Skip to main content
Top
Published in: Gut Pathogens 1/2022

Open Access 01-12-2022 | Chronic Inflammatory Bowel Disease | Research

The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease

Authors: Xinwei Xu, Dickson Kofi Wiredu Ocansey, Sanhua Hang, Bo Wang, Samuel Amoah, Chengxue Yi, Xu Zhang, Lianqin Liu, Fei Mao

Published in: Gut Pathogens | Issue 1/2022

Login to get access

Abstract

Inflammatory bowel disease (IBD), a chronic gut immune dysregulation and dysbiosis condition is rapidly increasing in global incidence. Regardless, there is a lack of ideal diagnostic markers, while conventional treatment provides scarce desired results, thus, the exploration for better options. Changes in the gut microbial composition and metabolites either lead to or are caused by the immune dysregulation that characterizes IBD. This study examined the fecal metagenomics and metabolomic changes in IBD patients. A total of 30 fecal samples were collected from 15 IBD patients and 15 healthy controls for 16S rDNA gene sequencing and UHPLC/Q-TOF-MS detection of metabolomics. Results showed that there was a severe perturbation of gut bacteria community composition, diversity, metabolites, and associated functions and metabolic pathways in IBD. This included a significantly decreased abundance of Bacteroidetes and Firmicutes, increased disease-associated phyla such as Proteobacteria and Actinobacteria, and increased Escherichia coli and Klebsiella pneumoniae in IBD. A total of 3146 metabolites were detected out of which 135 were differentially expressed between IBD and controls. Metabolites with high sensitivity and specificity in differentiating IBD from healthy individuals included 6,7,4′-trihydroxyisoflavone and thyroxine 4′-o-.beta.-d-glucuronide (AUC = 0.92), normorphine and salvinorin a (AUC = 0.90), and trichostachine (AUC = 0.91). Moreover, the IBD group had significantly affected pathways including primary bile acid biosynthesis, vitamin digestion and absorption, and carbohydrate metabolism. This study reveals that the combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and IBD patients and consequently serve as therapeutic and diagnostic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ocansey DKW, Wang L, Wang J, Yan Y, Qian H, Zhang X, et al. Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin Transl Med. 2019;8:31.PubMedPubMedCentralCrossRef Ocansey DKW, Wang L, Wang J, Yan Y, Qian H, Zhang X, et al. Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin Transl Med. 2019;8:31.PubMedPubMedCentralCrossRef
3.
go back to reference Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152:313-321.e2.PubMedCrossRef Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152:313-321.e2.PubMedCrossRef
4.
go back to reference Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10.PubMedCrossRef Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10.PubMedCrossRef
6.
go back to reference Clos-Garcia M, Garcia K, Alonso C, Iruarrizaga-Lejarreta M, D’Amato M, Crespo A, et al. Integrative analysis of fecal metagenomics and metabolomics in colorectal cancer. Cancers (Basel). 2020;12:1142.CrossRef Clos-Garcia M, Garcia K, Alonso C, Iruarrizaga-Lejarreta M, D’Amato M, Crespo A, et al. Integrative analysis of fecal metagenomics and metabolomics in colorectal cancer. Cancers (Basel). 2020;12:1142.CrossRef
7.
go back to reference Yu J, Feng Q, Wong SH, Zhang D, Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8.PubMedCrossRef Yu J, Feng Q, Wong SH, Zhang D, Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8.PubMedCrossRef
9.
go back to reference Sidebottom AM, Chang EB. IBD microbial metabolome: the good, bad, and unknown. Trends Endocrinol Metab. 2020;31:807–9.PubMedCrossRef Sidebottom AM, Chang EB. IBD microbial metabolome: the good, bad, and unknown. Trends Endocrinol Metab. 2020;31:807–9.PubMedCrossRef
10.
go back to reference Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–22.PubMedCrossRef Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–22.PubMedCrossRef
11.
go back to reference Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–74.PubMedCrossRef Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–74.PubMedCrossRef
12.
go back to reference Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305.PubMedCrossRef Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305.PubMedCrossRef
13.
go back to reference Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature. 2016;535:47–47.PubMedCrossRef Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature. 2016;535:47–47.PubMedCrossRef
14.
go back to reference Kataoka K. The intestinal microbiota and its role in human health and disease. J Med Investig. 2016;63:27–37.CrossRef Kataoka K. The intestinal microbiota and its role in human health and disease. J Med Investig. 2016;63:27–37.CrossRef
15.
go back to reference Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.PubMedCrossRef Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.PubMedCrossRef
17.
go back to reference Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol. 2006;44:3980–8.PubMedPubMedCentralCrossRef Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol. 2006;44:3980–8.PubMedPubMedCentralCrossRef
18.
go back to reference Ott SJ. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–93.PubMedPubMedCentralCrossRef Ott SJ. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–93.PubMedPubMedCentralCrossRef
19.
go back to reference Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47–55.PubMedCrossRef Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47–55.PubMedCrossRef
20.
go back to reference Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017;7:9523.PubMedPubMedCentralCrossRef Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017;7:9523.PubMedPubMedCentralCrossRef
21.
go back to reference Kaur CP, Vadivelu J, Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis. 2018;19:262–71.PubMedCrossRef Kaur CP, Vadivelu J, Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis. 2018;19:262–71.PubMedCrossRef
22.
go back to reference Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.PubMedPubMedCentralCrossRef Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.PubMedPubMedCentralCrossRef
23.
go back to reference Hovaguimian F, Braun J, Z’graggen BR, Schläpfer M, Dumrese C, Ewald C, et al. Anesthesia and circulating tumor cells in primary breast cancer patients. Anesthesiology. 2020;133:548–58.PubMedCrossRef Hovaguimian F, Braun J, Z’graggen BR, Schläpfer M, Dumrese C, Ewald C, et al. Anesthesia and circulating tumor cells in primary breast cancer patients. Anesthesiology. 2020;133:548–58.PubMedCrossRef
25.
go back to reference Lopez-Siles M, Aldeguer X, Sabat-Mir M, Serra-Pagès M, Duncan SH, Flint HJ, et al. Evaluation of bacterial biomarkers to aid in challenging inflammatory bowel diseases diagnostics and subtype classification. World J Gastrointest Pathophysiol. 2020;11:64–77.PubMedPubMedCentralCrossRef Lopez-Siles M, Aldeguer X, Sabat-Mir M, Serra-Pagès M, Duncan SH, Flint HJ, et al. Evaluation of bacterial biomarkers to aid in challenging inflammatory bowel diseases diagnostics and subtype classification. World J Gastrointest Pathophysiol. 2020;11:64–77.PubMedPubMedCentralCrossRef
27.
go back to reference Quintanilha MF, Miranda VC, Souza RO, Gallotti B, Cruz C, Santos EA, et al. Bifidobacterium longum subsp. longum 51A attenuates intestinal injury against irinotecan-induced mucositis in mice. Life Sci. 2022;289: 120243.PubMedCrossRef Quintanilha MF, Miranda VC, Souza RO, Gallotti B, Cruz C, Santos EA, et al. Bifidobacterium longum subsp. longum 51A attenuates intestinal injury against irinotecan-induced mucositis in mice. Life Sci. 2022;289: 120243.PubMedCrossRef
28.
go back to reference Yao S, Zhao Z, Wang W, Liu X. Bifidobacterium Longum: protection against inflammatory bowel disease. J Immunol Res. 2021;2021:1–11.CrossRef Yao S, Zhao Z, Wang W, Liu X. Bifidobacterium Longum: protection against inflammatory bowel disease. J Immunol Res. 2021;2021:1–11.CrossRef
29.
go back to reference Dovrolis N, Michalopoulos G, Theodoropoulos GE, Arvanitidis K, Kolios G, Sechi LA, et al. The interplay between mucosal microbiota composition and host gene-expression is linked with infliximab response in inflammatory bowel diseases. Microorganisms. 2020;8:438.PubMedCentralCrossRef Dovrolis N, Michalopoulos G, Theodoropoulos GE, Arvanitidis K, Kolios G, Sechi LA, et al. The interplay between mucosal microbiota composition and host gene-expression is linked with infliximab response in inflammatory bowel diseases. Microorganisms. 2020;8:438.PubMedCentralCrossRef
30.
go back to reference Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 2018;24:1926–40.PubMedCrossRef Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 2018;24:1926–40.PubMedCrossRef
31.
go back to reference Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25:323–36.PubMedCrossRef Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25:323–36.PubMedCrossRef
32.
go back to reference Knoll RL, Forslund K, Kultima JR, Meyer CU, Kullmer U, Sunagawa S, et al. Gut microbiota differs between children with Inflammatory Bowel disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis. Am J Physiol Liver Physiol. 2017;312:G327–39. Knoll RL, Forslund K, Kultima JR, Meyer CU, Kullmer U, Sunagawa S, et al. Gut microbiota differs between children with Inflammatory Bowel disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis. Am J Physiol Liver Physiol. 2017;312:G327–39.
33.
go back to reference Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for ibd treatment: are we there yet? Curr Treat Options Gastroenterol. 2019;17:115–26.PubMedCrossRef Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for ibd treatment: are we there yet? Curr Treat Options Gastroenterol. 2019;17:115–26.PubMedCrossRef
34.
35.
go back to reference Camarillo GF, Goyon EI, Zuñiga RB, Salas LAS, Escárcega AEP, Yamamoto-Furusho JK. Gene expression profiling of mediators associated with the inflammatory pathways in the intestinal tissue from patients with ulcerative colitis. Mediators Inflamm. 2020;2020:1–11.CrossRef Camarillo GF, Goyon EI, Zuñiga RB, Salas LAS, Escárcega AEP, Yamamoto-Furusho JK. Gene expression profiling of mediators associated with the inflammatory pathways in the intestinal tissue from patients with ulcerative colitis. Mediators Inflamm. 2020;2020:1–11.CrossRef
37.
go back to reference Tso VK, Sydora BC, Foshaug RR, Churchill TA, Doyle J, Slupsky CM, et al. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS One. 2013;8: e67654.PubMedPubMedCentralCrossRef Tso VK, Sydora BC, Foshaug RR, Churchill TA, Doyle J, Slupsky CM, et al. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS One. 2013;8: e67654.PubMedPubMedCentralCrossRef
38.
go back to reference Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–51.PubMedCrossRef Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–51.PubMedCrossRef
40.
go back to reference Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:223–37.PubMedCrossRef Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:223–37.PubMedCrossRef
41.
go back to reference Pan Y, Liu Y, Guo H, Jabir MS, Liu X, Cui W, et al. Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients. 2017;9:382.PubMedCentralCrossRef Pan Y, Liu Y, Guo H, Jabir MS, Liu X, Cui W, et al. Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients. 2017;9:382.PubMedCentralCrossRef
42.
go back to reference Olmedo-Martín RV, González-Molero I, Olveira G, Amo-Trillo V, Jiménez-Pérez M. Vitamin D in inflammatory bowel disease: biological, clinical and therapeutic aspects. Curr Drug Metab. 2019;20:390–8.PubMedCrossRef Olmedo-Martín RV, González-Molero I, Olveira G, Amo-Trillo V, Jiménez-Pérez M. Vitamin D in inflammatory bowel disease: biological, clinical and therapeutic aspects. Curr Drug Metab. 2019;20:390–8.PubMedCrossRef
43.
go back to reference Kilby K, Mathias H, Boisvenue L, Heisler C, Jones JL. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: a review. Nutrients. 2019;11:1388.PubMedCentralCrossRef Kilby K, Mathias H, Boisvenue L, Heisler C, Jones JL. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: a review. Nutrients. 2019;11:1388.PubMedCentralCrossRef
44.
go back to reference Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M-A, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9.PubMedCrossRef Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M-A, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9.PubMedCrossRef
45.
go back to reference Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55–67.PubMedCrossRef Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55–67.PubMedCrossRef
46.
go back to reference Sido B, Hack V, Hochlehnert A, Lipps H, Herfarth C, Droge W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut. 1998;42:485–92.PubMedPubMedCentralCrossRef Sido B, Hack V, Hochlehnert A, Lipps H, Herfarth C, Droge W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut. 1998;42:485–92.PubMedPubMedCentralCrossRef
47.
go back to reference Gao W, Zhang T, Wu H. Emerging pathological engagement of ferroptosis in gut diseases. Oxid Med Cell Longev. 2021;2021:1–16. Gao W, Zhang T, Wu H. Emerging pathological engagement of ferroptosis in gut diseases. Oxid Med Cell Longev. 2021;2021:1–16.
48.
go back to reference Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep. 2020;47:3053–63.PubMedCrossRef Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep. 2020;47:3053–63.PubMedCrossRef
50.
go back to reference Sommer F, Adam N, Johansson MEV, Xia L, Hansson GC, Bäckhed F. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS ONE. 2014;9:e85254.PubMedPubMedCentralCrossRef Sommer F, Adam N, Johansson MEV, Xia L, Hansson GC, Bäckhed F. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS ONE. 2014;9:e85254.PubMedPubMedCentralCrossRef
51.
go back to reference Staubach F, Künzel S, Baines AC, Yee A, McGee BM, Bäckhed F, et al. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME J. 2012;6:1345–55.PubMedPubMedCentralCrossRef Staubach F, Künzel S, Baines AC, Yee A, McGee BM, Bäckhed F, et al. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME J. 2012;6:1345–55.PubMedPubMedCentralCrossRef
52.
go back to reference Iyer N, Corr SC. Gut microbial metabolite-mediated regulation of the intestinal barrier in the pathogenesis of inflammatory bowel disease. Nutrients. 2021;13:4259.PubMedPubMedCentralCrossRef Iyer N, Corr SC. Gut microbial metabolite-mediated regulation of the intestinal barrier in the pathogenesis of inflammatory bowel disease. Nutrients. 2021;13:4259.PubMedPubMedCentralCrossRef
Metadata
Title
The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease
Authors
Xinwei Xu
Dickson Kofi Wiredu Ocansey
Sanhua Hang
Bo Wang
Samuel Amoah
Chengxue Yi
Xu Zhang
Lianqin Liu
Fei Mao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2022
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-022-00499-9

Other articles of this Issue 1/2022

Gut Pathogens 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.