Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Hepatitis A | Review

Potential of CRISPR/Cas system as emerging tools in the detection of viral hepatitis infection

Authors: Howra Bahrulolum, Hossein Tarrahimofrad, Fatemeh Nouri Rouzbahani, Saghi Nooraei, Mehdi Mousavi Sameh, Abbas Hajizade, Gholamreza Ahmadian

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Viral hepatitis, the most common cause of inflammatory liver disease, affects hundreds of millions of people worldwide. It is most commonly associated with one of the five nominal hepatitis viruses (hepatitis A–E viruses). HBV and HCV can cause acute infections and lifelong, persistent chronic infections, while HAV and HEV cause self-limiting acute infections. HAV and HEV are predominantly transmitted through the fecal-oral route, while diseases transmitted by the other forms are blood-borne diseases. Despite the success in the treatment of viral hepatitis and the development of HAV and HBV vaccines, there is still no accurate diagnosis at the genetic level for these diseases. Timely diagnosis of viral hepatitis is a prerequisite for efficient therapeutic intervention. Due to the specificity and sensitivity of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated sequences (Cas) technology, it has the potential to meet critical needs in the field of diagnosis of viral diseases and can be used in versatile point-of-care (POC) diagnostic applications to detect viruses with both DNA and RNA genomes. In this review, we discuss recent advances in CRISPR–Cas diagnostics tools and assess their potential and prospects in rapid and effective strategies for the diagnosis and control of viral hepatitis infection.
Literature
1.
go back to reference Tapper EB, Curry MP. Hepatitis Caused by Other Viruses Handbook of Liver Disease, 2018: p. 78. Tapper EB, Curry MP. Hepatitis Caused by Other Viruses Handbook of Liver Disease, 2018: p. 78.
2.
go back to reference Sarin SK, Kumar M. Viral hepatitis A, in Molecular Pathology of Liver Diseases. Springer; 2011. pp. 527–52. Sarin SK, Kumar M. Viral hepatitis A, in Molecular Pathology of Liver Diseases. Springer; 2011. pp. 527–52.
5.
go back to reference Cox AL, et al. Progress towards elimination goals for viral hepatitis. Nat Reviews Gastroenterol Hepatol. 2020;17(9):533–42.CrossRef Cox AL, et al. Progress towards elimination goals for viral hepatitis. Nat Reviews Gastroenterol Hepatol. 2020;17(9):533–42.CrossRef
6.
go back to reference Malik GF, et al. Viral hepatitis-the road traveled and the journey remaining. Hepatic Medicine: Evidence And Research. 2022;14:13.PubMedCrossRef Malik GF, et al. Viral hepatitis-the road traveled and the journey remaining. Hepatic Medicine: Evidence And Research. 2022;14:13.PubMedCrossRef
7.
go back to reference Wu J et al. Diagnosis, Treatment, and Prognosis of Viral Hepatitis. Front Med, 2022. 9. Wu J et al. Diagnosis, Treatment, and Prognosis of Viral Hepatitis. Front Med, 2022. 9.
8.
go back to reference Kong H, et al. Advanced nanotheranostics of CRISPR/Cas for viral hepatitis and hepatocellular carcinoma. Adv Sci. 2021;8(24):2102051.CrossRef Kong H, et al. Advanced nanotheranostics of CRISPR/Cas for viral hepatitis and hepatocellular carcinoma. Adv Sci. 2021;8(24):2102051.CrossRef
9.
go back to reference Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRef Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRef
10.
go back to reference Ishino Y, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.PubMedPubMedCentralCrossRef Ishino Y, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.PubMedPubMedCentralCrossRef
11.
go back to reference Makarova KS, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.PubMedCrossRef Makarova KS, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.PubMedCrossRef
12.
go back to reference O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. J Mol Biol. 2019;431(1):66–87.PubMedCrossRef O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. J Mol Biol. 2019;431(1):66–87.PubMedCrossRef
17.
go back to reference Zuckerman JN, Zuckerman AJ. In: Heights M, editor. Hepatitis viruses infectious Diseases. 3 ed. Missouri, USA): Mosby Elsevier; 2010. pp. 1539–49.CrossRef Zuckerman JN, Zuckerman AJ. In: Heights M, editor. Hepatitis viruses infectious Diseases. 3 ed. Missouri, USA): Mosby Elsevier; 2010. pp. 1539–49.CrossRef
18.
go back to reference Tu T, Patel K, Shackel N. Chap. 17-Viral Hepatitis Genomic and, 2017. Tu T, Patel K, Shackel N. Chap. 17-Viral Hepatitis Genomic and, 2017.
19.
go back to reference Jha V et al. Computational Screening of Medicinal Plant Phytochemicals to Discover Potent Inhibitors against Hepatitis B Virus Jha V et al. Computational Screening of Medicinal Plant Phytochemicals to Discover Potent Inhibitors against Hepatitis B Virus
20.
go back to reference Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nature Reviews Gastroenterology & Hepatology; 2022. pp. 1–18. Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nature Reviews Gastroenterology & Hepatology; 2022. pp. 1–18.
21.
go back to reference Trujillo-Ochoa JL, Viera-Segura O, Fierro NA. Challenges in management of hepatitis a virus epidemiological transition in Mexico. Ann Hepatol. 2019;18(1):14–22.PubMedCrossRef Trujillo-Ochoa JL, Viera-Segura O, Fierro NA. Challenges in management of hepatitis a virus epidemiological transition in Mexico. Ann Hepatol. 2019;18(1):14–22.PubMedCrossRef
22.
go back to reference Feld JJ. Chronic viral hepatitis in adults and children: hepatitis B Hepatology: Diagnosis and Clinical Management, 2012: p. 185. Feld JJ. Chronic viral hepatitis in adults and children: hepatitis B Hepatology: Diagnosis and Clinical Management, 2012: p. 185.
23.
go back to reference Sharapov UM. Hepatitis A, Foodborne Infections and Intoxications. 2013,Elsevier. 279–86. Sharapov UM. Hepatitis A, Foodborne Infections and Intoxications. 2013,Elsevier. 279–86.
25.
go back to reference Migueres M, Lhomme S, Izopet J. Hepatitis A: epidemiology, high-risk groups, prevention and research on antiviral treatment. Viruses. 2021;13(10):1900.PubMedPubMedCentralCrossRef Migueres M, Lhomme S, Izopet J. Hepatitis A: epidemiology, high-risk groups, prevention and research on antiviral treatment. Viruses. 2021;13(10):1900.PubMedPubMedCentralCrossRef
26.
go back to reference Michaelis K, et al. Hepatitis A virus infections, immunisations and demographic determinants in children and adolescents, Germany. Sci Rep. 2018;8(1):1–10.CrossRef Michaelis K, et al. Hepatitis A virus infections, immunisations and demographic determinants in children and adolescents, Germany. Sci Rep. 2018;8(1):1–10.CrossRef
27.
28.
go back to reference Gupta S. Viral Hepatitis: Historical Perspective, Etiology, Epidemiology, and Pathophysiology Gupta, S.(primera edición), Studies on Hepatitis Viruses: Life Cycle, Structures, Functions, and Inhibition (págs. 1–14). Elsevier, 2018. Gupta S. Viral Hepatitis: Historical Perspective, Etiology, Epidemiology, and Pathophysiology Gupta, S.(primera edición), Studies on Hepatitis Viruses: Life Cycle, Structures, Functions, and Inhibition (págs. 1–14). Elsevier, 2018.
30.
go back to reference Logoida M, et al. Comparison of two diagnostic methods for the detection of Hepatitis B virus genotypes in the Slovak Republic. Pathogens. 2021;11(1):20.PubMedPubMedCentralCrossRef Logoida M, et al. Comparison of two diagnostic methods for the detection of Hepatitis B virus genotypes in the Slovak Republic. Pathogens. 2021;11(1):20.PubMedPubMedCentralCrossRef
31.
go back to reference Kafeero HM, et al. Hepatitis B virus (HBV) serological patterns among the HBsAg negative hospital attendees screened for immunization. Sci Rep. 2022;12(1):1–10.CrossRef Kafeero HM, et al. Hepatitis B virus (HBV) serological patterns among the HBsAg negative hospital attendees screened for immunization. Sci Rep. 2022;12(1):1–10.CrossRef
32.
go back to reference Akbar SMF, et al. The Safety and Efficacy of a therapeutic vaccine for chronic Hepatitis B: a Follow-Up study of Phase III Clinical Trial. Vaccines. 2021;10(1):45.PubMedPubMedCentralCrossRef Akbar SMF, et al. The Safety and Efficacy of a therapeutic vaccine for chronic Hepatitis B: a Follow-Up study of Phase III Clinical Trial. Vaccines. 2021;10(1):45.PubMedPubMedCentralCrossRef
33.
go back to reference McQuillan GM, et al. Prevalence of hepatitis B virus infection in the United States: the National Health and Nutrition examination surveys, 1976 through 1994. Am J Public Health. 1999;89(1):14–8.PubMedPubMedCentralCrossRef McQuillan GM, et al. Prevalence of hepatitis B virus infection in the United States: the National Health and Nutrition examination surveys, 1976 through 1994. Am J Public Health. 1999;89(1):14–8.PubMedPubMedCentralCrossRef
35.
go back to reference Diogo Dias J, Sarica N, Neuveut C. Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses, 2021. 13(5). Diogo Dias J, Sarica N, Neuveut C. Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses, 2021. 13(5).
37.
go back to reference Edey M, Barraclough K, Johnson DW. Review article: Hepatitis B and dialysis. Nephrol (Carlton). 2010;15(2):137–45.CrossRef Edey M, Barraclough K, Johnson DW. Review article: Hepatitis B and dialysis. Nephrol (Carlton). 2010;15(2):137–45.CrossRef
38.
go back to reference Smalls DJ, et al. Hepatitis B Virus Reactivation: risk factors and current management strategies. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2019;39(12):1190–203.CrossRef Smalls DJ, et al. Hepatitis B Virus Reactivation: risk factors and current management strategies. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2019;39(12):1190–203.CrossRef
39.
go back to reference Syed G, Wyles D, Siddiqui A. Hepat Viruses. 2014. Syed G, Wyles D, Siddiqui A. Hepat Viruses. 2014.
40.
go back to reference Ju W, et al. Hepatitis C virus genotype and subtype distribution in chinese chronic hepatitis C patients: nationwide spread of HCV genotypes 3 and 6. Virol J. 2015;12(1):1–6.CrossRef Ju W, et al. Hepatitis C virus genotype and subtype distribution in chinese chronic hepatitis C patients: nationwide spread of HCV genotypes 3 and 6. Virol J. 2015;12(1):1–6.CrossRef
41.
go back to reference Gupta P. Hepatitis C virus and HIV type 1 co-infection. Infect disease Rep. 2013;5(S1):31–7. Gupta P. Hepatitis C virus and HIV type 1 co-infection. Infect disease Rep. 2013;5(S1):31–7.
42.
go back to reference Zheng Y et al. Global Burden and Changing Trend of Hepatitis C Virus Infection in HIV-Positive and HIV-Negative MSM: A Systematic Review and Meta-Analysis. Front Med, 2021. 8. Zheng Y et al. Global Burden and Changing Trend of Hepatitis C Virus Infection in HIV-Positive and HIV-Negative MSM: A Systematic Review and Meta-Analysis. Front Med, 2021. 8.
43.
go back to reference Backmund M, et al. Hepatitis C virus infection and injection drug users: prevention, risk factors, and treatment. Clin Infect Dis. 2005;40(Supplement5):S330–5.PubMedCrossRef Backmund M, et al. Hepatitis C virus infection and injection drug users: prevention, risk factors, and treatment. Clin Infect Dis. 2005;40(Supplement5):S330–5.PubMedCrossRef
45.
go back to reference Colpitts CC, Tsai P-L, Zeisel MB. Hepatitis C virus entry: An intriguingly complex and highly regulated process International Journal of Molecular Sciences, 2020. 21(6): p. 2091. Colpitts CC, Tsai P-L, Zeisel MB. Hepatitis C virus entry: An intriguingly complex and highly regulated process International Journal of Molecular Sciences, 2020. 21(6): p. 2091.
46.
47.
go back to reference Mu J-J, et al. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis. Virology. 2004;319(1):60–70.PubMedCrossRef Mu J-J, et al. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis. Virology. 2004;319(1):60–70.PubMedCrossRef
49.
go back to reference USTIANOWSKI A, K. HANDBOOK OF SYSTEMIC, AUTOIMMUNE, DISEASES. 2020. 16: p. 59–82. USTIANOWSKI A, K. HANDBOOK OF SYSTEMIC, AUTOIMMUNE, DISEASES. 2020. 16: p. 59–82.
50.
go back to reference Olivero A, Smedile A. Hepatitis delta virus diagnosis. Seminars in liver disease. 2012.Thieme Medical Publishers. Olivero A, Smedile A. Hepatitis delta virus diagnosis. Seminars in liver disease. 2012.Thieme Medical Publishers.
51.
go back to reference Kim J-H, et al. A systematic review of the epidemiology of hepatitis E virus in Africa. BMC Infect Dis. 2014;14(1):1–13.CrossRef Kim J-H, et al. A systematic review of the epidemiology of hepatitis E virus in Africa. BMC Infect Dis. 2014;14(1):1–13.CrossRef
52.
go back to reference Shieh Y, Cromeans T, Sobsey M. VIRUSES| hepatitis viruses transmitted by food, water, and environment 2014. Shieh Y, Cromeans T, Sobsey M. VIRUSES| hepatitis viruses transmitted by food, water, and environment 2014.
53.
go back to reference Chevaliez S, Pawlotsky J-M. Hepatitis Viruses, Infectious Diseases. 2017,Elsevier. 1417–25. Chevaliez S, Pawlotsky J-M. Hepatitis Viruses, Infectious Diseases. 2017,Elsevier. 1417–25.
54.
go back to reference Nelson KE, Labrique AB, Kmush BL. Epidemiology of genotype 1 and 2 hepatitis E virus infections. Volume 9. Cold Spring Harbor perspectives in medicine; 2019. p. a031732. 6. Nelson KE, Labrique AB, Kmush BL. Epidemiology of genotype 1 and 2 hepatitis E virus infections. Volume 9. Cold Spring Harbor perspectives in medicine; 2019. p. a031732. 6.
57.
go back to reference Zhao C, Wang Y. Laboratory diagnosis of HEV infection. Hepat E Virus, 2016: p. 191–209. Zhao C, Wang Y. Laboratory diagnosis of HEV infection. Hepat E Virus, 2016: p. 191–209.
58.
go back to reference Talapko J et al. Towards the improved accuracy of hepatitis e diagnosis in vulnerable and target groups: A global perspective on the current state of knowledge and the implications for practice. Healthcare. 2021.MDPI. Talapko J et al. Towards the improved accuracy of hepatitis e diagnosis in vulnerable and target groups: A global perspective on the current state of knowledge and the implications for practice. Healthcare. 2021.MDPI.
60.
go back to reference CJ B, CR H. and M. FA, - laboratory diagnosis of Virus Diseases. Fenner and White’s Medical Virology; 2017. CJ B, CR H. and M. FA, - laboratory diagnosis of Virus Diseases. Fenner and White’s Medical Virology; 2017.
61.
go back to reference Xiao M, et al. Virus detection: from state-of-the-Art Laboratories to Smartphone-Based point-of-care testing. Adv Sci. 2022;9(17):2105904.CrossRef Xiao M, et al. Virus detection: from state-of-the-Art Laboratories to Smartphone-Based point-of-care testing. Adv Sci. 2022;9(17):2105904.CrossRef
62.
go back to reference Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnol. 2021;19(1):348.CrossRef Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnol. 2021;19(1):348.CrossRef
65.
66.
go back to reference Kaminski MM, et al. CRISPR-based diagnostics. Nat Biomedical Eng. 2021;5(7):643–56.CrossRef Kaminski MM, et al. CRISPR-based diagnostics. Nat Biomedical Eng. 2021;5(7):643–56.CrossRef
70.
go back to reference Ding R, et al. CRISPR/Cas system: a potential technology for the Prevention and Control of COVID-19 and Emerging Infectious Diseases. Front Cell Infect Microbiol. 2021;11:639108.PubMedPubMedCentralCrossRef Ding R, et al. CRISPR/Cas system: a potential technology for the Prevention and Control of COVID-19 and Emerging Infectious Diseases. Front Cell Infect Microbiol. 2021;11:639108.PubMedPubMedCentralCrossRef
71.
go back to reference Xiang X, et al. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J Drug Target. 2020;28(7–8):727–31.PubMedCrossRef Xiang X, et al. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J Drug Target. 2020;28(7–8):727–31.PubMedCrossRef
72.
75.
go back to reference Lee RA et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria Proceedings of the National Academy of Sciences, 2020. 117(41): p. 25722–25731. Lee RA et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria Proceedings of the National Academy of Sciences, 2020. 117(41): p. 25722–25731.
76.
go back to reference Kaminski MM, et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat Biomed Eng. 2020;4(6):601–9.PubMedCrossRef Kaminski MM, et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat Biomed Eng. 2020;4(6):601–9.PubMedCrossRef
77.
go back to reference Bruch R, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid amplification-free miRNA Diagnostics. Adv Mater. 2019;31(51):1905311.CrossRef Bruch R, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid amplification-free miRNA Diagnostics. Adv Mater. 2019;31(51):1905311.CrossRef
78.
go back to reference Shan Y, et al. High-fidelity and Rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal Chem. 2019;91(8):5278–85.PubMedCrossRef Shan Y, et al. High-fidelity and Rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal Chem. 2019;91(8):5278–85.PubMedCrossRef
79.
80.
go back to reference Hajian R, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomedical Eng. 2019;3(6):427–37.CrossRef Hajian R, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomedical Eng. 2019;3(6):427–37.CrossRef
81.
go back to reference Jolany vangah S, et al. CRISPR-Based diagnosis of Infectious and Noninfectious Diseases. Biol Procedures Online. 2020;22(1):22.CrossRef Jolany vangah S, et al. CRISPR-Based diagnosis of Infectious and Noninfectious Diseases. Biol Procedures Online. 2020;22(1):22.CrossRef
82.
go back to reference Pardee K, et al. Rapid, low-cost detection of Zika Virus using Programmable Biomolecular Components. Cell. 2016;165(5):1255–66.PubMedCrossRef Pardee K, et al. Rapid, low-cost detection of Zika Virus using Programmable Biomolecular Components. Cell. 2016;165(5):1255–66.PubMedCrossRef
84.
go back to reference Wang S, et al. Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system. Food Control. 2021;130:108194.CrossRef Wang S, et al. Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system. Food Control. 2021;130:108194.CrossRef
85.
go back to reference Mustafa Mujahed I, Makhawi Abdelrafie M. SHERLOCK and DETECTR: CRISPR-Cas Systems as potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J Clin Microbiol. 2021;59(3):e00745–20.PubMedPubMedCentral Mustafa Mujahed I, Makhawi Abdelrafie M. SHERLOCK and DETECTR: CRISPR-Cas Systems as potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J Clin Microbiol. 2021;59(3):e00745–20.PubMedPubMedCentral
89.
go back to reference Li Y, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37(7):730–43.PubMedCrossRef Li Y, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37(7):730–43.PubMedCrossRef
90.
go back to reference Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas Biosensing Technologies. ACS Synth Biol. 2020;9(6):1226–33.PubMedCrossRef Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas Biosensing Technologies. ACS Synth Biol. 2020;9(6):1226–33.PubMedCrossRef
92.
go back to reference Chen X, et al. A CRISPR-Cas12b-Based platform for Ultrasensitive, Rapid, and highly specific detection of Hepatitis B virus genotypes B and C in clinical application. Front Bioeng Biotechnol. 2021;9:743322.PubMedPubMedCentralCrossRef Chen X, et al. A CRISPR-Cas12b-Based platform for Ultrasensitive, Rapid, and highly specific detection of Hepatitis B virus genotypes B and C in clinical application. Front Bioeng Biotechnol. 2021;9:743322.PubMedPubMedCentralCrossRef
93.
go back to reference Zhang X, et al. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol Int. 2022;16(2):306–15.PubMedCrossRef Zhang X, et al. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol Int. 2022;16(2):306–15.PubMedCrossRef
94.
go back to reference Wang S, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clin Microbiol Infect. 2021;27(3):443–50.PubMedCrossRef Wang S, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clin Microbiol Infect. 2021;27(3):443–50.PubMedCrossRef
95.
go back to reference Ding R et al. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int J Mol Sci, 2021. 22(9). Ding R et al. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int J Mol Sci, 2021. 22(9).
96.
go back to reference Ashraf MU, et al. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother. 2021;136:111239.PubMedCrossRef Ashraf MU, et al. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother. 2021;136:111239.PubMedCrossRef
97.
go back to reference Wang H, et al. Rapid Visual detection of Hepatitis C Virus using reverse transcription recombinase-aided amplification-lateral Flow Dipstick. Front Cell Infect Microbiol. 2022;12:816238.PubMedPubMedCentralCrossRef Wang H, et al. Rapid Visual detection of Hepatitis C Virus using reverse transcription recombinase-aided amplification-lateral Flow Dipstick. Front Cell Infect Microbiol. 2022;12:816238.PubMedPubMedCentralCrossRef
98.
go back to reference Kham-Kjing N et al. Highly Specific and Rapid Detection of Hepatitis C Virus Using RT-LAMP-Coupled CRISPR-Cas12 Assay. Diagnostics (Basel), 2022. 12(7). Kham-Kjing N et al. Highly Specific and Rapid Detection of Hepatitis C Virus Using RT-LAMP-Coupled CRISPR-Cas12 Assay. Diagnostics (Basel), 2022. 12(7).
99.
go back to reference Li H, et al. Amplification-free detection of SARS-CoV-2 and respiratory Syncytial Virus using CRISPR Cas13a and Graphene Field-Effect Transistors. Angew Chem Int Ed Engl. 2022;61(32):e202203826.PubMedPubMedCentral Li H, et al. Amplification-free detection of SARS-CoV-2 and respiratory Syncytial Virus using CRISPR Cas13a and Graphene Field-Effect Transistors. Angew Chem Int Ed Engl. 2022;61(32):e202203826.PubMedPubMedCentral
101.
go back to reference Li P, et al. Applications of the CRISPR-Cas system for infectious disease diagnostics. Expert Rev Mol Diagn. 2021;21(7):723–32.PubMedCrossRef Li P, et al. Applications of the CRISPR-Cas system for infectious disease diagnostics. Expert Rev Mol Diagn. 2021;21(7):723–32.PubMedCrossRef
103.
104.
go back to reference Ibrahim AU, et al. Futuristic CRISPR-based biosensing in the cloud and internet of things era: an overview. Multimed Tools Appl. 2022;81(24):35143–71.PubMedCrossRef Ibrahim AU, et al. Futuristic CRISPR-based biosensing in the cloud and internet of things era: an overview. Multimed Tools Appl. 2022;81(24):35143–71.PubMedCrossRef
Metadata
Title
Potential of CRISPR/Cas system as emerging tools in the detection of viral hepatitis infection
Authors
Howra Bahrulolum
Hossein Tarrahimofrad
Fatemeh Nouri Rouzbahani
Saghi Nooraei
Mehdi Mousavi Sameh
Abbas Hajizade
Gholamreza Ahmadian
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02048-5

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue