Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer

Authors: Julian Steitz, Patrick Naumann, Silke Ulrich, Matthias F. Haefner, Florian Sterzing, Uwe Oelfke, Mark Bangert

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Introduction

The efficacy of radiation therapy treatments for pancreatic cancer is compromised by abdominal motion which limits the spatial accuracy for dose delivery - especially for particles. In this work we investigate the potential of worst case optimization for interfractional offline motion mitigation in carbon ion treatments of pancreatic cancer.

Methods

We implement a worst case optimization algorithm that explicitly models the relative biological effectiveness of carbon ions during inverse planning. We perform a comparative treatment planning study for seven pancreatic cancer patients. Treatment plans that have been generated using worst case optimization are compared against (1) conventional intensity-modulated carbon ion therapy, (2) single field uniform dose carbon ion therapy, and (3) an ideal yet impractical scenario relying on daily re-planning. The dosimetric quality and robustness of the resulting treatment plans is evaluated using reconstructions of the daily delivered dose distributions on fractional control CTs.

Results

Idealized daily re-planning consistently gives the best dosimetric results with regard to both target coverage and organ at risk sparing. The absolute reduction of D 95 within the gross tumor volume during fractional dose reconstruction is most pronounced for conventional intensity-modulated carbon ion therapy. Single field uniform dose optimization exhibits no substantial reduction for six of seven patients and values for D 95 for worst case optimization fall in between. The treated volume (D>95 % prescription dose) outside of the gross tumor volume is reduced by a factor of two by worst case optimization compared to conventional optimization and single field uniform dose optimization. Single field uniform dose optimization comes at an increased radiation exposure of normal tissues, e.g. ≈2 Gy (RBE) in the mean dose in the kidneys compared to conventional and worst case optimization and ≈4 Gy (RBE) in D 1 in the spinal cord compared to worst case optimization.

Conclusion

Interfractional motion substantially deteriorates dose distributions for carbon ion treatments of pancreatic cancer patients. Single field uniform dose optimization mitigates the negative influence of motion on target coverage at an increased radiation exposure of normal tissue. Worst case optimization enables an exploration of the trade-off between robust target coverage and organ at risk sparing during inverse treatment planning beyond margin concepts.
Literature
1.
go back to reference Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009; 6(12):699–708.CrossRefPubMed Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009; 6(12):699–708.CrossRefPubMed
2.
go back to reference Abrams RA, Lowy AM, O’Reilly EM, Wolff RA, Picozzi VJ, Pisters PW. Combined modality treatment of resectable and borderline resectable pancreas cancer: expert consensus statement. Ann Surg Oncol. 2009; 16(7):1751–6.CrossRefPubMed Abrams RA, Lowy AM, O’Reilly EM, Wolff RA, Picozzi VJ, Pisters PW. Combined modality treatment of resectable and borderline resectable pancreas cancer: expert consensus statement. Ann Surg Oncol. 2009; 16(7):1751–6.CrossRefPubMed
3.
4.
go back to reference Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jäkel O, Debus J, Combs SE. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015; 10(1):1.CrossRef Dreher C, Habermehl D, Ecker S, Brons S, El-Shafie R, Jäkel O, Debus J, Combs SE. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015; 10(1):1.CrossRef
5.
go back to reference Matsui Y, Asano T, Kenmochi T, Iwakawa M, Imai T, Ochiai T. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status. Am J Clin Oncol. 2004; 27(1):24–8.CrossRefPubMed Matsui Y, Asano T, Kenmochi T, Iwakawa M, Imai T, Ochiai T. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status. Am J Clin Oncol. 2004; 27(1):24–8.CrossRefPubMed
6.
go back to reference Okada T, Kamada T, Tsuji H, Mizoe J-e, Baba M, Kato S, Yamada S, Sugahara S, Yasuda S, Yamamoto N, et al. Carbon ion radiotherapy: clinical experiences at national institute of radiological science (nirs). J Radiat Res. 2010; 51(4):355–64.CrossRefPubMed Okada T, Kamada T, Tsuji H, Mizoe J-e, Baba M, Kato S, Yamada S, Sugahara S, Yasuda S, Yamamoto N, et al. Carbon ion radiotherapy: clinical experiences at national institute of radiological science (nirs). J Radiat Res. 2010; 51(4):355–64.CrossRefPubMed
16.
go back to reference Liu W, Frank SJ, Li X, Li Y, Park PC, Dong L, Zhu XR, Mohan R. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers. Med Phys. 2013; 40(5):051711.CrossRefPubMedPubMedCentral Liu W, Frank SJ, Li X, Li Y, Park PC, Dong L, Zhu XR, Mohan R. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers. Med Phys. 2013; 40(5):051711.CrossRefPubMedPubMedCentral
17.
go back to reference Liu W, Mohan R, Park P, Liu Z, Li H, Li X, Li Y, Wu R, Sahoo N, Dong L, et al. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 2014; 4(6):384–91.CrossRefPubMedPubMedCentral Liu W, Mohan R, Park P, Liu Z, Li H, Li X, Li Y, Wu R, Sahoo N, Dong L, et al. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 2014; 4(6):384–91.CrossRefPubMedPubMedCentral
20.
go back to reference Huguet F, Goodman KA, Azria D, Racadot S, Abrams RA. Radiotherapy technical considerations in the management of locally advanced pancreatic cancer: American-French consensus recommendations. Int J Radiat Oncol Biol Phys. 2012; 83(5):1355–64.CrossRefPubMed Huguet F, Goodman KA, Azria D, Racadot S, Abrams RA. Radiotherapy technical considerations in the management of locally advanced pancreatic cancer: American-French consensus recommendations. Int J Radiat Oncol Biol Phys. 2012; 83(5):1355–64.CrossRefPubMed
22.
go back to reference Nill S. Development and application of a multi-modality inverse treatment planning system. Ph.D. dissertation, Universitätsbibliothek, Heidelberg. 2001. Nill S. Development and application of a multi-modality inverse treatment planning system. Ph.D. dissertation, Universitätsbibliothek, Heidelberg. 2001.
27.
go back to reference Fredriksson A. A characterization of robust radiation therapy treatment planning methods–from expected value to worst case optimization. Med Phys. 2012; 39(8):5169–81.CrossRefPubMed Fredriksson A. A characterization of robust radiation therapy treatment planning methods–from expected value to worst case optimization. Med Phys. 2012; 39(8):5169–81.CrossRefPubMed
28.
go back to reference RaySearch Laboratories AB. “Robust optimization in Raystation” White paper, RaySearch Laboratories, Stockholm, Sweden. 2015. RaySearch Laboratories AB. “Robust optimization in Raystation” White paper, RaySearch Laboratories, Stockholm, Sweden. 2015.
29.
go back to reference van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000; 47(4):1121–35.CrossRefPubMed van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000; 47(4):1121–35.CrossRefPubMed
30.
go back to reference van der Voort S, van de Water S, Perkó Z, Heijmen B, Lathouwers D, Hoogeman M. Robustness recipes for minimax robust optimization in intensity modulated proton therapy for oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys. 2016; 95(1):163–70.CrossRefPubMed van der Voort S, van de Water S, Perkó Z, Heijmen B, Lathouwers D, Hoogeman M. Robustness recipes for minimax robust optimization in intensity modulated proton therapy for oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys. 2016; 95(1):163–70.CrossRefPubMed
31.
go back to reference Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of impt treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009; 36(1):149–63.CrossRefPubMed Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of impt treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009; 36(1):149–63.CrossRefPubMed
32.
go back to reference Bangert M, Hennig P, Oelfke U. Analytical probabilistic modeling for radiation therapy treatment planning. Phys Med Biol. 2013; 58(16):5401.CrossRefPubMed Bangert M, Hennig P, Oelfke U. Analytical probabilistic modeling for radiation therapy treatment planning. Phys Med Biol. 2013; 58(16):5401.CrossRefPubMed
33.
go back to reference Liu W, Liao Z, Schild SE, Liu Z, Li H, Li Y, Park PC, Li X, Stoker J, Shen J, et al. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Pract Radiat Oncol. 2015; 5(2):77–86.CrossRef Liu W, Liao Z, Schild SE, Liu Z, Li H, Li Y, Park PC, Li X, Stoker J, Shen J, et al. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Pract Radiat Oncol. 2015; 5(2):77–86.CrossRef
34.
go back to reference Yeo U, Supple J, Taylor M, Smith R, Kron T, Franich R. Performance of 12 dir algorithms in low-contrast regions for mass and density conserving deformation. Med Phys. 2013; 40(10):101701.CrossRefPubMed Yeo U, Supple J, Taylor M, Smith R, Kron T, Franich R. Performance of 12 dir algorithms in low-contrast regions for mass and density conserving deformation. Med Phys. 2013; 40(10):101701.CrossRefPubMed
35.
go back to reference Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Häring P, Debus J, Sterzing F. Mr-guidance-a clinical study to evaluate a shuttle-based mr-linac connection to provide mr-guided radiotherapy. Radiat Oncol. 2014; 9(1):12.CrossRefPubMedPubMedCentral Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Häring P, Debus J, Sterzing F. Mr-guidance-a clinical study to evaluate a shuttle-based mr-linac connection to provide mr-guided radiotherapy. Radiat Oncol. 2014; 9(1):12.CrossRefPubMedPubMedCentral
36.
go back to reference Frese MC. Potentials and risks of advanced radiobiological treatment planning for proton and carbon ion therapy. Ph.D. dissertation, Universitätsbibliothek, Heidelberg. 2011. Frese MC. Potentials and risks of advanced radiobiological treatment planning for proton and carbon ion therapy. Ph.D. dissertation, Universitätsbibliothek, Heidelberg. 2011.
Metadata
Title
Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer
Authors
Julian Steitz
Patrick Naumann
Silke Ulrich
Matthias F. Haefner
Florian Sterzing
Uwe Oelfke
Mark Bangert
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0705-8

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue