1):38.CrossRef
121.
go back to reference Lin EY, Lai HJ, Cheng YK, et al. Neutrophil Extracellular Traps Impair Intestinal Barrier Function during Experimental Colitis. Biomedicines. 2020;8(8):82.CrossRef Lin EY, Lai HJ, Cheng YK, et al. Neutrophil Extracellular Traps Impair Intestinal Barrier Function during Experimental Colitis. Biomedicines. 2020;8(8):82.CrossRef
122.
go back to reference Dong W, Liu D, Zhang T, et al. Oral delivery of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice via degrading intestinal neutrophil extracellular traps. Ecotoxicol Environ Saf. 2021;215:112161.PubMedCrossRef Dong W, Liu D, Zhang T, et al. Oral delivery of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice via degrading intestinal neutrophil extracellular traps. Ecotoxicol Environ Saf. 2021;215:112161.PubMedCrossRef
123.
go back to reference Gravina AG, Federico A, Ruocco E, et al. Crohn’s disease and skin. United Eur Gastroenterol J. 2016;4(2):165–71.CrossRef Gravina AG, Federico A, Ruocco E, et al. Crohn’s disease and skin. United Eur Gastroenterol J. 2016;4(2):165–71.CrossRef
124.
go back to reference Zhang T, Mei Y, Dong W, et al. Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int Immunopharmacol. 2020;84:106583.PubMedCrossRef Zhang T, Mei Y, Dong W, et al. Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int Immunopharmacol. 2020;84:106583.PubMedCrossRef
125.
go back to reference Seo DH, Che X, Kim S, et al. Triggering Receptor Expressed on Myeloid Cells-1 Agonist Regulates Intestinal Inflammation via Cd177(+) Neutrophils. Front Immunol. 2021;12:650864.PubMedPubMedCentralCrossRef Seo DH, Che X, Kim S, et al. Triggering Receptor Expressed on Myeloid Cells-1 Agonist Regulates Intestinal Inflammation via Cd177(+) Neutrophils. Front Immunol. 2021;12:650864.PubMedPubMedCentralCrossRef
126.
go back to reference Lehmann T, Schallert K, Vilchez-Vargas R, et al. Metaproteomics of fecal samples of Crohn’s disease and Ulcerative Colitis. J Proteomics. 2019;201:93–103.PubMedCrossRef Lehmann T, Schallert K, Vilchez-Vargas R, et al. Metaproteomics of fecal samples of Crohn’s disease and Ulcerative Colitis. J Proteomics. 2019;201:93–103.PubMedCrossRef
127.
go back to reference Rayes RF, Mouhanna JG, Nicolau I, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):34. Rayes RF, Mouhanna JG, Nicolau I, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):34.
128.
129.
go back to reference Mizuno R, Kawada K, Itatani Y, et al. The Role of Tumor-Associated Neutrophils in Colorectal Cancer. Int J Mol Sci. 2019;20(3):34.CrossRef Mizuno R, Kawada K, Itatani Y, et al. The Role of Tumor-Associated Neutrophils in Colorectal Cancer. Int J Mol Sci. 2019;20(3):34.CrossRef
130.
go back to reference de Andrea CE, Ochoa MC, Villalba-Esparza M, et al. Heterogenous presence of Neutrophil Extracellular Traps in human solid tumours is partially dependent on Interleukin-8. J Pathol. 2021;45:3. de Andrea CE, Ochoa MC, Villalba-Esparza M, et al. Heterogenous presence of Neutrophil Extracellular Traps in human solid tumours is partially dependent on Interleukin-8. J Pathol. 2021;45:3.
132.
go back to reference Sangaletti S, Tripodo C, Vitali C, et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov. 2014;4(1):110–29.PubMedCrossRef Sangaletti S, Tripodo C, Vitali C, et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov. 2014;4(1):110–29.PubMedCrossRef
133.
go back to reference Al-Haidari AA, Algethami N, Lepsenyi M, et al. Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells. Oncotarget. 2019;10(12):1238–49.PubMedPubMedCentralCrossRef Al-Haidari AA, Algethami N, Lepsenyi M, et al. Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells. Oncotarget. 2019;10(12):1238–49.PubMedPubMedCentralCrossRef
134.
go back to reference Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58.PubMedCentralCrossRef Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58.PubMedCentralCrossRef
135.
go back to reference Miller-Ocuin JL, Liang X, Boone BA, et al. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncoimmunology. 2019;8(9): e1605822.PubMedPubMedCentralCrossRef Miller-Ocuin JL, Liang X, Boone BA, et al. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncoimmunology. 2019;8(9): e1605822.PubMedPubMedCentralCrossRef
136.
go back to reference Ren J, He J, Zhang H, et al. Platelet TLR4-ERK5 Axis Facilitates NET-Mediated Capturing of Circulating Tumor Cells and Distant Metastasis after Surgical Stress. Cancer Res. 2021;81(9):2373–85.PubMedPubMedCentralCrossRef Ren J, He J, Zhang H, et al. Platelet TLR4-ERK5 Axis Facilitates NET-Mediated Capturing of Circulating Tumor Cells and Distant Metastasis after Surgical Stress. Cancer Res. 2021;81(9):2373–85.PubMedPubMedCentralCrossRef
137.
go back to reference Tohme S, Yazdani HO, Al-Khafaji AB, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80.PubMedPubMedCentralCrossRef Tohme S, Yazdani HO, Al-Khafaji AB, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80.PubMedPubMedCentralCrossRef
138.
go back to reference Yazdani HO, Roy E, Comerci AJ, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39.PubMedPubMedCentralCrossRef Yazdani HO, Roy E, Comerci AJ, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39.PubMedPubMedCentralCrossRef
139.
go back to reference Wang WW, Wu L, Lu W, et al. Lipopolysaccharides increase the risk of colorectal cancer recurrence and metastasis due to the induction of neutrophil extracellular traps after curative resection. J Cancer Res Clin Oncol. 2021;45:56. Wang WW, Wu L, Lu W, et al. Lipopolysaccharides increase the risk of colorectal cancer recurrence and metastasis due to the induction of neutrophil extracellular traps after curative resection. J Cancer Res Clin Oncol. 2021;45:56.
140.
go back to reference Shang A, Gu C, Zhou C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 2020;18(1):52.PubMedPubMedCentralCrossRef Shang A, Gu C, Zhou C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 2020;18(1):52.PubMedPubMedCentralCrossRef
141.
go back to reference Yang L, Liu L, Zhang R, et al. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 2020;11(15):4384–96.PubMedPubMedCentralCrossRef Yang L, Liu L, Zhang R, et al. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 2020;11(15):4384–96.PubMedPubMedCentralCrossRef
142.
go back to reference Rayes RF, Vourtzoumis P, Bourjeily M, et al. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. J Immunol. 2020;204(8):2285–94.PubMedCrossRef Rayes RF, Vourtzoumis P, Bourjeily M, et al. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. J Immunol. 2020;204(8):2285–94.PubMedCrossRef
143.
go back to reference Kumagai Y, Ohzawa H, Miyato H, et al. Surgical stress increases circulating low-density neutrophils which may promote tumor recurrence. J Surg Res. 2020;246:52–61.PubMedCrossRef Kumagai Y, Ohzawa H, Miyato H, et al. Surgical stress increases circulating low-density neutrophils which may promote tumor recurrence. J Surg Res. 2020;246:52–61.PubMedCrossRef
144.
go back to reference Li J, Yuan Y, Yang F, et al. Expert consensus on multidisciplinary therapy of colorectal cancer with lung metastases (2019 edition). J Hematol Oncol. 2019;12(1):16.PubMedPubMedCentralCrossRef Li J, Yuan Y, Yang F, et al. Expert consensus on multidisciplinary therapy of colorectal cancer with lung metastases (2019 edition). J Hematol Oncol. 2019;12(1):16.PubMedPubMedCentralCrossRef
145.
go back to reference Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;583(7814):133–8.PubMedCrossRef Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;583(7814):133–8.PubMedCrossRef
146.
go back to reference Xia Y, He J, Zhang H, et al. AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 2020;14(11):2920–35.PubMedPubMedCentralCrossRef Xia Y, He J, Zhang H, et al. AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 2020;14(11):2920–35.PubMedPubMedCentralCrossRef
147.
go back to reference Zhang Y, Wang C, Yu M, et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer. Thromb Res. 2019;180:87–97.PubMedCrossRef Zhang Y, Wang C, Yu M, et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer. Thromb Res. 2019;180:87–97.PubMedCrossRef
148.
go back to reference Guglietta S, Chiavelli A, Zagato E, et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 2016;7:11037.PubMedPubMedCentralCrossRef Guglietta S, Chiavelli A, Zagato E, et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 2016;7:11037.PubMedPubMedCentralCrossRef
149.
go back to reference Jung HS, Gu J, Kim JE, et al. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS ONE. 2019;14(4): e0216055.PubMedPubMedCentralCrossRef Jung HS, Gu J, Kim JE, et al. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS ONE. 2019;14(4): e0216055.PubMedPubMedCentralCrossRef
150.
go back to reference Demers M, Wagner DD. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2(2): e22946.PubMedPubMedCentralCrossRef Demers M, Wagner DD. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2(2): e22946.PubMedPubMedCentralCrossRef
151.
go back to reference Richardson JJR, Hendrickse C, Gao-Smith F, et al. Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflam. 2017;2017:4915062.PubMedPubMedCentral Richardson JJR, Hendrickse C, Gao-Smith F, et al. Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflam. 2017;2017:4915062.PubMedPubMedCentral
152.
go back to reference Richardson JJR, Hendrickse C, Gao-Smith F, et al. Characterization of systemic neutrophil function in patients undergoing colorectal cancer resection. J Surg Res. 2017;220:410–8.PubMedCrossRef Richardson JJR, Hendrickse C, Gao-Smith F, et al. Characterization of systemic neutrophil function in patients undergoing colorectal cancer resection. J Surg Res. 2017;220:410–8.PubMedCrossRef
Metadata
Title
The emerging role of neutrophilic extracellular traps in intestinal disease
Authors
Feng Chen
Yongqiang Liu
Yajing Shi
Jianmin Zhang
Xin Liu
Zhenzhen Liu
Jipeng Lv
Yufang Leng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2022
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-022-00497-x

Other articles of this Issue 1/2022

Gut Pathogens 1/2022 Go to the issue