Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Toxicity and quality of life report of a phase II study of stereotactic body radiotherapy (SBRT) for low and intermediate risk prostate cancer

Authors: Matthew J. Boyer, Michael A. Papagikos, Rex Kiteley, Zeljko Vujaskovic, Jackie Wu, W. Robert Lee

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Clinical data indicates that delivery of larger daily doses of radiation may improve the therapeutic ratio for prostate cancer compared to conventional fractionation. A phase II study of stereotactic body radiotherapy with real-time motion management and daily plan re-optimization for low to intermediate risk prostate cancer was undertaken to evaluate this hypothesis. This report details the toxicity and quality of life following treatment.

Methods

From 2009 to 2013, 60 patients with T1–T2c prostate cancer with a Gleason score of 6 and PSA ≤ 15 or Gleason score of 7 and PSA ≤ 10 were enrolled. Patients with nodal metastases, an American Urological Association symptom score > 18, or gland size > 100 g were not eligible. Patients were treated to 37 Gy in 5 fractions. Early and late genitourinary and gastrointestinal toxicity were graded based on NCI CTCAE v4.0 and quality of life was assessed by the American Urological Association symptom score, International Index of Erectile Function, and Expanded Prostate cancer Index Composite Short Form up to 36 months after treatment.

Results

After a median follow-up of 27.6 months, no grade 3 or greater genitourinary toxicity was observed. Four patients (6.7%) reported a late grade 2 genitourinary toxicity. One patient (1.7%) reported a late grade 3 gastrointestinal toxicity. Five patients (8.3%) developed a late grade 2 gastrointestinal toxicity. The median American Urological Association symptom score increased from 4.5 prior to treatment to 11 while on treatment (p < 0.01), but was 5 at 36 months post-treatment (p = 0.65). Median International Index of Erectile Function scores decreased from 19 to 17 over the course of follow-up (p < 0.01). Only median scores within the Expanded Prostate Cancer Index Composite Short Form sexual domain were significantly decreased at 36 months post-treatment (67.9 vs 45.2, p = 0.02). There was no significant difference in median score within the urinary, bowel, or hormonal domains at 36 months of follow-up.

Conclusions

Stereotactic body radiotherapy for low to intermediate risk prostate cancer is well tolerated with limited toxicity or decrease in quality of life. Longer follow-up is necessary to assess the efficacy of treatment.

Trial registration

Clinicaltrials.gov NCT00941915 Registered 17 June 2009.
Literature
1.
go back to reference Dearnaley DP, Jovic G, Syndikus I, Khoo V, Cowan RA, Graham JD, Aird EG, Bottomley D, Huddart RA, Jose CC, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014;15:464–73.CrossRefPubMed Dearnaley DP, Jovic G, Syndikus I, Khoo V, Cowan RA, Graham JD, Aird EG, Bottomley D, Huddart RA, Jose CC, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014;15:464–73.CrossRefPubMed
2.
go back to reference Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:67–74.CrossRefPubMed Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:67–74.CrossRefPubMed
3.
go back to reference Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, Bonfrer JM, Incrocci L, Lebesque JV. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 2006;24:1990–6.CrossRefPubMed Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, Bonfrer JM, Incrocci L, Lebesque JV. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 2006;24:1990–6.CrossRefPubMed
4.
go back to reference Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J Clin Oncol. 2010;28:1106–11.CrossRefPubMedPubMedCentral Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J Clin Oncol. 2010;28:1106–11.CrossRefPubMedPubMedCentral
5.
go back to reference Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82:e17–24.CrossRefPubMed Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82:e17–24.CrossRefPubMed
6.
go back to reference Shaffer R, Pickles T, Lee R, Moiseenko V. Deriving prostate alpha-beta ratio using carefully matched groups, long follow-up and the phoenix definition of biochemical failure. Int J Radiat Oncol Biol Phys. 2011;79:1029–36.CrossRefPubMed Shaffer R, Pickles T, Lee R, Moiseenko V. Deriving prostate alpha-beta ratio using carefully matched groups, long follow-up and the phoenix definition of biochemical failure. Int J Radiat Oncol Biol Phys. 2011;79:1029–36.CrossRefPubMed
7.
go back to reference Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, Lobefalo F, Navarria P, Reggiori G, Mancosu P, et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171.CrossRefPubMedPubMedCentral Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, Lobefalo F, Navarria P, Reggiori G, Mancosu P, et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171.CrossRefPubMedPubMedCentral
8.
go back to reference Hannan R, Tumati V, Xie XJ, Cho LC, Kavanagh BD, Brindle J, Raben D, Nanda A, Cooley S, Kim DW, et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer-Results from a multi-institutional clinical trial. Eur J Cancer. 2016;59:142–51.CrossRefPubMed Hannan R, Tumati V, Xie XJ, Cho LC, Kavanagh BD, Brindle J, Raben D, Nanda A, Cooley S, Kim DW, et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer-Results from a multi-institutional clinical trial. Eur J Cancer. 2016;59:142–51.CrossRefPubMed
9.
go back to reference King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti Jr JC. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009;73:1043–8.CrossRefPubMed King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti Jr JC. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009;73:1043–8.CrossRefPubMed
10.
go back to reference Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67:1099–105.CrossRefPubMed Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67:1099–105.CrossRefPubMed
11.
go back to reference McBride SM, Wong DS, Dombrowski JJ, Harkins B, Tapella P, Hanscom HN, Collins SP, Kaplan ID. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer. 2012;118:3681–90.CrossRefPubMed McBride SM, Wong DS, Dombrowski JJ, Harkins B, Tapella P, Hanscom HN, Collins SP, Kaplan ID. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer. 2012;118:3681–90.CrossRefPubMed
12.
go back to reference Tang CI, Loblaw DA, Cheung P, Holden L, Morton G, Basran PS, Tirona R, Cardoso M, Pang G, Gardner S, Cesta A. Phase I/II study of a five-fraction hypofractionated accelerated radiotherapy treatment for low-risk localised prostate cancer: early results of pHART3. Clin Oncol (R Coll Radiol). 2008;20:729–37.CrossRef Tang CI, Loblaw DA, Cheung P, Holden L, Morton G, Basran PS, Tirona R, Cardoso M, Pang G, Gardner S, Cesta A. Phase I/II study of a five-fraction hypofractionated accelerated radiotherapy treatment for low-risk localised prostate cancer: early results of pHART3. Clin Oncol (R Coll Radiol). 2008;20:729–37.CrossRef
13.
go back to reference Koontz BF, Tsivian M, Mouraviev V, Sun L, Vujaskovic Z, Moul J, Lee WR. Impact of primary Gleason grade on risk stratification for Gleason score 7 prostate cancers. Int J Radiat Oncol Biol Phys. 2012;82:200–3.CrossRefPubMed Koontz BF, Tsivian M, Mouraviev V, Sun L, Vujaskovic Z, Moul J, Lee WR. Impact of primary Gleason grade on risk stratification for Gleason score 7 prostate cancers. Int J Radiat Oncol Biol Phys. 2012;82:200–3.CrossRefPubMed
14.
go back to reference Barry MJ, Fowler Jr FJ, O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK, Cockett AT. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol. 1992;148:1549–57. discussion 1564.PubMed Barry MJ, Fowler Jr FJ, O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK, Cockett AT. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol. 1992;148:1549–57. discussion 1564.PubMed
15.
go back to reference Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res. 1999;11:319–26.CrossRefPubMed Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res. 1999;11:319–26.CrossRefPubMed
16.
go back to reference Wei JT, Dunn RL, Litwin MS, Sandler HM, Sanda MG. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology. 2000;56:899–905.CrossRefPubMed Wei JT, Dunn RL, Litwin MS, Sandler HM, Sanda MG. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology. 2000;56:899–905.CrossRefPubMed
17.
go back to reference Aluwini S, Pos F, Schimmel E, van Lin E, Krol S, van der Toorn PP, de Jager H, Dirkx M, Alemayehu WG, Heijmen B, Incrocci L. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 2015;16:274–83.CrossRefPubMed Aluwini S, Pos F, Schimmel E, van Lin E, Krol S, van der Toorn PP, de Jager H, Dirkx M, Alemayehu WG, Heijmen B, Incrocci L. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 2015;16:274–83.CrossRefPubMed
18.
go back to reference Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, Shah AB, D'Souza DP, Michalski JM, Dayes IS, Seaward SA, Hall WA, Nguyen PL, Pisansky TM, Faria SL, Chen Y, Koontz BF, Paulus R, Sandler HM. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34(20):2325–32. doi:10.1200/JCO.2016.67.0448. PubMed PMID: 27044935; PubMed Central PMCID:PMC4981980. Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, Shah AB, D'Souza DP, Michalski JM, Dayes IS, Seaward SA, Hall WA, Nguyen PL, Pisansky TM, Faria SL, Chen Y, Koontz BF, Paulus R, Sandler HM. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34(20):2325–32. doi:10.​1200/​JCO.​2016.​67.​0448. PubMed PMID: 27044935; PubMed Central PMCID:PMC4981980.
19.
go back to reference Wilkins A, Mossop H, Syndikus I, Khoo V, Bloomfield D, Parker C, Logue J, Scrase C, Patterson H, Birtle A, et al. Hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2015;16:1605–16.CrossRefPubMedPubMedCentral Wilkins A, Mossop H, Syndikus I, Khoo V, Bloomfield D, Parker C, Logue J, Scrase C, Patterson H, Birtle A, et al. Hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2015;16:1605–16.CrossRefPubMedPubMedCentral
20.
go back to reference Lukka H, Stephanie P, Bruner D, Bahary JP, Lawton CAF, Efstathiou JA, Kudchadker R, Ponsky L, Seaward SA, Dayes IS, et al. Patient-reported outcomes in NRG Oncology/RTOG 0938, a randomized phase 2 study evaluating 2 Ultrahypofractionated Regimens (UHRs) for prostate cancer. Int J Radiat Oncol Biol Phys. 2016;94:2.CrossRef Lukka H, Stephanie P, Bruner D, Bahary JP, Lawton CAF, Efstathiou JA, Kudchadker R, Ponsky L, Seaward SA, Dayes IS, et al. Patient-reported outcomes in NRG Oncology/RTOG 0938, a randomized phase 2 study evaluating 2 Ultrahypofractionated Regimens (UHRs) for prostate cancer. Int J Radiat Oncol Biol Phys. 2016;94:2.CrossRef
Metadata
Title
Toxicity and quality of life report of a phase II study of stereotactic body radiotherapy (SBRT) for low and intermediate risk prostate cancer
Authors
Matthew J. Boyer
Michael A. Papagikos
Rex Kiteley
Zeljko Vujaskovic
Jackie Wu
W. Robert Lee
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0758-8

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue