Skip to main content

Advertisement

Log in

Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms

Hochdosis-Spot Scanning basierte Protonen-Strahlentherapie von paraspinalen/retroperitonealen Tumoren und Dünndarm-Toxizität

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Mesenchymal tumours require high-dose radiation therapy (RT). Small bowel (SB) dose constraints have historically limited dose delivery to paraspinal and retroperitoneal targets. This retrospective study correlated SB dose–volume histograms with side-effects after proton radiation therapy (PT).

Patients and methods

Between 1997 and 2008, 31 patients (mean age 52.1 years) underwent spot scanning-based PT for paraspinal/retroperitoneal chordomas (81 %), sarcomas (16 %) and meningiom (3 %). Mean total prescribed dose was 72.3 Gy (relative biologic effectiveness, RBE) delivered in 1.8–2 Gy (RBE) fractions. Mean follow-up was 3.8 years. Based on the pretreatment planning CT, SB dose distributions were reanalysed.

Results

Planning target volume (PTV) was defined as gross tumour volume (GTV) plus 5–7 mm margins. Mean PTV was 560.22 cm3. A mean of 93.2 % of the PTV was covered by at least 90 % of the prescribed dose. SB volumes (cm3) receiving doses of 5, 20, 30, 40, 50, 60, 70, 75 and 80 Gy (RBE) were calculated to give V5, V20, V30, V40, V50, V60, V70, V75 and V80 respectively. In 7/31 patients, PT was accomplished without any significant SB irradiation (V5 = 0). In 24/31 patients, mean maximum dose (Dmax) to SB was 64.1 Gy (RBE). Despite target doses of > 70 Gy (RBE), SB received > 50 and > 60 Gy (RBE) in only 61 and 54 % of patients, respectively. Mean SB volumes (cm3) covered by different dose levels (Gy, RBE) were: V20 (n = 24): 45.1, V50 (n = 19): 17.7, V60 (n = 17): 7.6 and V70 (n = 12): 2.4. No acute toxicity ≥ grade 2 or late SB sequelae were observed.

Conclusion

Small noncircumferential volumes of SB tolerated doses in excess of 60 Gy (RBE) without any clinically-significant late adverse effects. This small retrospective study has limited statistical power but encourages further efforts with higher patient numbers to define and establish high-dose threshold models for SB toxicity in modern radiation oncology.

Zusammenfassung

Hintergrund

Paraspinale und retroperitoneale mesenchymale Tumoren benötigen hohe strahlentherapeutische Dosen. Der Dünndarm ist ein dosislimitierendes Risikoorgan. In dieser retrospektiven Studie verglichen wir Dosis-Volumen-Histogramme des Dünndarms mit Nebenwirkungen nach Protonenstrahlentherapie (PT).

Material und Methode

Zwischen 1997 und 2008 erhielten 31 Patienten (Durchschnittsalter: 52,1 Jahre) mit paraspinalen/retroperitonealen Chordomen (81 %), Sarkomen (16 %) und einem Meningeom (3 %) eine Spot-Scanning-basierte PT. Die verschriebene Gesamtdosis betrug im Mittel 72,3 Gy (RBE) mit Fraktionierungsdosen zwischen 1,8 und 2 Gy (RBE). Die durchschnittliche Nachbeobachtungszeit betrug 3,8 Jahre. Basierend auf dem initialen Planungs-CT wurde die Dosisverteilung am Dünndarm reanalysiert.

Ergebnisse

Gemittelte 93,2 % des PTVs (GTV + 5–7 mm) mit durchschnittlich 560,22 cm3 wurden von mindestens 90 % der verschriebenen Dosis erfasst. Bei 7 von 31 Patienten wurden keine wesentlichen Dünndarmdosen (V5 = 0) appliziert. Die Maximaldosis am Dünndarm der übrigen 24 Patienten betrug durchschnittlich 64,1 Gy (RBE). Trotz üblicher Zieldosen von > 70 Gy (RBE) erhielt der Dünndarm nur bei 61/54 % der Patienten > 50/60 Gy (RBE). Das durchschnittlich belastete Dünndarmvolumen (cm3) innerhalb unterschiedlicher Dosisstufen [Gy (RBE)] betrug V5 (24 Patienten): 86,5, V20 (24 Patienten): 45,1, V50 (19 Patienten): 17,7, V60 (17 Patienten): 7,6, V70 (12 Patienten): 2,4. Es traten keine Akut- oder Spättoxizitäten ≥ Grad 2 am Dünndarm auf.

Schlussfolgerung

In dieser retrospektiven Untersuchung an 31 Patienten wurden Dosen von mehr als 60 Gy (RBE) an nichtzirkumferenziellen kleinen Dünndarmvolumina ohne signifikante Spätnebenwirkungen toleriert. Bei entsprechend limitierter statistischer Aussagekraft sollten weitergehende Untersuchungen mit höheren Patientenzahlen durchgeführt werden, um Hochdosisschwellen-Modelle für akute und späte Dünndarmtoxizitäten in moderner Strahlentherapie zu definieren und zu etablieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baglan KL, Frazier RC, Yan D et al (2002) The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 52:176–183

    Article  PubMed  Google Scholar 

  2. Bolsi A, Lomax AJ, Pedroni E et al (2008) Experiences at the Paul Scherrer Institute with a remote patient positioning procedure for high-throughput proton radiation therapy. Int J Radiat Oncol Biol Phys 71:1581–1590

    Article  PubMed  Google Scholar 

  3. Chera BS, Vargas C, Morris CG et al (2009) Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 75:994–1002

    Article  PubMed  Google Scholar 

  4. Classen J, Belka C, Paulsen F et al (1998) Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlenther Onkol 174(Suppl 3):82–84

    Article  PubMed  Google Scholar 

  5. Cozzarini C, Fiorino C, Muzio N di et al (2007) Significant reduction of acute toxicity following pelvic irradiation with Helical Tomotherapy in patients with localized prostate cancer. Radiother Oncol 84:164–170

    Article  PubMed  Google Scholar 

  6. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  7. Gueulette J, Blattmann H, Pedroni E et al (2005) Relative biologic effectiveness determination in mouse intestine for scanning proton beam at Paul Scherrer Institute, Switzerland. Influence of motion. Int J Radiat Oncol Biol Phys 62:838–845

    Article  PubMed  Google Scholar 

  8. Gunnlaugsson A, Kjellen E, Nilsson P et al (2007) Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncol 46:937–944

    Article  PubMed  CAS  Google Scholar 

  9. Huang EY, Sung CC, Ko SF et al (2007) The different volume effects of small-bowel toxicity during pelvic irradiation between gynaecologic patients with and without abdominal surgery: a prospective study with computed tomography-based dosimetry. Int J Radiat Oncol Biol Phys 69:732–739

    Article  PubMed  Google Scholar 

  10. Kaplan E, Meier P (1958) Nonparametric estimation for incomplete observations. J Am Stat Assoc 53:458–481

    Article  Google Scholar 

  11. Kavanagh BD, Pan CC, Dawson LA et al (2010) Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys 76(Suppl):101–107

    Article  Google Scholar 

  12. Kölbl O, Richter S, Flentje M (2000) Influence of treatment technique on dose-volume histogram and normal tissue complication probability for small bowel and bladder. A prospective study using a 3-D planning system and a radiobiological model in patients receiving postoperative pelvic irradiation. Strahlenther Onkol 176:105–111

    Article  PubMed  Google Scholar 

  13. Letschert JG, Lebesque JV, Boer RW de et al (1990) Dose-volume correlation in radiation-related late small-bowel complications: a clinical study. Radiother Oncol 18:307–320

    Article  PubMed  CAS  Google Scholar 

  14. Lomax AJ, Bortfeld T, Goitein G et al (1999) A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother Oncol 51:257–271

    Article  PubMed  CAS  Google Scholar 

  15. Lomax AJ, Bohringer T, Bolsi A et al (2004) Treatment planning and verification of proton therapy using spot scanning: initial experiences. Med Phys 31:3150–3157

    Article  PubMed  Google Scholar 

  16. Martin J, Fitzpatrick K, Horan G et al (2005) Treatment with a bellyboard device significantly reduced the volume of small bowel irradiated and results in low acute toxicity in adjuvant radiotherapy for gynecologic cancer: Results of a prospective study. Radiother Oncol 74:267-274

    Article  PubMed  Google Scholar 

  17. Mendelson RM, Nolan DJ (1985) The radiological features of chronic radiation enteritis. Clin Radiol 36:141–148

    Article  PubMed  CAS  Google Scholar 

  18. O’Brien PH, Jenrette JM 3rd, Garvin AJ (1987) Radiation enteritis. Am Surg 53:501–504

    Google Scholar 

  19. Paganetti H, Niemierko A, Ancukiewicz M et al (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53:407–421

    Article  PubMed  Google Scholar 

  20. Paumier A, Le Péchoux C, Beaudré A et al (2011) IMRT or conformal radiotherapy for adjuvant treatment of retroperitoneal sarcoma? Radiother Oncol 99:73–78

    Article  PubMed  Google Scholar 

  21. Prada PJ, Gonzalez H, Menéndez C et al (2009) Transperineal injection of hyaluronic acid in the anterior perirectal fat to decrease rectal toxicity from radiation delivered with low-dose-rate brachytherapy for prostate cancer patients. Brachytherapy 8:210–217

    Article  PubMed  Google Scholar 

  22. Robertson JM, Lockman D, Yan D et al (2008) The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:413–418

    Article  PubMed  CAS  Google Scholar 

  23. Roeske JC, Bonta D, Mell LK et al (2003) A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity modulated whole-pelvic radiation therapy. Radiother Oncol 69:201–207

    Article  PubMed  Google Scholar 

  24. Staab A, Rutz H-P, Ares C et al (2011) Spot-scanning-based proton therapy for extracranial chordoma. Int J Radiat Oncol Biol Phys 81:e489–e496

    Article  PubMed  Google Scholar 

  25. Lin EN van, Kristinsson J, Philippens ME et al (2007) Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy. Int J Radiat Oncol Biol Phys 67:799–811

    Article  PubMed  Google Scholar 

  26. Vistad I, Kristensen GB, Fossa SD et al (2009) Intestinal malabsorption in long-term survivors of cervical cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys 73:1141–1147

    Article  PubMed  Google Scholar 

  27. Widesott L, Pierelli A, Fiorino C et al (2010) Helical tomotherapy vs. intensity-modulated proton therapy for whole pelvis irradiation in high-risk prostate cancer patients: dosimetric, normal tissue complication probability, and generalized equivalent uniform dose analysis. Int J Radiat Oncol Biol Phys 80:1589–1600

    Article  PubMed  Google Scholar 

  28. Willett CG, Suit HD (1991) Radiation therapy of sarcomas of the soft tissues. Cancer Treat Res 56:61–74

    Article  PubMed  Google Scholar 

  29. Willett CG, Ooi C-J, Zietman AL et al (2000) Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int J Radiat Oncol Biol Phys 46:995–998

    Article  PubMed  CAS  Google Scholar 

  30. Yeoh EK, Horowitz M (1987) Radiation enteritis. Surg Gynecol Obstet 165:373–379

    PubMed  CAS  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. R.A. Schneider, V. Vitolo, F. Albertini, T. Koch, C. Ares, A. Lomax, G. Goitein and E.B. Hug state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, R., Vitolo, V., Albertini, F. et al. Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms. Strahlenther Onkol 189, 1020–1025 (2013). https://doi.org/10.1007/s00066-013-0432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0432-0

Keywords

Schlüsselwörter

Navigation