Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

In proton radiation therapy a constant relative biological effectiveness (RBE) of 1.1 is usually assumed. However, biological experiments have evidenced RBE dependencies on dose level, proton linear energy transfer (LET) and tissue type. This work compares the predictions of three of the main radio-biological models proposed in the literature by Carabe-Fernandez, Wedenberg, Scholz and coworkers.

Methods

Using the chosen models, a spread-out Bragg peak (SOBP) as well as two exemplary clinical cases (single field and two fields) for cranial proton irradiation, all delivered with state-of-the-art pencil-beam scanning, have been analyzed in terms of absorbed dose, dose-averaged LET (LET D ), RBE-weighted dose (D RBE) and biological range shift distributions.

Results

In the systematic comparison of RBE predictions by the three models we could show different levels of agreement depending on (α/β) x and LET values. The SOBP study emphasizes the variation of LET D and RBE not only as a function of depth but also of lateral distance from the central beam axis. Application to clinical-like scenario shows consistent discrepancies from the values obtained for a constant RBE of 1.1, when using a variable RBE scheme for proton irradiation in tissues with low (α/β) x , regardless of the model. Biological range shifts of 0.6– 2.4 mm (for high (α/β) x ) and 3.0 – 5.4 mm (for low (α/β) x ) were found from the fall-off analysis of individual profiles of RBE-weighted fraction dose along the beam penetration depth.

Conclusions

Although more experimental evidence is needed to validate the accuracy of the investigated models and their input parameters, their consistent trend suggests that their main RBE dependencies (dose, LET and (α/β) x ) should be included in treatment planning systems. In particular, our results suggest that simpler models based on the linear-quadratic formalism and LETD might already be sufficient to reproduce important RBE dependencies for re-evaluation of plans optimized with the current RBE = 1.1 approximation. This approach would be a first step forward to consider RBE variations in proton therapy, thus enabling a more robust choice of biological dose delivery. The latter could in turn impact clinical outcome, especially in terms of reduced toxicities for tumors adjacent to organs at risk.
Footnotes
1
The derivative can be performed with the tools available on-line such as Wolfram|Alpha.
 
Literature
1.
go back to reference ICRU 78. Prescribing, recording, and reporting proton-beam therapy: contents. J ICRU. 2007;7(2):NP–P. ICRU 78. Prescribing, recording, and reporting proton-beam therapy: contents. J ICRU. 2007;7(2):NP–P.
2.
go back to reference Paganetti H, Niemierko A, Ancukiewicz M, Gerweck L, Goitein M, Loeffler J, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.CrossRefPubMed Paganetti H, Niemierko A, Ancukiewicz M, Gerweck L, Goitein M, Loeffler J, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.CrossRefPubMed
3.
go back to reference Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.CrossRefPubMed Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.CrossRefPubMed
4.
go back to reference Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–72.CrossRefPubMed Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–72.CrossRefPubMed
5.
go back to reference Joiner M, van der Kogel A. Basic Clinical Radiobiology. 4th ed. CRC Press; 2009. Joiner M, van der Kogel A. Basic Clinical Radiobiology. 4th ed. CRC Press; 2009.
6.
go back to reference Wilkens J, Oelfke U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys Med Biol. 2004;49(13):2811–25.CrossRefPubMed Wilkens J, Oelfke U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys Med Biol. 2004;49(13):2811–25.CrossRefPubMed
7.
go back to reference Tilly N, Johansson J, Isacsson U, Medin J, Blomquist E, Grusell E, et al. The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys Med Biol. 2005;50(12):2765–77.CrossRefPubMed Tilly N, Johansson J, Isacsson U, Medin J, Blomquist E, Grusell E, et al. The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys Med Biol. 2005;50(12):2765–77.CrossRefPubMed
8.
go back to reference Carabe-Fernandez A, Dale R, Jones B. The incorporation of the concept of minimum RBE (RBE min) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments. Int J Radiat Biol. 2007;83(1):27–39.CrossRefPubMed Carabe-Fernandez A, Dale R, Jones B. The incorporation of the concept of minimum RBE (RBE min) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments. Int J Radiat Biol. 2007;83(1):27–39.CrossRefPubMed
9.
go back to reference Wedenberg M, Lind B, Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α / β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. 2013;52(3):580–8.CrossRefPubMed Wedenberg M, Lind B, Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α / β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. 2013;52(3):580–8.CrossRefPubMed
10.
go back to reference Hawkins R. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys. 1998;25(7):1157–70.CrossRefPubMed Hawkins R. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys. 1998;25(7):1157–70.CrossRefPubMed
11.
go back to reference Elsässer T, Weyrather W, Friedrich T, Durante M, Iancu G, Krämer M, et al. Quantification of the relative biological effectiveness for Ion beam radiotherapy: direct experimental comparison of proton and carbon Ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78(4):1177–83.CrossRefPubMed Elsässer T, Weyrather W, Friedrich T, Durante M, Iancu G, Krämer M, et al. Quantification of the relative biological effectiveness for Ion beam radiotherapy: direct experimental comparison of proton and carbon Ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78(4):1177–83.CrossRefPubMed
12.
go back to reference Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol. 2012;88(1–2):103–7.CrossRefPubMed Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol. 2012;88(1–2):103–7.CrossRefPubMed
13.
go back to reference Frese M, Yu V, Stewart R, Carlson D. A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(1):442–50.CrossRefPubMed Frese M, Yu V, Stewart R, Carlson D. A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(1):442–50.CrossRefPubMed
14.
go back to reference Grün R, Friedrich T, Krämer M, Zink K, Durante M, Engenhart-Cabillic R, et al. Physical and biological factors determining the effective proton range. Med Phys. 2013;40(11):111716.CrossRefPubMed Grün R, Friedrich T, Krämer M, Zink K, Durante M, Engenhart-Cabillic R, et al. Physical and biological factors determining the effective proton range. Med Phys. 2013;40(11):111716.CrossRefPubMed
15.
go back to reference Carabe A, España S, Grassberger C, Paganetti H. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol. 2013;58(7):2103–17.CrossRefPubMed Carabe A, España S, Grassberger C, Paganetti H. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol. 2013;58(7):2103–17.CrossRefPubMed
16.
go back to reference Wedenberg M, Toma-Dasu I. Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans. Med Phys. 2014;41(9):091706.CrossRefPubMed Wedenberg M, Toma-Dasu I. Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans. Med Phys. 2014;41(9):091706.CrossRefPubMed
17.
go back to reference Dale R, Jones B. The assessment of RBE effects using the concept of biologically effective dose. Int J Radiat Oncol Biol Phys. 1999;43(3):639–45.CrossRefPubMed Dale R, Jones B. The assessment of RBE effects using the concept of biologically effective dose. Int J Radiat Oncol Biol Phys. 1999;43(3):639–45.CrossRefPubMed
18.
go back to reference Mairani A, Böhlen T, Schiavi A, Tessonnier T, Molinelli S, Brons S, et al. A Monte Carlo-based treatment planning tool for proton therapy. Phys Med Biol. 2013;58(8):2471–90.CrossRefPubMed Mairani A, Böhlen T, Schiavi A, Tessonnier T, Molinelli S, Brons S, et al. A Monte Carlo-based treatment planning tool for proton therapy. Phys Med Biol. 2013;58(8):2471–90.CrossRefPubMed
19.
go back to reference Krämer M, Scholz M. Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol. 2006;51(8):1959–70.CrossRefPubMed Krämer M, Scholz M. Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol. 2006;51(8):1959–70.CrossRefPubMed
20.
go back to reference Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 1996;18(1–2):5–14.CrossRefPubMed Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 1996;18(1–2):5–14.CrossRefPubMed
21.
go back to reference Ferrari A, Sala P, Fassò A, Ranft J. FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC 05/11, SLAC-R-773; 2005. Ferrari A, Sala P, Fassò A, Ranft J. FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC 05/11, SLAC-R-773; 2005.
22.
go back to reference Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega P, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nuclear Data Sheets. 2014;120:211–4.CrossRef Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega P, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nuclear Data Sheets. 2014;120:211–4.CrossRef
23.
go back to reference Bauer J, Sommerer F, Mairani A, Unholtz D, Farook R, Handrack J, et al. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014;59(16):4635–59.CrossRefPubMed Bauer J, Sommerer F, Mairani A, Unholtz D, Farook R, Handrack J, et al. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014;59(16):4635–59.CrossRefPubMed
24.
go back to reference Friedrich T, Scholz U, ElsaSser T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res. 2012;54(3):494–514.CrossRefPubMedPubMedCentral Friedrich T, Scholz U, ElsaSser T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res. 2012;54(3):494–514.CrossRefPubMedPubMedCentral
25.
go back to reference Karger C, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Radiat Oncol Biol Phys. 2006;66(5):1488–97.CrossRefPubMed Karger C, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Radiat Oncol Biol Phys. 2006;66(5):1488–97.CrossRefPubMed
26.
go back to reference Grassberger C, Trofimov A, Lomax A, Paganetti H. Variations in linear energy transfer within clinical proton therapy fields and the potential for biological treatment planning. Int J Radiat Oncol Biol Phys. 2011;80(5):1559–66.CrossRefPubMedPubMedCentral Grassberger C, Trofimov A, Lomax A, Paganetti H. Variations in linear energy transfer within clinical proton therapy fields and the potential for biological treatment planning. Int J Radiat Oncol Biol Phys. 2011;80(5):1559–66.CrossRefPubMedPubMedCentral
27.
go back to reference Gerweck L, Kozin S. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol. 1999;50(2):135–42.CrossRefPubMed Gerweck L, Kozin S. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol. 1999;50(2):135–42.CrossRefPubMed
28.
go back to reference Chetty I, Curran B, Cygler J, DeMarco J, Ezzell G, Faddegon B, et al. Report of the AAPM task group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed Chetty I, Curran B, Cygler J, DeMarco J, Ezzell G, Faddegon B, et al. Report of the AAPM task group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed
29.
go back to reference McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness (rbe) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015;60(21):8399.CrossRefPubMed McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness (rbe) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015;60(21):8399.CrossRefPubMed
30.
go back to reference Cabal G, Jäkel O. Dynamic target definition: a novel approach for PTV definition in ion beam therapy. Radiother Oncol. 2013;107(2):227–33.CrossRefPubMed Cabal G, Jäkel O. Dynamic target definition: a novel approach for PTV definition in ion beam therapy. Radiother Oncol. 2013;107(2):227–33.CrossRefPubMed
Metadata
Title
Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios
Publication date
01-12-2016
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0642-6

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue