Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Review

Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both?

Authors: Constantin Dreher, Daniel Habermehl, Oliver Jäkel, Stephanie E. Combs

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies on ion beam therapy of pancreatic cancer.
Literature
1.
go back to reference Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.CrossRefPubMedPubMedCentral Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.CrossRefPubMedPubMedCentral
2.
go back to reference Habermehl D, Kessel K, Welzel T, Hof H, Abdollahi A, Bergmann F, Rieken S, Weitz J, Werner J, Schirmacher P, et al. Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer. Radiat Oncol. 2012;7:28.CrossRefPubMedPubMedCentral Habermehl D, Kessel K, Welzel T, Hof H, Abdollahi A, Bergmann F, Rieken S, Weitz J, Werner J, Schirmacher P, et al. Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer. Radiat Oncol. 2012;7:28.CrossRefPubMedPubMedCentral
3.
go back to reference Suker M, Beumer BR, Sadot E, Marthey L, Faris JE, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PJ, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 2016;17:801–10.CrossRefPubMedPubMedCentral Suker M, Beumer BR, Sadot E, Marthey L, Faris JE, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PJ, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 2016;17:801–10.CrossRefPubMedPubMedCentral
4.
go back to reference Katz MH, Shi Q, Ahmad SA, Herman JM, Marsh Rde W, Collisson E, Schwartz L, Frankel W, Martin R, Conway W, et al. Preoperative modified FOLFIRINOX treatment followed by Capecitabine-based Chemoradiation for borderline Resectable pancreatic cancer: alliance for clinical trials in oncology trial A021101. JAMA Surg. 2016;151:e161137.CrossRefPubMedPubMedCentral Katz MH, Shi Q, Ahmad SA, Herman JM, Marsh Rde W, Collisson E, Schwartz L, Frankel W, Martin R, Conway W, et al. Preoperative modified FOLFIRINOX treatment followed by Capecitabine-based Chemoradiation for borderline Resectable pancreatic cancer: alliance for clinical trials in oncology trial A021101. JAMA Surg. 2016;151:e161137.CrossRefPubMedPubMedCentral
5.
go back to reference Shaib WL, Hawk N, Cassidy RJ, Chen Z, Zhang C, Brutcher E, Kooby D, Maithel SK, Sarmiento JM, Landry J, El-Rayes BF. A phase 1 study of stereotactic body radiation therapy dose escalation for borderline Resectable pancreatic cancer after modified FOLFIRINOX (NCT01446458). Int J Radiat Oncol Biol Phys. 2016;96:296–303.CrossRefPubMed Shaib WL, Hawk N, Cassidy RJ, Chen Z, Zhang C, Brutcher E, Kooby D, Maithel SK, Sarmiento JM, Landry J, El-Rayes BF. A phase 1 study of stereotactic body radiation therapy dose escalation for borderline Resectable pancreatic cancer after modified FOLFIRINOX (NCT01446458). Int J Radiat Oncol Biol Phys. 2016;96:296–303.CrossRefPubMed
6.
go back to reference Zhong J, Patel K, Switchenko J, Cassidy RJ, Hall WA, Gillespie T, Patel PR, Kooby D, Landry J. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer. 2017;123(18):3486-493. Zhong J, Patel K, Switchenko J, Cassidy RJ, Hall WA, Gillespie T, Patel PR, Kooby D, Landry J. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer. 2017;123(18):3486-493.
7.
go back to reference Qing SW, Ju XP, Cao YS, Zhang HJ. Dose escalation of stereotactic body radiotherapy (SBRT) for locally advanced unresectable pancreatic cancer patients with CyberKnife: protocol of a phase I study. Radiat Oncol. 2017;12:6.CrossRefPubMedPubMedCentral Qing SW, Ju XP, Cao YS, Zhang HJ. Dose escalation of stereotactic body radiotherapy (SBRT) for locally advanced unresectable pancreatic cancer patients with CyberKnife: protocol of a phase I study. Radiat Oncol. 2017;12:6.CrossRefPubMedPubMedCentral
8.
go back to reference Panje C, Andratschke N, Brunner TB, Niyazi M, Guckenberger M. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer : literature review and practice recommendations of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2016;192:875–85.CrossRefPubMed Panje C, Andratschke N, Brunner TB, Niyazi M, Guckenberger M. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer : literature review and practice recommendations of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2016;192:875–85.CrossRefPubMed
9.
go back to reference Habermehl D, Henkner K, Ecker S, Jakel O, Debus J, Combs SE. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res. 2013;54(Suppl 1):i61–8.CrossRefPubMedPubMedCentral Habermehl D, Henkner K, Ecker S, Jakel O, Debus J, Combs SE. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J Radiat Res. 2013;54(Suppl 1):i61–8.CrossRefPubMedPubMedCentral
10.
go back to reference Wo JY, Niemierko A, Ryan DP, Blaszkowsky LS, Clark JW, Kwak EL, Lillemoe KD, Drapek LN, Zhu AX, Allen JN, et al. Tolerability and long-term outcomes of dose-painted Neoadjuvant Chemoradiation to regions of vessel involvement in borderline or locally advanced pancreatic cancer. Am J Clin Oncol. 2017; Wo JY, Niemierko A, Ryan DP, Blaszkowsky LS, Clark JW, Kwak EL, Lillemoe KD, Drapek LN, Zhu AX, Allen JN, et al. Tolerability and long-term outcomes of dose-painted Neoadjuvant Chemoradiation to regions of vessel involvement in borderline or locally advanced pancreatic cancer. Am J Clin Oncol. 2017;
11.
go back to reference Kishi T, Matsuo Y, Nakamura A, Nakamoto Y, Itasaka S, Mizowaki T, Togashi K, Hiraoka M. Comparative evaluation of respiratory-gated and ungated FDG-PET for target volume definition in radiotherapy treatment planning for pancreatic cancer. Radiother Oncol. 2016;120:217–21.CrossRefPubMed Kishi T, Matsuo Y, Nakamura A, Nakamoto Y, Itasaka S, Mizowaki T, Togashi K, Hiraoka M. Comparative evaluation of respiratory-gated and ungated FDG-PET for target volume definition in radiotherapy treatment planning for pancreatic cancer. Radiother Oncol. 2016;120:217–21.CrossRefPubMed
12.
go back to reference Gkika E, Adebahr S, Kirste S, Schimek-Jasch T, Wiehle R, Claus R, Wittel U, Nestle U, Baltas D, Grosu AL, Brunner TB. Stereotactic body radiotherapy (SBRT) in recurrent or oligometastatic pancreatic cancer : a toxicity review of simultaneous integrated protection (SIP) versus conventional SBRT. Strahlenther Onkol. 2017;193:433–43.CrossRefPubMed Gkika E, Adebahr S, Kirste S, Schimek-Jasch T, Wiehle R, Claus R, Wittel U, Nestle U, Baltas D, Grosu AL, Brunner TB. Stereotactic body radiotherapy (SBRT) in recurrent or oligometastatic pancreatic cancer : a toxicity review of simultaneous integrated protection (SIP) versus conventional SBRT. Strahlenther Onkol. 2017;193:433–43.CrossRefPubMed
13.
go back to reference Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J, Trofimov A. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 2010;95:3–22.CrossRefPubMed Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J, Trofimov A. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 2010;95:3–22.CrossRefPubMed
14.
go back to reference El Shafie RA, Habermehl D, Rieken S, Mairani A, Orschiedt L, Brons S, Haberer T, Weber KJ, Debus J, Combs SE. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J Radiat Res. 2013;54(Suppl 1):i113–9.CrossRefPubMedPubMedCentral El Shafie RA, Habermehl D, Rieken S, Mairani A, Orschiedt L, Brons S, Haberer T, Weber KJ, Debus J, Combs SE. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J Radiat Res. 2013;54(Suppl 1):i113–9.CrossRefPubMedPubMedCentral
15.
go back to reference Habermehl D, Ilicic K, Dehne S, Rieken S, Orschiedt L, Brons S, Haberer T, Weber KJ, Debus J, Combs SE. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS One. 2014;9:e113591.CrossRefPubMedPubMedCentral Habermehl D, Ilicic K, Dehne S, Rieken S, Orschiedt L, Brons S, Haberer T, Weber KJ, Debus J, Combs SE. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS One. 2014;9:e113591.CrossRefPubMedPubMedCentral
16.
go back to reference Oonishi K, Cui X, Hirakawa H, Fujimori A, Kamijo T, Yamada S, Yokosuka O, Kamada T. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother Oncol. 2012;105:258–65.CrossRefPubMed Oonishi K, Cui X, Hirakawa H, Fujimori A, Kamijo T, Yamada S, Yokosuka O, Kamada T. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother Oncol. 2012;105:258–65.CrossRefPubMed
17.
go back to reference Prescribing, recording, and reporting proton-beam therapy. pp. NP: International Commission on Radiation Units and Measurements; 2007:NP. Prescribing, recording, and reporting proton-beam therapy. pp. NP: International Commission on Radiation Units and Measurements; 2007:NP.
18.
go back to reference Georgakilas AG, O'Neill P, Stewart RD. Induction and repair of clustered DNA lesions: what do we know so far? Radiat Res. 2013;180:100–9.CrossRefPubMed Georgakilas AG, O'Neill P, Stewart RD. Induction and repair of clustered DNA lesions: what do we know so far? Radiat Res. 2013;180:100–9.CrossRefPubMed
19.
go back to reference Dehne S, Fritz C, Rieken S, Baris D, Brons S, Haberer T, Debus J, Weber KJ, Schmid TE, Combs SE, Habermehl D. Combination of photon and carbon ion irradiation with targeted therapy substances Temsirolimus and Gemcitabine in Hepatocellular carcinoma cell lines. Front Oncol. 2017;7:35.CrossRefPubMedPubMedCentral Dehne S, Fritz C, Rieken S, Baris D, Brons S, Haberer T, Debus J, Weber KJ, Schmid TE, Combs SE, Habermehl D. Combination of photon and carbon ion irradiation with targeted therapy substances Temsirolimus and Gemcitabine in Hepatocellular carcinoma cell lines. Front Oncol. 2017;7:35.CrossRefPubMedPubMedCentral
20.
go back to reference Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48:919–22.CrossRefPubMed Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48:919–22.CrossRefPubMed
21.
go back to reference Bassler N, Toftegaard J, Luhr A, Sorensen BS, Scifoni E, Kramer M, Jakel O, Mortensen LS, Overgaard J, Petersen JB. LET-painting increases tumour control probability in hypoxic tumours. Acta Oncol. 2014;53:25–32.CrossRefPubMed Bassler N, Toftegaard J, Luhr A, Sorensen BS, Scifoni E, Kramer M, Jakel O, Mortensen LS, Overgaard J, Petersen JB. LET-painting increases tumour control probability in hypoxic tumours. Acta Oncol. 2014;53:25–32.CrossRefPubMed
22.
go back to reference Schneider RA, Vitolo V, Albertini F, Koch T, Ares C, Lomax A, Goitein G, Hug EB. Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms. Strahlenther Onkol. 2013;189:1020–5.CrossRefPubMed Schneider RA, Vitolo V, Albertini F, Koch T, Ares C, Lomax A, Goitein G, Hug EB. Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms. Strahlenther Onkol. 2013;189:1020–5.CrossRefPubMed
23.
go back to reference Shinoto M, Shioyama Y, Matsunobu A, Okamoto K, Suefuji H, Toyama S, Honda H, Kudo S. Dosimetric analysis of upper gastrointestinal ulcer after carbon-ion radiotherapy for pancreatic cancer. Radiother Oncol. 2016;120:140–4.CrossRefPubMed Shinoto M, Shioyama Y, Matsunobu A, Okamoto K, Suefuji H, Toyama S, Honda H, Kudo S. Dosimetric analysis of upper gastrointestinal ulcer after carbon-ion radiotherapy for pancreatic cancer. Radiother Oncol. 2016;120:140–4.CrossRefPubMed
24.
go back to reference Takatori K, Terashima K, Yoshida R, Horai A, Satake S, Ose T, Kitajima N, Kinoshita Y, Demizu Y, Fuwa N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2014;49:1074–80.CrossRefPubMed Takatori K, Terashima K, Yoshida R, Horai A, Satake S, Ose T, Kitajima N, Kinoshita Y, Demizu Y, Fuwa N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2014;49:1074–80.CrossRefPubMed
25.
go back to reference Sihver L, Tsao CH, Silberberg R, Barghouty AF, Kanai T. Calculations of depth-dose distributions, cross sections and momentum loss. Adv Space Res. 1996;17:105–8.CrossRefPubMed Sihver L, Tsao CH, Silberberg R, Barghouty AF, Kanai T. Calculations of depth-dose distributions, cross sections and momentum loss. Adv Space Res. 1996;17:105–8.CrossRefPubMed
26.
go back to reference Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.CrossRefPubMed Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.CrossRefPubMed
27.
go back to reference Mori S, Shinoto M, Yamada S. Four-dimensional treatment planning in layer-stacking boost irradiation for carbon-ion pancreatic therapy. Radiother Oncol. 2014;111:258–63.CrossRefPubMed Mori S, Shinoto M, Yamada S. Four-dimensional treatment planning in layer-stacking boost irradiation for carbon-ion pancreatic therapy. Radiother Oncol. 2014;111:258–63.CrossRefPubMed
28.
go back to reference Kawashiro S, Mori S, Yamada S, Miki K, Nemoto K, Tsuji H, Kamada T. Dose escalation study with respiratory-gated carbon-ion scanning radiotherapy using a simultaneous integrated boost for pancreatic cancer: simulation with four-dimensional computed tomography. Br J Radiol. 2017;90:20160790.CrossRefPubMed Kawashiro S, Mori S, Yamada S, Miki K, Nemoto K, Tsuji H, Kamada T. Dose escalation study with respiratory-gated carbon-ion scanning radiotherapy using a simultaneous integrated boost for pancreatic cancer: simulation with four-dimensional computed tomography. Br J Radiol. 2017;90:20160790.CrossRefPubMed
29.
go back to reference Miki K, Mori S, Shiomi M, Yamada S. Gated carbon-ion scanning treatment for pancreatic tumour with field specific target volume and organs at risk. Phys Med. 2016;32:1521–8.CrossRefPubMed Miki K, Mori S, Shiomi M, Yamada S. Gated carbon-ion scanning treatment for pancreatic tumour with field specific target volume and organs at risk. Phys Med. 2016;32:1521–8.CrossRefPubMed
30.
go back to reference Shiomi M, Mori S, Shinoto M, Nakayama Y, Kamada T, Yamada S. Comparison of carbon-ion passive and scanning irradiation for pancreatic cancer. Radiother Oncol. 2016;119:326–30.CrossRefPubMed Shiomi M, Mori S, Shinoto M, Nakayama Y, Kamada T, Yamada S. Comparison of carbon-ion passive and scanning irradiation for pancreatic cancer. Radiother Oncol. 2016;119:326–30.CrossRefPubMed
31.
go back to reference Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Inst Methods Phys Res Section A. 1993;330:296–305.CrossRef Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Inst Methods Phys Res Section A. 1993;330:296–305.CrossRef
32.
go back to reference Kramer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319–30.CrossRefPubMed Kramer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319–30.CrossRefPubMed
33.
go back to reference Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys. 1997;36:59–66.CrossRefPubMed Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys. 1997;36:59–66.CrossRefPubMed
34.
go back to reference Giovannini G, Bohlen T, Cabal G, Bauer J, Tessonnier T, Frey K, Debus J, Mairani A, Parodi K. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016;11:68.CrossRefPubMedPubMedCentral Giovannini G, Bohlen T, Cabal G, Bauer J, Tessonnier T, Frey K, Debus J, Mairani A, Parodi K. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016;11:68.CrossRefPubMedPubMedCentral
35.
go back to reference Held KD, Kawamura H, Kaminuma T, Paz AE, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of charged particles on human tumor cells. Front Oncol. 2016;6:23.CrossRefPubMedPubMedCentral Held KD, Kawamura H, Kaminuma T, Paz AE, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of charged particles on human tumor cells. Front Oncol. 2016;6:23.CrossRefPubMedPubMedCentral
36.
go back to reference Habermehl D, Brecht IC, Bergmann F, Welzel T, Rieken S, Werner J, Schirmacher P, Buchler MW, Debus J, Combs SE. Chemoradiation in patients with isolated recurrent pancreatic cancer - therapeutical efficacy and probability of re-resection. Radiat Oncol. 2013;8:27.CrossRefPubMedPubMedCentral Habermehl D, Brecht IC, Bergmann F, Welzel T, Rieken S, Werner J, Schirmacher P, Buchler MW, Debus J, Combs SE. Chemoradiation in patients with isolated recurrent pancreatic cancer - therapeutical efficacy and probability of re-resection. Radiat Oncol. 2013;8:27.CrossRefPubMedPubMedCentral
37.
go back to reference ICRU: PRESCRIBING, RECORDING, AND REPORTING PROTON-BEAM THERAPY: CONTENTS. Journal of the ICRU 2007; 7:NP. ICRU: PRESCRIBING, RECORDING, AND REPORTING PROTON-BEAM THERAPY: CONTENTS. Journal of the ICRU 2007; 7:NP.
38.
go back to reference Shinoto M, Yamada S, Yasuda S, Imada H, Shioyama Y, Honda H, Kamada T, Tsujii H, Saisho H. Working Group for Pancreas C: phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer. 2013;119:45–51.CrossRefPubMed Shinoto M, Yamada S, Yasuda S, Imada H, Shioyama Y, Honda H, Kamada T, Tsujii H, Saisho H. Working Group for Pancreas C: phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer. 2013;119:45–51.CrossRefPubMed
39.
go back to reference Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jakel O, Debus J, Combs SE. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015;10:237.CrossRefPubMedPubMedCentral Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jakel O, Debus J, Combs SE. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015;10:237.CrossRefPubMedPubMedCentral
40.
go back to reference Batista V, Richter D, Combs SE, Jakel O. Planning strategies for inter-fractional robustness in pancreatic patients treated with scanned carbon therapy. Radiat Oncol. 2017;12:94.CrossRefPubMedPubMedCentral Batista V, Richter D, Combs SE, Jakel O. Planning strategies for inter-fractional robustness in pancreatic patients treated with scanned carbon therapy. Radiat Oncol. 2017;12:94.CrossRefPubMedPubMedCentral
41.
go back to reference Nill S, Bortfeld T, Oelfke U. Inverse planning of intensity modulated proton therapy. Z Med Phys. 2004;14:35–40.CrossRefPubMed Nill S, Bortfeld T, Oelfke U. Inverse planning of intensity modulated proton therapy. Z Med Phys. 2004;14:35–40.CrossRefPubMed
42.
go back to reference Oelfke U, Bortfeld T. Intensity modulated radiotherapy with charged particle beams: studies of inverse treatment planning for rotation therapy. Med Phys. 2000;27:1246–57.CrossRefPubMed Oelfke U, Bortfeld T. Intensity modulated radiotherapy with charged particle beams: studies of inverse treatment planning for rotation therapy. Med Phys. 2000;27:1246–57.CrossRefPubMed
44.
go back to reference Paganetti H. Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat. 2003;2:413–26.CrossRefPubMed Paganetti H. Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat. 2003;2:413–26.CrossRefPubMed
45.
go back to reference Nieder C, Grosu AL, Andratschke NH, Molls M. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys. 2005;61:851–5.CrossRefPubMed Nieder C, Grosu AL, Andratschke NH, Molls M. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys. 2005;61:851–5.CrossRefPubMed
46.
go back to reference Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang UK, Werner-Wasik M, Angelov L, Chang EL, Sohn MJ, et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:107–16.CrossRefPubMed Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang UK, Werner-Wasik M, Angelov L, Chang EL, Sohn MJ, et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:107–16.CrossRefPubMed
47.
go back to reference Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, et al. Probabilities of radiation Myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85:341–7.CrossRefPubMed Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, et al. Probabilities of radiation Myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85:341–7.CrossRefPubMed
48.
go back to reference Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, Debus J, Jakel O, Combs SE, Habermehl D. Optimization of carbon ion treatment plans by integrating tissue specific alpha/beta-values for patients with non-Resectable pancreatic cancer. PLoS One. 2016;11:e0164473.CrossRefPubMedPubMedCentral Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, Debus J, Jakel O, Combs SE, Habermehl D. Optimization of carbon ion treatment plans by integrating tissue specific alpha/beta-values for patients with non-Resectable pancreatic cancer. PLoS One. 2016;11:e0164473.CrossRefPubMedPubMedCentral
49.
go back to reference Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, Miften M. Radiation dose–volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.CrossRefPubMed Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, Miften M. Radiation dose–volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.CrossRefPubMed
50.
go back to reference Sachsman SR, Charles Nichols J, Morris CG, Zaiden R, Johnson EA, Awad Z, Bose D, Ho MW, Huh SN, Li Z, et al. Proton therapy and concomitant Capecitabine for non-metastatic Unresectable pancreatic Adenocarcinoma. Int J Particle Therapy. 2014;1:692–701.CrossRef Sachsman SR, Charles Nichols J, Morris CG, Zaiden R, Johnson EA, Awad Z, Bose D, Ho MW, Huh SN, Li Z, et al. Proton therapy and concomitant Capecitabine for non-metastatic Unresectable pancreatic Adenocarcinoma. Int J Particle Therapy. 2014;1:692–701.CrossRef
51.
go back to reference Nichols RC Jr, Hoppe BS. RE: Takatori K, Terashima K, Yoshida R, Horai a, Satake S, Ose T, Kitajima N, Kinoshita Y, Demizu Y, Fuwa N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2013; (E-pub only). J Gastrointest Oncol. 2013;4:E33–4.PubMedPubMedCentral Nichols RC Jr, Hoppe BS. RE: Takatori K, Terashima K, Yoshida R, Horai a, Satake S, Ose T, Kitajima N, Kinoshita Y, Demizu Y, Fuwa N. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2013; (E-pub only). J Gastrointest Oncol. 2013;4:E33–4.PubMedPubMedCentral
52.
go back to reference Bahl A, Kapoor R, Bhattacharya T, Sharma SC. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. In Regard to Kelly et al. Int J Radiat Oncol Biol Phys. 2014;88:237.CrossRefPubMed Bahl A, Kapoor R, Bhattacharya T, Sharma SC. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. In Regard to Kelly et al. Int J Radiat Oncol Biol Phys. 2014;88:237.CrossRefPubMed
54.
go back to reference Kelly P, Das P, Pinnix CC, Beddar S, Briere T, Pham M, Krishnan S, Delclos ME, Crane CH. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85:e143–9.CrossRefPubMed Kelly P, Das P, Pinnix CC, Beddar S, Briere T, Pham M, Krishnan S, Delclos ME, Crane CH. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85:e143–9.CrossRefPubMed
55.
go back to reference Terashima K, Demizu Y, Hashimoto N, Jin D, Mima M, Fujii O, Niwa Y, Takatori K, Kitajima N, Sirakawa S, et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother Oncol. 2012;103:25–31.CrossRefPubMed Terashima K, Demizu Y, Hashimoto N, Jin D, Mima M, Fujii O, Niwa Y, Takatori K, Kitajima N, Sirakawa S, et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother Oncol. 2012;103:25–31.CrossRefPubMed
56.
go back to reference Combs SE, Kalbe A, Nikoghosyan A, Ackermann B, Jakel O, Haberer T, Debus J. Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region. Radiother Oncol. 2011;98:63–7.CrossRefPubMed Combs SE, Kalbe A, Nikoghosyan A, Ackermann B, Jakel O, Haberer T, Debus J. Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region. Radiother Oncol. 2011;98:63–7.CrossRefPubMed
57.
go back to reference Habermehl D, Wagner M, Ellerbrock M, Buchler MW, Jakel O, Debus J, Combs SE. Reirradiation using carbon ions in patients with locally recurrent rectal cancer at HIT: first results. Ann Surg Oncol. 2014; Habermehl D, Wagner M, Ellerbrock M, Buchler MW, Jakel O, Debus J, Combs SE. Reirradiation using carbon ions in patients with locally recurrent rectal cancer at HIT: first results. Ann Surg Oncol. 2014;
58.
go back to reference Akimoto M, Nakamura M, Nakamura A, Mukumoto N, Kishi T, Goto Y, Mizowaki T, Hiraoka M. Inter- and Intrafractional variation in the 3-dimensional positions of pancreatic tumors due to respiration under real-time monitoring. Int J Radiat Oncol Biol Phys. 2017;98:1204–11.CrossRefPubMed Akimoto M, Nakamura M, Nakamura A, Mukumoto N, Kishi T, Goto Y, Mizowaki T, Hiraoka M. Inter- and Intrafractional variation in the 3-dimensional positions of pancreatic tumors due to respiration under real-time monitoring. Int J Radiat Oncol Biol Phys. 2017;98:1204–11.CrossRefPubMed
59.
go back to reference Kessel KA, Jager A, Habermehl D, Ruppell J, Bendl R, Debus J, Combs SE. Changes in gross tumor volume and organ motion analysis during Neoadjuvant Radiochemotherapy in patients with locally advanced pancreatic cancer using an in-house analysis system. Technol Cancer Res Treat. 2016;15:348–54.CrossRefPubMed Kessel KA, Jager A, Habermehl D, Ruppell J, Bendl R, Debus J, Combs SE. Changes in gross tumor volume and organ motion analysis during Neoadjuvant Radiochemotherapy in patients with locally advanced pancreatic cancer using an in-house analysis system. Technol Cancer Res Treat. 2016;15:348–54.CrossRefPubMed
60.
go back to reference Fontana G, Riboldi M, Gianoli C, Chirvase CI, Villa G, Paganelli C, Summers PE, Tagaste B, Pella A, Fossati P, et al. MRI quantification of pancreas motion as a function of patient setup for particle therapy -a preliminary study. J Appl Clin Med Phys. 2016;17:1–16.CrossRef Fontana G, Riboldi M, Gianoli C, Chirvase CI, Villa G, Paganelli C, Summers PE, Tagaste B, Pella A, Fossati P, et al. MRI quantification of pancreas motion as a function of patient setup for particle therapy -a preliminary study. J Appl Clin Med Phys. 2016;17:1–16.CrossRef
61.
go back to reference Lovelock DM, Zatcky J, Goodman K, Yamada Y. The effectiveness of a pneumatic compression belt in reducing respiratory motion of abdominal tumors in patients undergoing stereotactic body radiotherapy. Technol Cancer Res Treat. 2014;13:259–67.CrossRefPubMed Lovelock DM, Zatcky J, Goodman K, Yamada Y. The effectiveness of a pneumatic compression belt in reducing respiratory motion of abdominal tumors in patients undergoing stereotactic body radiotherapy. Technol Cancer Res Treat. 2014;13:259–67.CrossRefPubMed
62.
go back to reference Miki K, Fukahori M, Kumagai M, Yamada S, Mori S. Effect of patient positioning on carbon-ion therapy planned dose distribution to pancreatic tumors and organs at risk. Phys Med. 2016;33:38-46. Miki K, Fukahori M, Kumagai M, Yamada S, Mori S. Effect of patient positioning on carbon-ion therapy planned dose distribution to pancreatic tumors and organs at risk. Phys Med. 2016;33:38-46.
63.
go back to reference Kumagai M, Hara R, Mori S, Yanagi T, Asakura H, Kishimoto R, Kato H, Yamada S, Kandatsu S, Kamada T. Impact of intrafractional bowel gas movement on carbon ion beam dose distribution in pancreatic radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:1276–81.CrossRefPubMed Kumagai M, Hara R, Mori S, Yanagi T, Asakura H, Kishimoto R, Kato H, Yamada S, Kandatsu S, Kamada T. Impact of intrafractional bowel gas movement on carbon ion beam dose distribution in pancreatic radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:1276–81.CrossRefPubMed
64.
go back to reference Steitz J, Naumann P, Ulrich S, Haefner MF, Sterzing F, Oelfke U, Bangert M. Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer. Radiat Oncol. 2016;11:134.CrossRefPubMedPubMedCentral Steitz J, Naumann P, Ulrich S, Haefner MF, Sterzing F, Oelfke U, Bangert M. Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer. Radiat Oncol. 2016;11:134.CrossRefPubMedPubMedCentral
65.
go back to reference De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a review. Cancers (Basel). 2015;7:1143–53.CrossRef De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a review. Cancers (Basel). 2015;7:1143–53.CrossRef
66.
go back to reference Richter D, Saito N, Chaudhri N, Hartig M, Ellerbrock M, Jakel O, Combs SE, Habermehl D, Herfarth K, Durante M, Bert C. Four-dimensional patient dose reconstruction for scanned ion beam therapy of moving liver tumors. Int J Radiat Oncol Biol Phys. 2014;89:175–81.CrossRefPubMed Richter D, Saito N, Chaudhri N, Hartig M, Ellerbrock M, Jakel O, Combs SE, Habermehl D, Herfarth K, Durante M, Bert C. Four-dimensional patient dose reconstruction for scanned ion beam therapy of moving liver tumors. Int J Radiat Oncol Biol Phys. 2014;89:175–81.CrossRefPubMed
67.
go back to reference Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skieller C, Mok E, Xing L, Koong AC, Chang DT. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85:1090–5.CrossRefPubMed Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skieller C, Mok E, Xing L, Koong AC, Chang DT. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85:1090–5.CrossRefPubMed
68.
go back to reference Campbell WG, Jones BL, Schefter T, Goodman KA, Miften M. An evaluation of motion mitigation techniques for pancreatic SBRT. Radiother Oncol. 2017;124:168–73.CrossRefPubMed Campbell WG, Jones BL, Schefter T, Goodman KA, Miften M. An evaluation of motion mitigation techniques for pancreatic SBRT. Radiother Oncol. 2017;124:168–73.CrossRefPubMed
69.
go back to reference Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9.CrossRefPubMed Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9.CrossRefPubMed
70.
go back to reference Cattaneo GM, Passoni P, Sangalli G, Slim N, Longobardi B, Mancosu P, Bettinardi V, Di Muzio N, Calandrino R. Internal target volume defined by contrast-enhanced 4D-CT scan in unresectable pancreatic tumour: evaluation and reproducibility. Radiother Oncol. 2010;97:525–9.CrossRefPubMed Cattaneo GM, Passoni P, Sangalli G, Slim N, Longobardi B, Mancosu P, Bettinardi V, Di Muzio N, Calandrino R. Internal target volume defined by contrast-enhanced 4D-CT scan in unresectable pancreatic tumour: evaluation and reproducibility. Radiother Oncol. 2010;97:525–9.CrossRefPubMed
71.
go back to reference Liu F, Erickson B, Peng C, Li XA. Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:e423–9.CrossRefPubMed Liu F, Erickson B, Peng C, Li XA. Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:e423–9.CrossRefPubMed
72.
go back to reference Richter D, Graeff C, Jakel O, Combs SE, Durante M, Bert C. Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother Oncol. 2014;113:290–5.CrossRefPubMed Richter D, Graeff C, Jakel O, Combs SE, Durante M, Bert C. Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother Oncol. 2014;113:290–5.CrossRefPubMed
73.
go back to reference Schulz-Ertner D, Debus J: Hadronentherapie. In Strahlentherapie. Edited by Wannenmacher M, Wenz F, Debus J: Springer Berlin Heidelberg; 2013: 207–224. Schulz-Ertner D, Debus J: Hadronentherapie. In Strahlentherapie. Edited by Wannenmacher M, Wenz F, Debus J: Springer Berlin Heidelberg; 2013: 207–224.
74.
go back to reference Nichols RC Jr, George TJ, Zaiden RA Jr, Awad ZT, Asbun HJ, Huh S, Ho MW, Mendenhall NP, Morris CG, Hoppe BS. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity. Acta Oncol. 2013;52:498–505.CrossRefPubMed Nichols RC Jr, George TJ, Zaiden RA Jr, Awad ZT, Asbun HJ, Huh S, Ho MW, Mendenhall NP, Morris CG, Hoppe BS. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity. Acta Oncol. 2013;52:498–505.CrossRefPubMed
75.
go back to reference Hong TS, Ryan DP, Blaszkowsky LS, Mamon HJ, Kwak EL, Mino-Kenudson M, Adams J, Yeap B, Winrich B, DeLaney TF, Fernandez-Del Castillo C. Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head. Int J Radiat Oncol Biol Phys. 2011;79:151–7.CrossRefPubMed Hong TS, Ryan DP, Blaszkowsky LS, Mamon HJ, Kwak EL, Mino-Kenudson M, Adams J, Yeap B, Winrich B, DeLaney TF, Fernandez-Del Castillo C. Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head. Int J Radiat Oncol Biol Phys. 2011;79:151–7.CrossRefPubMed
76.
go back to reference Okada T, Kamada T, Tsuji H, Mizoe JE, Baba M, Kato S, Yamada S, Sugahara S, Yasuda S, Yamamoto N, et al. Carbon ion radiotherapy: clinical experiences at National Institute of radiological science (NIRS). J Radiat Res. 2010;51:355–64.CrossRefPubMed Okada T, Kamada T, Tsuji H, Mizoe JE, Baba M, Kato S, Yamada S, Sugahara S, Yasuda S, Yamamoto N, et al. Carbon ion radiotherapy: clinical experiences at National Institute of radiological science (NIRS). J Radiat Res. 2010;51:355–64.CrossRefPubMed
77.
go back to reference Shinoto M, Yamada S, Terashima K, Yasuda S, Shioyama Y, Honda H, Kamada T, Tsujii H, Saisho H. Carbon ion radiation therapy with concurrent Gemcitabine for patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2016;95:498–504.CrossRefPubMed Shinoto M, Yamada S, Terashima K, Yasuda S, Shioyama Y, Honda H, Kamada T, Tsujii H, Saisho H. Carbon ion radiation therapy with concurrent Gemcitabine for patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2016;95:498–504.CrossRefPubMed
Metadata
Title
Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both?
Authors
Constantin Dreher
Daniel Habermehl
Oliver Jäkel
Stephanie E. Combs
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0945-2

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue